
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Demonstrating Large Language Models on Robots
Google DeepMind

  Large
  Language
  Model

Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
  if is_empty(bowl_name):
    empty_bowl = bowl_name
    break
objs_to_stack = [empty_bowl] + block_names
stack_objects(objs_to_stack)

def is_empty(name):
  ...
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Stack the blocks on the empty bowl.

def stack_objects(obj_names):
  n_objs = len(obj_names)
  for i in range(n_objs - 1):
    obj0 = obj_names[i + 1]
    obj1 = obj_names[i]
    pick_place(obj0, obj1)
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Can you bring me the drink from the table?
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Action: "bring it to you"
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Fig. 1: Our proposed demonstration presents a collection of systems that use large language models on robots, with four complementary approaches. This
includes an accessible video chat interface that allows users to (i) type in natural language instructions to different robots connected remotely and view them
as they execute the task, and (ii) seamlessly switch between systems and hardware platforms. Our goal is to communicate their limitations, discuss open
research problems in the area, and provide tooling (open-source code) to empower other researchers to explore exciting new opportunities in the space.

Abstract—Robots may benefit from large language models (LLMs),
which have demonstrated strong reasoning capabilities across various
domains. This demonstration includes several systems based on recent
methods that integrate LLMs on robots: SayCan [1], Socratic Models
[49], Inner Monologue [19], and Code as Policies [27]. While each
algorithm highlights a different mode of grounding, they all share a
common system-level structure in that they use LLMs to take as input
natural language instructions and generate robot plans in the form
of step-by-step procedures or code. This structure provides several
practical perks for demonstration in that (i) we can use existing
video chat interfaces to instruct the robot by typing commands and
broadcasting its movements in action via video streaming, (ii) one can
seamlessly switch between systems by switching between interfaces
that communicate with different robots, and (iii) this can all be done
remotely on a laptop, where the robots on real hardware can be held
on standby in the lab ready to run on command. Our tentative plan is
to show at least one system running on real hardware remotely – Inner
Monologue [19] or Code as Policies [27], and solicit task instructions
from the live audience. Time-permitting we may also demonstrate the
other systems available to run on real hardware. Otherwise, we will
present recorded videos of past runs. We will link to open-source code,
and conclude with a discussion of open research questions in the area.

I. INTRODUCTION

Robots may benefit from large language models (LLMs) [9, 7],
which have demonstrated strong reasoning capabilities across
various domains, including strategic dialogue [4], step-by-step
reasoning [46, 24], math problem solving [26, 35], and code writing
[8]. While LLMs possess vast amounts of knowledge acquired
from pre-training on Internet-scale text data, they lack grounding
(situated) in the physical world [43]. Enabling these models to
bridge the connection between words, percepts, and actions on
robots remains an open research question.

In this work, we propose a demonstration of several systems
based on recent methods that integrate LLMs on robots: SayCan
[1], Socratic Models [49], Inner Monologue [19], and Code as
Policies [27] – providing an in-depth discussion on how they
differ and build on each other. While each algorithm highlights
a different mode of grounding e.g., using affordance functions or

visual language model (VLM) outputs, they all share a common
system-level structure in that they use LLMs to take as input natural
language instructions and generate robot plans in the form of
step-by-step procedures or code. This structure provides several
practical perks for demonstration in that (i) we can use existing
video chat interfaces to instruct the robot by typing commands
and broadcasting its movements in action via video streaming, (ii)
one can seamlessly switch between systems by switching between
interfaces that communicate with different robots, and (iii) this can
all be done remotely on a laptop, where the robots on real hardware
can be held on standby in the lab ready to run on command.

Our tentative plan is to show at least one system running on real
hardware remotely – Inner Monologue [19] or Code as Policies
[27], and solicit task instructions from the live audience. For the
other systems, we will present recorded videos of past runs, and link
to open-source code (in simulation). Time-permitting (depending
on the structure of the session), we may also demonstrate the
other systems available to run on real hardware. These can include:
(i) examples of common failure modes that occur during these
demonstrations (Sec. IV), and (ii) “experimental” demonstrations
(Sec. V) of using LLMs for robot reasoning that were not robust
enough (either on physical robots, or across multiple LLMs) to
appear in a publication, but that may lead to new capabilities as
LLMs continue to evolve and improve.

Our primary goal is to communicate to the research community
that while integrating LLMs on robots can lead to interesting new
capabilities, there is still much more work to be done in the area.
Asking the audience for input task instructions is one way we’d
like to probe our existing systems live and discuss failure modes
as they naturally arise. We’d like to empower the audience with the
tools that they need to execute on the research. To this end, every
system will come with available open-source code for researchers
to extend and build on, with colab notebooks (including simulation)
that can be directly run in the browser. We conclude with several
open research questions in the area.



II. RELATED WORK

Controlling robots with language has a long history, including
early demonstrations of human-robot interaction through lexical
parsing of natural language [47]. Language serves not only as an
interface for non-experts to interact with robots [5, 25], but also as a
means to compositionally scale generalization to new tasks [21, 1].
The literature is vast (we refer to Tellex et al. [43] and Luketina et
al. [28] for comprehensive surveys), but recent works fall broadly
into the categories of high-level interpretation (e.g., semantic pars-
ing [30, 25, 44, 42, 38, 31, 45]), planning [18, 19, 1], and low-level
policies (e.g., model-based [33, 3, 39], imitation learning [21, 29, 40,
41], or reinforcement learning [22, 16, 10, 32, 2]). In contrast, our
work focuses on using existing pretrained LLMs to generated plans,
procedures, and code as an expressive way to control the robot.
Large language models exhibit impressive zero-shot reasoning
capabilities: from planning [18] to writing math programs [13];
from solving science problems [26] to using trained verifiers [11]
for math word problems. These can be improved with prompting
methods such as Least-to-Most [50], Think-Step-by-Step [24] or
Chain-of-Thought [46].

III. PROPOSED DEMONSTRATIONS

Overview. In this section, we describe a collection of systems –
each using LLMs within the algorithm to enable new capabilities
and a natural language interface. We describe how the LLMs are
used, and how each system differs from and builds on each other.
Each demonstration comes with existing videos and open-sourced
code that will be presented. Since each corresponding system can
be instructed to perform open-query tasks given arbitrary natural
language instructions, this provides an opportunity to easily present
demonstrations of multiple systems under a common user interface
that can be thought of as “video chat with robots”.
Format. The extent to which we present each demonstration would
be conditioned on the length of time available to us during the
conference session. For example, if allotted 5-10 minutes of presen-
tation time, then we plan to present a live demonstration of Inner
Monologue (Sec. III-C) or Code as Policies (Sec. III-D), with an
Everyday Robot running remotely in our lab during the presentation.
The presenter would provide a brief high-level overview of the
project(s), then switch during the presentation to a live video feed
where both the robot and a chat dialogue interface are visible. They
would type natural language instructions in the chat (that are then
communicated via gRPC) to the robot to perform the task. For ex-
ample, one such chat-based interaction may look like the following:

The remainder of the presentation time would be spent on
(i) (time permitting) opening up to live instructions and queries
suggested by the audience, and (ii) referencing website and
download links to videos and open-source code available for the
other projects. Alternatively, if we are instead allotted a booth
(in parallel to conference sessions) or a prolonged poster session
(30min+), then we plan to divide the time among all demonstration
systems that we have available (described in the following sections),
and/or present specific systems on request from the audience. Our
robot systems (and operations team) for SayCan (Sec. III-A), Inner
Monologue (Sec. III-C), and Code as Policies (Sec. III-D) would be
remote on standby in our office locations, ready to run on demand.

Use
r
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User

Fig. 3: SayCan is accessible via a chat-based interface which engages in
a dialog with a user to communicate it’s abilities and determine the task,
then executes the instruction in the real world on a mobile manipulator.

Simulated environments Inner Monologue (Sec. III-B) would be
demonstrated live in the browser. Onsite at the conference, only
a laptop should be needed to present an interactive demonstration
(as a video chat with the robot). By soliciting queries from
participating audience members, we hope to openly communicate
the performance and limits of the algorithms, and use their failure
modes as a platform to discuss open areas of research. Specifically,
our demonstration includes running examples of language-using
robots using various LLMs (PaLM [9], GPT-3 [7, 34], Codex [8])
with VLMs (CLIP [36], ViLD [17], MDETR [23]) on two platforms
(EverydayRobots and UR5) in both simulated and real settings.

A. SayCan: LLM Planning with Affordance Functions

Given natural language instructions as input (in green), SayCan
uses LLM planning [18] and grounding affordance functions to
generate a step-by-step sequential plan (highlighted):

Instruction: Move the coke can a bit to the right.
Step 1. Pick up coke can.
Step 2. Move right.
Step 3. Place coke can.

Each step in the plan is selected iteratively based on a combination of
a their corresponding probability scores from a language model (that
judges the utility of the task), and the affordance values of a ground-
ing model (that judges how feasible a task is) conditioned on input
images. The plan is then executed by pretrained, natural-language
conditioned policies that can either be trained with RL, or with super-
vised learning, though for this demonstration they are implemented
in the real world via RT-1 [6] and in a simulator via CLIPort [40].

The demonstration consists of a real world mobile manipulator
from Everyday Robots, operating in an office kitchen stocked with
various objects. The demo proceeds through a chat interface with the
language model, which at first will ask for the task, then clarify any
ambiguity and inform you if the task is not feasible. Once the task is
agreed upon, it will execute it with SayCan for high-level planning
and RT-1 for low-level skills (with a live video of the robot). At each
step, it will output the affordance and language model scores for
the top skill opens via an interpretable interface. More information
and code can be found at the project website say-can.github.io.

B. Socratic Models: VLM-informed LLM Planning

Rather than post-hoc grounding generated steps to skills, Socratic
Models uses pretrained visual language models (VLMs) (e.g.,
open-vocabulary object detectors [23, 17]) to provide additional

https://say-can.github.io/


Fig. 4: Given a high-level instruction, SayCan combines probabilities from
a LLM (the probability that a skill is useful for the instruction) with the
probabilities from a value function (the probability of successfully executing
said skill) to select the skill to perform. This emits a skill that is both
possible and useful. The process is repeated by appending the skill to the
response and querying the models again, until the output step is to terminate.

context (e.g., text descriptions of images) to the LLM before
generating the step-by-step plan. Each step is formatted as a
function call to a pre-existing skill (parameterized with text) that
calls a language-conditioned policy such as CLIPort [40]:

# Move the coke can a bit to the right.
objects = [“coke can”] from open-vocab VLMs
Step 1. robot.grasp(“coke can”)
Step 2. robot.place_a_bit_right()

One interpretation of Socratic Models is that it uses text as the
information bottleneck between modules (perception and planning),
as opposed to a Bayesian approach to multimodal probabilistic
inference. This presents both advantages and disadvantages – while
the expression of supported tasks can expand to a broad spectrum
of objects (detectable by the VLM) and skills (executable by the
language-conditioned policies) via compositional generality [20],
language may struggle to succinctly describe contact-rich
interactions or dynamics (particularly those not supported by
existing VLMs or language-conditioned policies).

The demonstration of Socratic Models simulates a UR5 robot
arm overlooking a set of objects (blocks and bowls) on a tabletop
setting in PyBullet [12]. It uses ViLD [17] to detect the objects
in the scene, then passes that information as a list of object
names to InstructGPT [34] as the LLM planner, which is few-shot
prompted to generate function calls to CLIPort. The function calls
themselves map to a text template that matches the input training
data distribution of CLIPort. The demonstration can be presented
directly within a colab that runs in browser, where intermediate
outputs can be visualized for prototyping. More information and
code can be found on the project website socraticmodels.github.io.

C. Inner Monologue: LLM Planning with Feedback

SayCan and Socratic Models both do not use feedback to re-plan.
Inner Monologue addresses this by expanding LLM step-by-step
planning (SayCan) to include language-based feedback (Socratic
Models), in the form of success detection or scene description,
which can come from pretrained VLMs or human feedback:

Fig. 5: Socratic models proposes a modular framework to enable multimodal
foundation models (vision, language, robotic, and more) to exchange
information and flexibly execute downstream capabilities. Above, an LLM
planner [1, 18], CLIP-based object detector [17], and CLIPort policy [40].

Instruction: Move the drink a bit to the right.
Objects: water bottle, coke can. from open-vocab VLMs
Do you want to move the water bottle or the coke can?
Human: Coke can please.
Step 1. Pick up coke can.
Success detector: action was not successful.
Step 1. Pick up coke can.
Success detector: action was successful.
Step 2. Move right.
Step 3. Place coke can.

The demonstration consists of a real world mobile manipulator
from Everyday Robots, operating in an office kitchen stocked with
various objects. The demo receives a task via a chat interface and
begins executing it with SayCan. A robot operator overseeing the
demonstration provide both a video link and interact with the robot,
forcing skill failures randomly and changing the environment to
demonstrate the ability of Inner Monologue to react to unforeseen
changes. At each step, the chat interface will output the results of
the success detector or scene description and enable the user to
continue interacting with the robot, potentially changing the task
during execution. More information can be found at the project
website innermonologue.github.io.
Instruction VLM-informed Data Augmentation Learning-based
robotic control systems rely on large datasets of diverse behavior
trajectories, such as those collected with teleoperation. VLMs and
LLMs can be utilized for language instruction prediction, enabling
a cheap and scalable approach for importing internet-scale semantic
knowledge into offline robotic datasets. More information can be
found at the project website instructionaugmentation.github.io.

D. Code as Policies: LLM Planning with Code

While LLMs can generate plans in the form of a list of sequential
steps, Code as Policies uses code-writing LLMs to expand this to
the full expression of code: including if-else conditionals, for/while

https://socraticmodels.github.io/
https://innermonologue.github.io/
https://instructionaugmentation.github.io/


loops, arithmetic, third-party libraries, etc. This can encompass both
re-planning with feedback loops, low-level and spatial reasoning:
# Move the coke can a bit to the right.
while not obj_in_gripper(“coke can”):

robot.move_gripper_to(“coke can”)
robot.close_gripper()
pos = robot.gripper.position
robot.move_gripper(pos.x, pos.y+0.1, pos.z)
robot.open_gripper()

Code as Policies assumes that a collection of perception and control
primitive APIs are available as modules, and that the code-writing
LLM has been exposed to several examples (via few-shot prompting)
of the function calls in use, so that it can re-compose them for new
tasks. The generated code is directly executed on the robot.

Fig. 6: The chat interface for Code as Policies enables a user to request new
tasks and view both the robot execution, robot view, and the code generated.

The demonstration consists of a real UR5 robot arm overlooking a
tabletop workspace with a set of objects, with a chat UI that includes
a video feed of the robot workspace, and displays generated code by
the LLM. More information, open-source code (in simulation), and
a hugging face demonstration can be found at the project website
code-as-policies.github.io.

IV. COMMON FAILURE MODES

Robot systems built with LLMs as a central component are
not without practical limitations. Here, we discuss several chronic
issues (both methods-level and systems-level) that may arise
during demonstrations, which may lead to new infrastructure
considerations for future work.
• LLMs are compute-heavy e.g., GPT-3 [7] is a 175 billion

parameter model, while PaLM [9] is a 540 billion parameter
model. Both require large remote GPU and TPU server farms to
run inference alone. Prediction services in the cloud are subject
to latencies due to Internet bandwidth, or concurrent usage, and
may disconnect in the middle of a demonstration.

• The scope of generalization provided by LLM planning (with the
aforementioned methods) are also subject to the hand-designed

few-shot prompt examples provided in-context as input to the
LLM. These examples must often encompass the “convex hull” of
tasks instructions that will be asked at test time, which can be chal-
lenged by hard tasks requested by a live audience. We hope to use
demonstrations and live queries as a means to surface these issues.

• LLMs are subject to biases from their training data. This can lead
to diverging behaviors between different LLMs when tasked with
the same ambiguous/subjective instructions (e.g., “put the block
in the bowl you think it best fits”). This can also lead to practical
implications on the expression of the LLM plans. For example,
Codex [8] may perform well with generating Python code or
pseudo-code (given that it was trained on Python Github code), but
may struggle to be as expressive in other languages (e.g., C++) or
formats (e.g., temporal logic) without addition model finetuning.

• We inherit other limitations of LLMs. One typical issue is that
LLMs use auto-regressive decoding, which means previous
errors will act as a input for future output. This could happen in a
dialog setting and makes an LLM agent enters an error state (e.g.
denying all requests by saying “I cannot do that."). This could
happen in a live demo and usually flushing the dialog history and
restart the demo would be helpful.

V. EXPERIMENTAL DEMONSTRATIONS

This section describes additional interesting examples of LLMs
for robot reasoning that can be demonstrated on request, but are not
robust enough (either on physical robots, or across multiple LLMs)
to appear in a main project. Nevertheless, these examples may serve
as a point of discussion for seeking potential new capabilities as
LLMs continue to evolve and improve.

A. Cross-Embodied Code as Policies

Code-writing LLMs exhibit a degree of cross-embodiment sup-
port [48, 14] by performing the same task differently depending on
the action APIs. In the example below, we provide brief docstrings
of the action APIs (in comments), and the resultant plan changes
depending on the whether or not the robot is omnidirectional or
unidirectional. We note that this ability is brittle with existing LLMs
and cannot reliably adapt to APIs that are very different. More
robustness may require larger ones trained on domain-specific code.
# omnidirectional robot.
# available actions: move_up(dist), move_right(dist),
# move_back(dist)
# make a U shape 5 meters wide and 10 meters long.
robot.move_back(dist=10)
robot.move_right(dist=5)
robot.move_up(dist=10)
# unidirectional robot.
# available actions: turn_left(deg), move_forward(dist).
# make a U shape 3 meters wide and 8 meters long.
robot.move_forward(dist=8)
robot.turn_left(deg=90)
robot.move_forward(dist=3)
robot.turn_left(deg=90)
robot.move_forward(dist=8)

VI. LIMITATIONS AND OPEN RESEARCH QUESTIONS

To be set free in human-centric environments, LLM-backed
robots must show strong generalization performance in the “wild”.

https://code-as-policies.github.io/


This depends on the robustness of the underlying in-context
learning mechanisms which may be susceptible to distribution shifts
between the LLM training data and inference time prompts, or
between in-context examples and the query specifying the task [15].
Understanding the “generalization radius”, robustness and sample
complexity of in-context learning is an open research question.

LLMs can decompose long-horizon tasks up to a finite resolution
beyond which low-level embodiment-specific action primitives take
over. How much on-robot data needs to be collected to complement
the reasoning capabilities of pretrained models depends on how
this interface is designed. Furthermore, large models are hosted and
served using cloud resources; hence, controllers onboard the robot
need to be able to mitigate the latency for highly dynamic tasks.

The scope of embodied reasoning is broad and encompasses
the ability of physical agents, such as language-using robots, to
both (i) interpret and describe their surroundings, and (ii) plan
interactions within the environment, taking into account physical
constraints [37]. While the community has made considerable
progress, reasoning about these constraints in the most expressive
way possible still remains a challenge.
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