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Abstract—Recent advances in robot learning have shown
promise in enabling robots to perform a variety of manipulation
tasks and generalize to novel scenarios. One of the key contribut-
ing factors to this progress is the scale of robot data used to
train the models. To obtain large-scale datasets, prior approaches
have relied on either demonstrations requiring high human
involvement or engineering-heavy autonomous data collection
schemes, both of which being challenging in scaling up the space
of new tasks and skills needed for building generalist robots.
To mitigate this issue, we propose to take an alternative route
and leverage text-to-image foundation models widely used in
computer vision and natural language processing to obtain mean-
ingful data for robot learning without requiring additional robot
data. Specifically, we make use of the state of the art text-to-image
diffusion models and perform aggressive data augmentation on
top of our existing robotic manipulation datasets via inpainting
of various unseen objects for manipulation, backgrounds, and
distractors with pure text guidance. Through extensive real-world
experiments, we show that manipulation policies trained on the
augmented data are able to solve completely unseen tasks with
new objects and can behave more robustly w.r.t. novel distractors.
In addition, we also find that we can improve the robustness
and generalization of high-level robot learning tasks such as
success detection through training with the diffusion-based data
augmentation.

I. INTRODUCTION

Though recent progress in robotic learning has shown the
ability to learn impressive tasks [27, 4, 59], it has largely been
limited to domains with few tasks and constrained environments.
One of the fundamental reasons for these limitations is the
lack of diverse data that covers not only a large variety of
motor skills, but also a variety of objects and visual domains.
This becomes apparent by observing more recent trends in
robot learning research – when scaled to larger, more diverse
datasets, current robotic learning algorithms have demonstrated
promising signs towards more robust and performant robotic
systems [27, 4]. However, this promise comes with an arduous
challenge: it is extremely difficult to significantly scale-up
varied, real-world data collected by robots as it requires
either engineering-heavy autonomous schemes such as scripted
policies [29, 37] or laborious human teleoperations [25, 4]. To
put it into perspective, it took 17 months and 13 robots to
collect 130k demonstrations in [4]. In [29], the authors used
7 robots and 16 months to collect 800k autonomous episodes.
While some works [73, 32, 57] have proposed a potential

Fig. 1: We propose using text-guided diffusion models for
data augmentation within the sphere of robot learning. These
augmentations can produce highly convincing images suitable
for learning downstream tasks. As demonstrated in this teaser
figure, some of the objects were produced using our system,
and it is difficult to identify which are real and which are
generated due to the photorealism of our system.

solution to this conundrum by generating simulated data to
satisfy these robot data needs, they come with their own set
of challenges such as generating diverse and accurate enough
simulations [27] or solving sim-to-real transfer [42, 54]. Can we
find other ways to synthetically generate realistic diverse data
without requiring realistic simulations or actual data collection
on real robots?

To investigate this question we look to field of computer
vision. Traditionally, the synthetic generation of additional
data, whether to improve the accuracy or robustify a machine
learning model, has been addressed through data augmentation
techniques. These commonly include randomly perturbing the
images including cropping, flipping, adding noise, augmenting
colors or changing brightness. While effective in some computer
vision applications, these data augmentation strategies do not
suffice to provide novel robotic experiences that can result in
a robot mastering a new skill or generalizing to semantically
new environments [54, 1, 35]. However, recent progress in
high-quality text-to-image diffusion models such as DALL-E
2 [50], Imagen [55] or StableDiffusion [52] provides a new
level of data augmentation capability. Such diffusion-based
image-generation methods allow us to move beyond traditional
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data augmentation techniques, for three reasons. First, they can
meaningfully augment the semantic aspects of the robotic task
through a natural language interface. Second, these methods
are built on internet-scale data and thus can be used zero-shot
to generate photorealistic images of many objects. Third, they
have the capability to meaningfully change only part of the
image using methods such as inpainting [76]. These capabilities
allow us to generate realistic scenes by incorporating novel
distractors, backgrounds, and environments while reflecting the
semantics of the new task or scene – essentially distilling the
vast knowledge of large generative vision models into robot
experience.

As an example, given data for a task such as “move the
green chip bag near the orange”, we may want to teach the
robot to move the chip bag of any colors near many new
objects that it has not interacted with, such as “move the
yellow chip bag near the peach” (Fig 1). These techniques
allow us to exchange the objects from real data for arbitrary
relevant objects. Furthermore, they can leave the semantically
relevant part of the scene untouched, e.g. the grasp of the chip
bag remains, while the orange becomes a peach. This results
in a novel, semantically-labelled data point to teach the model
a new task. Such a technique can reasonable also generate
“move the apple near the orange on a wooden desk”, “move
the plum near the orange”, or even “place the coke can in the
sink”.

In this paper, we investigate how off-the-shelf image-
generation methods can vastly expand robot capabilities,
enabling new tasks and robust performance. We propose
Robot Learning with Semantically Imagened Experience
(ROSIE), a general and semantically-aware data augmentation
strategy. ROSIE works by first parsing human provided novel
instructions and identifying areas of the scene to alter. It then
leverages inpainting to make the necessary alterations, while
leaving the rest of the image untouched. This amounts to a
free lunch of novel tasks, distractors, semantically meaningful
backgrounds, and more, as generated by internet-scale-trained
generative models. We demonstrate this approach on a large
dataset of robotic data and show how a subsequently trained
policy is able to perform novel, unseen tasks, and becomes
more robust to distractors and backgrounds. Moreover, we
show that ROSIE can also improve the robustness of success
detection in robotic learning especially in out-of-distribution
(OOD) scenarios.

II. RELATED WORK

Scaling robot learning. Given the recent results on scaling
data and models in other fields of AI such as language [6, 11, 9]
and vision [13, 2, 8], there are multiple approaches try-
ing to do the same in the field of robot learning. One
group of methods focuses on scaling up robotic data via
simulation [27, 60, 58, 57, 24, 77, 44, 74] with the hopes
that the resulting policies and methods will transfer to the
real world. The other direction focuses on collecting large
diverse datasets in the real world by either teleoperating
robots [41, 25, 4, 14] or autonomously collecting data via

reinforcement learning [29, 28, 37] or scripting behaviors [10].
In this work, we present a complementary view on scaling the
robot data by making use of state-of-the-art text-conditioned
image generation models to enable new robot capabilities, tasks
and more robust performance.
Data augmentation and domain randomization. Domain
randomization [42, 68, 69] is a common technique for training
machine learning models on synthetically generated data. The
advantage of domain randomization is that it makes it possible
to train models on a wide variety of data to improve general-
ization. Domain randomization usually involves changing the
physical parameters or rendering parameters (lighting, texture,
backgrounds) in simulation models [36, 33, 16, 38]. Others
use data augmentation to transformer simulated data to be
more realistic [54, 1, 51, 18] or vice-versa [23]. Contrary to
these methods, we propose to directly augment data collected
in the real world. We operate directly on the real-world data
and leverage diffusion models to perform photorealistic image
manipulation on this data.
Diffusion models for robot control. Though diffusion mod-
els [62, 20, 65, 64, 63, 46, 12, 19, 55, 50] have become
common-place in computer vision, their application to robotic
domains is relatively nascent. Janner et al. [26] uses diffusion
models to generate motion plans in robot behavior synthesis.
Some works have used the ability of image diffusion models
to generate images and perform common sense geometric
reasoning to propose goal images fed to object-conditioned
policies [39, 31]. The most similar work to ours is CACTI [40],
which proposes to use diffusion model for augmenting data
collected from the real world via adding new distractors and
requires manually provided masks and semantic labels. In
contrast, besides augmenting data with distractors, our work
generates new tasks and demonstrations via automatically
semantically selecting regions for inpainting with text guidance
and generating novel, realistic augmentations.

III. PRELIMINARIES

Diffusion models and inpainting. Diffusion models are a class
of generative models which have shown remarkable success in
modeling model complex distributions [62]. Diffusion models
work through an iterative denoising process, transforming
Gaussian noise into samples of the distribution guided by a
mean squared error loss. Many such models also have the
capability for high-quality inpainting, essentially filling in
masked areas of an image [15, 47, 22, 76]. Such approaches
too can be guided by language, thus generating areas consistent
with both a language prompt and the image as a whole [72].
Multi-task language-conditioned robot learning. Herein
we learn vision and language-conditioned robot policies via
imitation learning. We denote a dataset D := {ej}Nj=1 of
N episodes e = {(oi,ai,oi+1, `)}Ti=1 where o denotes the
observation, which correspond to the image in our setting, a
denotes the action, and ` denotes the language instruction of
the episode, identifying the target task. We then learn a policy
π(·|oi, `) to generate an action distribution by minimizing the
negative-log liklihood of actions, i.e. behavioral cloning [48].
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Fig. 2: The proposed architecture of ROSIE. First, we localize the augmentation region with open vocabulary segmentation
model. Second, we run Imagen Editor to perform text-guided image editing. Finally, we use the augmented data to train an
RT-1 manipulation policy [4]. Concretely, we explain ROSIE using the example shown in the figure as follows. We take the
original episode with the instruction “place coke can into top drawer” and the goal is to add distractors in the opened drawer to
improve the robustness of the policy. For each image in the episode, we detect the masks of the open drawer, the robot arm,
and the coke can using our first step. We obtain the mask of the target region to add the distractor via subtracting the masks of
the robot arm and the coke can that is picked up from the mask of the open drawer. Then, we generate our augmentation
proposal leveraging LLMs as described in Section IV-B. We run Imagen Editor with the augmentation text and the selected
mask to generate a coke can in the drawer discussed in Section IV-C. We combine both the original episodes and the augmented
episodes and perform policy training using multi-task imitation learning.

To perform large-scale vision-language robot learning, we train
with the RT-1 architecture [4], which utilizes FiLM-conditioned
EfficientNet [67], a TokenLearner [53], and a Transformer [70]
to output actions.

IV. ROBOT LEARNING WITH SEMANTICALLY IMAGENED
EXPERIENCE (ROSIE)

In this section, we introduce our approach ROSIE, an
automated pipeline for scaling up robot data generation via
semantic image augmentation. We assume that we have access
to episodes of state and action pairs demonstrating a robot
executing a task that is labelled with a natural language
instruction. As the first step of the pipeline we augment
the natural language instruction with a semantically different
circumstance such as “there is a coke can in the opened drawer”.
Given this natural language prompt, ROSIE generates the
mask of the region of interest that is relevant to the language
query. Next, given the augmentation text, ROSIE performs
inpainting on the selected mask with Imagen Editor [72] to
insert semantically accurate objects that follow the augmented
text instruction. Importantly, the entire process is applied
throughout the robot trajectory, which is now consistently
augmented across all the time steps. We present the overview
of this pipeline in Fig. 2. We describe the details of each
component of ROSIE in the following sections. In Section IV-A,
we show how we obtain the mask of the target region using
open vocabulary segmentation. In Section IV-B, we discuss

two main approaches to proposing prompts used for Imagen
Editor, which can be either specified manually or generated
automatically with a large language model. In Section IV-C,
we discuss how we perform inpainting with Imagen Editor
based on the augmentation prompt. Finally, we show how we
use the generated data in downstream tasks such as policy
learning and learning high-level tasks such as success detection
in Section IV-D.

“Add a coke to the drawer”
InstructPix2Pix

“Add a coke to the drawer”
ROSIE(Ours)

Original

Fig. 3: Our augmentation scheme generates more targeted
and physically realistic augmentations that are useful for
learning downstream tasks, while other text-to-image generation
methods such as InstructPix2Pix [5] often makes global changes
rendering the image unusable for training.
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Fig. 4: Augmentations of in-hand objects during manipulation.
We show examples where ROSIE effectively inpaint novel
objects into the original in-hand objects during manipulation.
On the top row, we show the original episode with detected
masks where the robot picks up the green chip bag. On
the following row, we show that ROSIE can inpaint various
microfiber cloth with different colors and styles into the original
green chip bag. For example, we can simply pass the original
episode with the masks and the prompt Robot picking up
a polka dot cloth to get an episode the robot picking
such cloth in a photorealistic manner.

A. Augmentation Region Localization using Open Vocabulary
Segmentation

In order to generate semantically meaningful augmentations
on top of existing robotic datasets, we first need to detect
the region of the image where such augmentation should be
performed. To this end, we perform open-vocabulary instance
segmentation leveraging the OWL-ViT open-vocabulary detec-
tor [43] with an additional instance segmentation head. This
additional head predicts fixed resolution instance masks for
each bounding box detected by OWL-ViT (similar in style to
Mask-RCNN [17]). In particular, we freeze the main OWL-ViT
model and fine-tune a mask head on Open-Images-V5 instance
segmentations [34, 3].

The instance segmentation model provided by OWL-ViT
requires a language query that specifies which part of the image
should be detected. We can generate masks for objects that the
robot arm interacts with. Given each episode e in our robotic
dataset, we first identify the target objects specified in the
language instruction `. For example, if ` is “pick coke can”, the
target object of the task is a coke can. We pass the target object

Fig. 5: We show the original images from RT-1 datasets on the
top row and the images with detected masks and mask labels
on the bottom row.

as a prompt to the OWL-ViT model to perform segmentation
and obtain the resulting mask. We can also generate masks
in regions where distractors can be inpainted to improve the
robustness of policy. In this setting, we use the OWL-ViT to
detect both the table (shown in Figure 2) and all the objects
on the table. This allows us to sample a mask on the table in
a way that it does not overlap with existing objects (which we
call passthrough objects). We provide more examples of masks
detected by OWL-ViT from our robotic dataset in Figure 5.

B. Augmentation Text Proposal

Next, we discuss two main approaches to attain the aug-
mentation prompt for the text-to-image diffusion model: hand-
engineered prompt and LLM-proposed prompt.

Hand-engineered prompt. The first method involves manu-
ally specifying the object to augment. For generating new tasks,
we choose objects that lie outside of our training data to ensure
that the augmentations are able to expand the data support.
For improving robustness of the learned policy and success
detection, we randomly pick objects that are semantically
meaningful and add them in the prompt to generate meaningful
distractors in the scene. For example, in Figure 4 where we
aim to generate novel in-hand objects by replacing the original
object (green chip bag) with various microfiber cloth, we use
the following prompt Robot picking up a blue and
white stripe cloth to effectively perform inpainting.

LLM-proposed prompt. While hand-engineered prompt
may guarantee the generated data to be out-of-distribution, it
makes the data generation process less scalable. Therefore, we
propose to leverage the power of large language models in
proposing objects to augment. We leverage the rich semantics
learned in LLMs to propose a vast list of objects with detailed
descriptions of visual features for augmentation. We employ
GPT-3 [6] as our choice of LLM to propose the augmentation
text. In particular, we specify the original task of the episode
and the target task after augmentation in the LLM prompt, and
ask the LLM to propose the OWL-ViT prompt for detecting
masks of both the target region and the passthrough objects.
We present an example of LLM-assisted augmentation prompt
proposal in Figure 2, where LLM-generated augmentation text
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Fig. 6: We show visualizations of the episodes generated by ROSIE where we replace the regular tabletop in front of the robot
with a dish rack, a marble sink and a wooden counter, which never appears in the training dataset. Our results in Section V-A
and Figure 7 show that the policy trained on such augmentations enables the robot to place objects into a real metal sink.

is highly informative, which in turn benefits the text-guided
image editing. Therefore, we use LLM-proposed prompts in
our experiments. Despite that there is some noise in the LLM-
proposed prompts (see Appendix D), it generally does not hurt
robotic control performance in practice.

C. Diffusion Model for Text-Guided Inpainting

Given the segmentation mask and the augmentation prompt,
we perform text-guided image editing via a text-to-image
diffusion model. Herein, we use Imagen Editor [72], the latest
state-of-the-art text-guided image inpainting model fine-tuned
on pre-trained text-to-image generator Imagen [55], though we
note that our approach, ROSIE, is agnostic to the choice of
inpainting models. Imagen Editor [72] is a cascaded diffusion
architecture. All of the diffusion models, i.e., the base model
and super-resolution (SR) models (i.e., conditioned on high-
resolution 1024×1024 image and mask inputs) are trained with
new convolutional image encoders shown in the bottom right
corner of Figure 2. Imagen Editor is capable of generating
high-resolution photorealistic augmentations, which is crucial
for robot learning as it relies on realistic images capturing
physical interactions. Moreover, Imagen Editor is trained to
de-noise object-oriented masks provided by off-the-shelf object
detectors [56] along with random box/stroke masks [66],
enabling inpainting with our mask generation procedure.

To summarize more formally, given a robotic episode
e = {(oi,ai,oi+1, `)}Ti=1, the mask m designating the target
area(s) to be modified, and our generated augmentation text
`aug, we iteratively query Imagen Editor with input oi, m and
`aug over i = 1, . . . , T . As a result, Imagen Editor generates the
masked region according to the input text `aug (e.g. inserting
novel objects or distractors) while ensuring consistency with
the unmasked and unedited content of oi. This results in
generating augmented image õi. In scenarios where `aug creates

a new task, we modify the instruction ` to ˜̀. For example,
as shown in Figure 4 where we replace the green chip bag
with various styles of microfiber cloth, we modify the original
instruction ` = “pick green rice chip bag” to ˜̀= “pick blue
microfiber cloth”, pick “polka dot microfiber cloth” and etc.
The actions {ai}Ti=1 remain unchanged, as Imagen Editor alters
novel objects consistently with the semantics of overall image.
In summary, ROSIE eventually yields the augmented episode
ẽ = {(õi,ai, õi+1, ˜̀)}Ti=1. Powered by the expressiveness of
diffusion models and the prior learned from internet-scale data,
ROSIE is able to provide physically realistic augmentations
(e.g. Figure 3) that are valuable in making robot learning more
generalizable and robust, which we will show in Section V.

D. Manipulation Model Training

The goal of the augmentation is to improve learning
of downstream tasks, e.g. robot manipulation. We train a
manipulation policy based on Robotics Transformer (RT-1)
architecture [4] discussed in Section III. Given the ROSIE
augmented dataset D̃ := {ẽj}Ñj=1, where Ñ is the number of
augmented episodes, we train a policy on top of a pre-trained
RT-1 model [4]. The finetuning uses a 1:1 mixing ratio of
D and D̃. We follow the same training procedure described
in [4] except that we use a smaller learning rate 1× 10−6 to
ensure the stability of fine-tuning.

V. EXPERIMENTS

While we believe text-guided image editing models can
generally boost the richness and diversity of robotics data, we
want to ground our exploration in a few concrete use cases.
In particular, we focus on robot manipulation and embodied
reasoning (e.g. detecting if a manipulation task is performed
successfully). We design experiments to answer the following
research questions:
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Fig. 7: We show an episode augmented by ROSIE (top row) where ROSIE inpaints the metal sink onto the top drawer of the
counter and a rollout of policy trained with both the original episodes and the augmented episodes in a real kitchen with a
metal sink. The policy successfully performs the task “place pepsi can into sink” even if it is not trained on real data with
sink before, suggesting that leveraging the prior of the diffusion models trained with internet-scale data is able to improve
generalization of robotic learning in the real world.

1) RQ1: Can we leverage semantic-aware augmentation to
learn completely new skills only seen through diffusion
models?

2) RQ2: Can we leverage semantic-aware augmentation to
make our policy more robust to visual distractors?

3) RQ3: Can we leverage semantic-aware augmentation to
bootstrap high-level embodied reasoning such as success
detection?

To answer these questions, we perform empirical evaluations
of ROSIE using the multi-task robotic dataset collected in
[4], which consists of ∼130k robot demonstrations with
744 language instructions collected in laboratory offices and
kitchens. These tasks include skills such as picking, placing,
opening and closing drawers, moving objects near target
containers, manipulating objects into or out of the drawers,
and rearranging objects. For more details regarding the tasks
and the data used we refer to [4].

In our experiments, we aim to understand the effects of
both the augmented text and the augmented images on policy
learning. We thus perform two comparisons, ablating these
changes:

1) Pre-trained RT-1 (NoAug): we take the RT-1 policy
trained on the 744 tasks in [4]. While pre-trained RT-
1 is not trained on tasks with the augmentation text and
generated objects, it has been shown to enjoy promising
pre-training capability and demonstrate excellent zero-
shot generalization to unseen scenarios [4] and therefore,
should have the ability to tackle the novel tasks to some
extent.

2) Fine-tuned RT-1 with Instruction Augmentation (In-
structionAug): Similar to Xiao et al. [75], we relabel
the original episodes in RT-1 dataset to new instructions
generated via our augmentation text proposal IV-B while
keeping the images unchanged. We expect this method
to bring the text instructions in-distribution but fail to

recognize the visuals of the augmented objects.
For implementation details and hyperparameters, please see

Appendix A.

A. RQ1: Learning new skills

To answer RQ1, we augment the RT-1 dataset via generating
new objects that the robot needs to manipulate. We perform
such evaluation in the following four categories with increasing
level of difficulty.

a) Learning to move objects near generated novel
containers: First, we test the tasks of moving training objects
near unseen containers. We visualize such unseen containers
in Figure 10 in Appendix C. We select the tasks “move {some
object} near white bowl” and “move {some object} near paper
bowl” within the RT-1 dataset, which yields 254 episodes in
total. We use the augmentation text proposals to replace the
white bowl and the paper bowl with the following list of objects
{lunch box, woven basket, ceramic pot, glass mason jar, orange
paper plate} (visualized in Figure 10). For each augmentation,
we augment the same number of episodes as the original task.

As shown in Table I, the ROSIE fine-tuned RT-1 policy
(trained on both the whole RT-1 training set of 130k episodes
and the generated novel tasks) outperforms pre-trained RT-1
policy and fine-tuned RT-1 with instruction augmentations,
suggesting that ROSIE is able to generate fully unseen tasks
that are beneficial for control and exceeds the inherent transfer
ability of RT-1.

b) Learning to place objects into generated unseen
containers: Second, we perform a similar experiment, placing
into the novel target containers, rather than just nearby. Example
augmentations are shown in Figure 10. Table I again shows
ROSIE outperforms both pre-trained RT-1 and RT-1 with
instruction augmentation by at least 75%.

c) Learning to grasp generated unknown deformable
objects: Third, we test the limits of ROSIE on novel tasks



where the object to be manipulated is generated via ROSIE.
We pick the set of tasks “pick green chip bag” from the RT-1
dataset consisting of 1309 episodes. To accurately generate the
mask of the chip bag throughout the trajectory, we run our open-
vocabulary segmentation to detect the chip bag and the robot
gripper as the passthrough objects so that we can filter out the
robot gripper to obtain the accurate mask of the chip bag when
it is grasped. We further query Imagen Editor to substitute the
chip bag with a fully unknown microfiber cloth with distinctive
colors (black and blue), with augmentations shown in Figure 4.
Table I again demonstrates that ROSIE outperforms pre-trained
RT-1 and RT-1 with instruction augmentation by at least 150%,
proving that ROSIE is able to expand the manipulation task
family via diversifying the manipulation targets and boost the
policy performance in the real world.

d) Learning to place objects into an unseen kitchen
sink in a new background: Finally, to further stress-test our
diffusion-based augmentation pipeline, we try to learn place
object into a sink. Note that the robot has never collected
data for that task in the real world. We generate a challenging
scenario where we take the all the RT-1 tasks that perform
placing a can into the top drawer of a counter (779 episodes
in total) and deploy ROSIE to detect the open drawer and
replace the drawer with a metal sink using Imagen Editor (see
the first row of Figure 7 for the visualization). Similar to the
above two experiments, we dynamically compute the mask of
the open drawer at each frame of the episode while removing
the robot arm and the can in the robot hand from the mask.
Note that the generated sink makes the scene completely out
of the training distribution, which poses considerable difficulty
to the pre-trained RT-1 policy. The results in the last row in
Table I confirm this. ROSIE achieves 60% overall success
rate in placing the coke can and the pepsi can into the sink
whereas the RT-1 policy is not able to locate the can and fails to
achieve any success. In Figure 7, we include the visualizations
of a trajectory of the original episode with augmentations that
replaces the drawer with the sink and a trajectory of the policy
rollout performing the task near a real metal sink. Our method
effectively learns from the episodes with the sink generated
by ROSIE and completes the task that involve the sink in the
real kitchen.

Overall, through these experiments, ROSIE is shown to be
capable of effectively inpainting both the objects that require
rich manipulation and the target object of the manipulation
policy, significantly augmenting the number of tasks in robotic
manipulation. These results indicate a promising path to scaling
robot learning without extra effort of real data collection.

B. RQ2: Robustifying manipulation policies

We investigate RQ2 with two tasks. First, we train a policy
solely from the task “pick coke can” and investigate its ability
to perform this task with distractor coke cans, which have
not been seen in the 615 training episodes. To this end,
we employ ROSIE to add an equal number of augmented
episodes with additional coke cans on the table (see Figure 8
in Appendix C for visualizations). As shown in Table I, RT-1

Task Family / Text Instruction # Eval Episodes NoAug InstructionAug ROSIE

Move object near novel object 50 0.86 0.78 0.94
move coke can/orange near lunch box 10 0.8 0.6 0.9
move coke can/orange near woven basket 10 0.7 0.6 0.9
move coke can/orange near ceramic pot 10 1.0 0.9 1.0
move coke can/orange near glass mason jar 10 0.9 0.8 1.0
move coke can/orange near orange paper plate 10 0.9 1.0 0.9

Pick up novel object 20 0.25 0.3 0.75
pick blue microfiber cloth 10 0.1 0.4 0.8
pick black microfiber cloth 10 0.4 0.2 0.7

Place object into novel container 16 0.13 0.25 0.44
place coke can into orange plastic plate 8 0.0 0.19 0.5
place coke can into blue plastic plate 8 0.25 0.06 0.38

Place object into sink 10 0.0 - 0.6
place coke can into sink 5 0.0 - 0.8
place pepsi can into sink 5 0.0 - 0.4

Place object into cluttered drawer 40 0.38 - 0.55
place blue chip bag into top drawer 10 0.5 - 0.4
place green jalapeno chip bag into top drawer 10 0.4 - 0.5
place green rice chip bag into top drawer 10 0.4 - 0.5
place brown chip bag into top drawer 10 0.2 - 0.8

Pick up object (with OOD distractors) 27 0.33 - 0.37
pick coke can 27 0.33 - 0.37

TABLE I: Full Experimental Results for ROSIE. The blue
shaded results correspond to RQ1 and the orange shaded
results correspond to RQ2. We also included the number of
eval episodes for each text instruction. ROSIE outperforms
NoAug (pre-trained RT-1 policy) and InstructionAug (fine-
tuned RT-1 policy with instruction augmentation [75]) in both
categories, suggesting that ROSIE can significantly improve
the generalization to novel tasks and robustness w.r.t. different
distractors.

+ ROSIE augmentations improves the performance over RT-1
trained with “pick coke can” data only in scenarios where there
are multiple coke cans on the table.

Second, we evaluate a task that places a chip bag into a
drawer and investigate it’s ability to perform this task with
distractor objects already in the drawer, also unseen during
training. This scenario is challenging for RT-1, since the
distractor object in the drawer will confuse the model and make
it more likely to directly output termination action. We use
ROSIE to add novel objects to the drawer, as shown in Figure 9
in Appendix C and follow the same training procedure as in
the coke can experiment. Table I shows that RT-1 trained with
both the original data and ROSIE generated data outperforms
RT-1 with only original data. Our interpretation is that RT-1
trained from the training data never sees this situation before
and it incorrectly believes that the task is already solved at
the first frame, whereas ROSIE can mitigate this issue via
expanding the dataset using generative models.

C. RQ3: A Case Study on Success Detection

In this section, we show that ROSIE is also effective in
improving high-level robotic embodied reasoning tasks, such as
success detection. Success detection (or failure detection) is an
important capability for autonomous robots for accomplishing
tasks in dynamic situations that may require adaptive feedback
from the environment. Given large diversity of potential
situations that a robot might encounter, a general solution to
this problem may involve deploying learned failure detection



systems [30] that can improve with more data. As recent
work [75] has shown, visual-language models (VLMs) such
as CLIP [49] with internet scale pre-training can be fine-tuned
on domain specific robotic experience to perform embodied
reasoning such as success detection. However, collecting
domain specific fine-tuning data is often expensive, and it
is difficult to scale data collection to cover all potential success
and failure cases. This challenge is similar to the one of learning
a robust policy that we presented in the previous sections, where
the dataset of robot data might include data distribution biases
that are difficult to correct with on-robot data collection alone.

As a motivating example, consider the experimental setting
from Section V-A where a large dataset of teleoperated
demonstrations was collected for placing various household
objects into empty cabinet drawers. A success detector trained
on this dataset would require additional priors and/or data to
generalize to images of cluttered drawers.

To study this setting, we utilize ROSIE to augment 22764
episodes of placing objects into drawers tasks from the dataset
used in [75] and then fine-tune a CLIP-based success detector
following the procedure in [75]. Starting from the episodes of
robotic placing into empty drawers, we create two augmented
datasets with ROSIE to emulate visual clutter: one dataset (A)
that includes generated distractor chip bags inside the drawer
and one dataset (B) that includes generated soda cans inside
the drawer. Both datasets have the same number of episodes
as the original dataset. We evaluate the fine-tuned CLIP-based
success detector with and without ROSIE-augmented episodes
in two datasets: the in-distribution set and the OOD set. Our
in-distribution set contains 76 episodes of robot putting green
rice chip bag into the drawer and taking it out of the drawer,
while the OOD set contains 58 episodes of robot putting (green
rice, green japaleno, blue, brown) chip bag into the drawer, but
the drawer contains other items, which are not observed in the
training set. Note that this OOD set makes success detection
particularly challenging as the model can easily be misguided
by the cluttered distractors in the drawer and make incorrect
predictions even if the robot fails to place the target object
into the drawer.

By utilizing increasing amounts of augmentation from
ROSIE, we find that learned success detectors become in-
creasingly robust detecting successes and failures in real-
world difficult cluttered OOD drawer scenarios in terms of
F1 score, as seen in Table II. Note that our OOD dataset is
so adversarial as discussed above that the prior work [75]
without augmentations struggles a lot in this setting whereas
ROSIE obtains reasonable performance. Furthermore, we find
that the accuracy on the standard, in distribution tasks remains
unchanged. This indicates that ROSIE can be used as a general
semantically-consistent data augmentation technique across
various tasks such as policy learning and embodied reasoning.

VI. SOCIETAL IMPACT

The model we are using here is a text-guided image
generation model, which open many new possibilities for
content creation and subsequently many risks. Our approach

No Aug ROSIE Aug (A) ROSIE Aug ((A) + (B))

Overall 0.43 0.56 0.62
In-Distribution set 0.66 0.67 0.66
OOD set 0.19 0.45 0.57

TABLE II: CLIP success detection Results. ROSIE improves
the robustness of the success detection on hard OOD cases as
the number of augmentations increases. All numbers are the
F1 score and we use 0.5 as the threshold. We augment the
data with datasets A and B, which include different distractors
as described in text.

attempts to minimize many of these risks through a controlled
usage of these technologies, by only modifying local patches of
images and using narrowly scoped semantic labels. We further
follow accepted responsible AI practices, such as regularly
inspecting data before training on it, and in general recommend
researchers establish robust inspection and filtering mechanisms
when utilizing text-guided image generation models for data
augmentation.

VII. DISCUSSION, FUTURE WORK, AND CONCLUSION

In summary, we propose a system that uses off-the-shelf
text-guided image generation models to vastly expand robotics
datasets without any real-world data collection. We generate
new instructions and their corresponding text prompts for
alternating the images, enabling robots to achieve tasks that are
only seen through the lens of image generation process. We are
also able to generate semantically meaningful augmentations
of the images, enabling various learned models trained on
the data to be more robust with respect to OOD scenes. We
experimentally validated the proposed method on a variety of
language-conditioned manipulation tasks.

Though the method is general and flexible, there are a few
limitations of this work that we aim to address in the future.
First, we only augment the appearance of the objects and scenes,
and don’t generate new motions. To alleviate this limitation of
not augmenting physics and motions, we could consider mixing
in simulation data as a potential source of diverse motion data.

Another limitation of the proposed method is that it performs
image augmentation per frame, which can lead to a loss in
temporal consistency. However, we find that at least for the
architecture that we use (Robotics Transformer [4]), we do not
suffer from a performance drop. State of the art text-to-video
diffusion models [21, 61, 71, 45] can generate temporally
consistent videos but might lose photorealism and physics
realism, we speculate this will cause downstream task learning
performance to deteriorate. The trade off between photorealism
and temporally consistency remains an interesting topic for
future studies.

Finally, we use a diffusion model for image augmentation,
which is computationally heavy and limits our capability to
perform on-the-fly augmentation. As a future direction, we
could consider mask transformer-based architecture [7] which
is 10x more efficient.
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APPENDIX

A. Experiment Details

1) Implementation Details and Hyperparameters: We take
a pre-trained RT-1 policy with 35M parameters and trained
for 315k steps at a learning rate of 1 × 10−4 and fine-tune
the RT-1 policy with 1:1 mixing ratio of the original 130k
episodes of RT-1 data and the ROSIE-generated episodes with
for 85k steps with learning rate 1× 10−6. We follow all the
other policy training hyperparameters used in [4].

To obtain the accurate segmentation mask of the target region
of augmentations, we set a threshold for filtering out predicted
masks with low prediction scores of both the region of the
interest and passthrough objects given by OWL-ViT. In cases
where we have multiple detected masks, we always select the
one with highest prediction score. Specifically, for experiments
where the robot is required to pick novel objects or place
objects into novel containers or move objects near unseen
containers (Section V-A), we use a threshold of 0.07 to detect
the in-hand objects and the containers while using a threshold
of 0.05 to detect passthrough objects, which are the robot arm
and robot gripper. In experiments where the robot is instructed
to place the coke can or the pepsi can into the unknown sink
with new background, we use a threshold of 0.04 to detect
the table with all objects and a threshold of 0.03 to detect the
passthrough objects, which are the robot arm, robot gripper
and the coke can or the blue can in this case. In experiments
discussed in Sections V-B and V-C, we use the threshold of
0.3 to detect the table or the open drawer where we want to
add new distractors.

For generating LLM-assisted prompts, we perform 1-shot
prompting to the LLM. For example, in the setting of generating
novel distractors in the task where we place objects into the
drawer (Section V-B), we use the following prompt to the
LLM:

• Source task: place pepsi can on the
counter

• Target task: place pepsi can on the
clutter counter

• ViT region prompt: empty counter
• passthrough object prompt: robot arm,
robot gripper

• inpainting prompt: add a chip bag on
the counter

• Source task: place coke can into top
drawer

• Target task: place coke can into
cluttered top drawer,

and LLM generates the following prompt for detecting masks
and augmentations (light blue means LLM generated):

• ViT region prompt: empty drawer

•
passthrough object prompt: robot arm,
robot gripper

•
inpainting prompt: add a box of
crackers in the drawer

Text Instruction Replay Actions No Aug ROSIE Aug (ours)

place coke can into unknown sink 0.0 0.0 0.6
place pepsi can into unknown sink 0.0 0.0 0.6

TABLE III: Performance on placing objects into unknown sink
with varying background, lighting and object configurations.
ROSIE achieves superior results whereas prior methods are
not able to achieve non-zero success rates.

which is semantically meaningful for performing mask detec-
tion and Imagen Editor augmentation. We follow this recipe
of prompting for all of the tasks in our experiments.

During inpainting, we take the checkpoint of Imagen
Editor 64x64 base model and the 256x256 super-resolution
model trained in [72] and directly run inference to produce
augmentations.

During evaluation, for the tasks that perform moving objects
near novel containers and grasping unseen microfiber cloth, we
perform 10 policy rollouts per new container/microfiber cloth of
each method. For tasks that perform placing objects into novel
containers, we perform 8 policy rollouts per new container
for each method. For the task where the robot is instructed to
place coke can or pepsi can into the unseen kitchen sink, for
each method, we perform 5 policy rollouts for coke can and
pepsi can respectively. For the task where the robot places the
object into the cluttered drawer, we perform 10 policy rollouts
per object for each method. Finally, for the task that requires
the robot to pick up coke can in a scene with multiple coke
cans, we perform 27 policy rollouts for each approach.

2) Computation Complexity: We train our policy on 16
TPUs for 1 day. For obtaining segmentation masks, we perform
inference of OWL-ViT on 1 TPU for 1 hour to generate
1k episodes. During augmentation, we perform inference of
Imagen Editor using 4 TPUs of the 64 x 64 base model and
the 256 x 256 super-resolution model respectively for 2 hours
to generate 1k episodes.

B. Additional Experiments on Robustness of ROSIE in Learning
New Skills

In this subsection, we evaluated RT-1 + ROSIE on the place
objects into the novel sink task discussed in Section V-A in
one more scenario, and more variations of object placement.
The purpose of this evaluation is to show that with ROSIE
augmentation, the policy is robust to different configurations
of the objects, lighting, and background. We further compare
ROSIE to the baseline that simply replays the action sequence
from the training dataset. The results are summarized in Ta-
ble III. As seen in the results, the observation is consistent with
previous ones in Section V-A where ROSIE can acquire new
skills in challenging unknown scenes unlike prior approaches
and simply replaying actions is not sufficient

C. Examples of Augmentations

We include more visualizations of augmentations generated
by ROSIE in this section. In Figure 10, we show the generated
episodes of ROSIE where we inpaint novel containers in the
scene, which are used in the Learning to move objects



near generated novel containers and Learning to place
objects into generated unseen containers experiments in
Section V-A.

In Figure 8 and Figure 9, we visualize augmented episodes
with new distractors, e.g. cluttered coke cans on the table and
chip bags in the empty open drawer. These augmentations
correspond experiments conducted in Section V-B.

We also visualize the attention layers in RT-1 when training
on our augmented data. As seen in Fig. 11, there are attention
heads focusing on our augmented objects, which indicates the
augmentation seem to be effective.

Overall, note that ROSIE is able generate semantically
realistic novel objects and distractors in the manipulation setting.
For example, ROSIE-generated objects typically has realistic
shades on the table or the drawer, which is beneficial for
training manipulation policies on top of such data.

D. Failure Cases of Generated Prompts and Images
While our LLM-assisted prompts generally work very well,

we would like to note that it requires few-shot prompting to
work well. In the zero-shot case, LLM would just hallucinate
and output unuseful augmentation prompts. For example, if
we provide the following zero-shot prompt:

• Source task: pick coke can on a table
• Target task: pick coke can near a sink
• Goal: replace the scene in the source
task with the scene in the target task

• inpainting prompt:

and LLM generates the following prompt for detecting masks
and augmentations:

• ViT region prompt: empty drawer

•
passthrough object prompt: robot arm,
robot gripper

•
inpainting prompt: add a box of
crackers in the drawer

,

and LLM gives the following response Pick up the
coke can near the sink, replacing the one
originally on the table, which is not correct.
Therefore few-shot prompting is crucial in ROSIE.

We show the failure cases of the augmented images in
Figure 12. For the two examples on the left, ROSIE is supposed
to generate woven basket and glass mason jar respectively, but
it fails to generate such containers and instead generate some
bowl-shape containers. For the two examples on the right,
ROSIE is supposed to replace the in-hand green chip bag with
blue microfiber cloth and a yellow rubber duck respectively.
However, as the mask of the in-hand object becomes irregular,
the performance of ROSIE degrades and ROSIE is unable to
generate blue microfiber cloth and the yellow rubber duck in
full shape and half of the in-hand object remains as the green
chip bag. We suspect that with fine-tuning Imagen Editor on
robotic datasets that show more manipulation-related data, we
can improve the generation results drastically. Note that while
the generation could be suboptimal at times, our insight is
that such imperfect generation can only lead to misalignment
between the task instruction and images, which may not have a
big negative impact on the policy results and could give extra
data augmentation benefit for free. Our policy performance in
Section V validates this insight to some degree.



Fig. 8: Augmentation Example - adding a distractor can on the table.

Fig. 9: Augmentation Example - adding distractor objects into the drawer.

Fig. 10: Augmentation Example - changing the container.



pick blue/red microfiber cloth

place coke in sink

Fig. 11: Visualization of some attention heads focusing on our augmented objects. This visualization is an overlay of observation
and the spatial attention (bright regions means high attention).

Fig. 12: Failure cases of image augmentations.
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