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simulation of non-convex objects in GPU-based
stmulators
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Abstract—Our goal is to develop an efficient contact detection
algorithm for large-scale GPU-based simulation of non-convex
objects. Current GPU-based simulators such as IsaacGym [16]
and Brax [11] must trade-off speed with fidelity, generality,
or both when simulating non-convex objects. Their main issue
lies in contact detection (CD): existing CD algorithms, such as
Gilbert-Johnson—-Keerthi (GJK), must trade off their compu-
tational speed with accuracy which becomes expensive as the
number of collisions among non-convex objects increases. We
propose a data-driven approach for CD, whose accuracy depends
only on the quality and quantity of offline dataset rather than
online computation time. Unlike GJK, our method inherently
has a uniform computational flow, which facilitates efficient GPU
usage based on advanced compilers such as XLA (Accelerated
Linear Algebra) [2]. Further, we offer a data-efficient solution
by learning the patterns of colliding local crop object shapes,
rather than global object shapes which are harder to learn. We
demonstrate our approach improves the efficiency of existing CD
methods by a factor of 5-10 for non-convex objects with compa-
rable accuracy. Using the previous work on contact resolution for
a neural-network-based contact detector [24], we integrate our
CD algorithm into the open-source GPU-based simulator, Brax,
and show that we can improve the efficiency over IsaacGym
and generality over standard Brax. We highly recommend the
videos of our simulator included in the supplementary materials.
https://sites.google.com/view/locc-rss2023/home

I. INTRODUCTION

With an ever-increasing demand for bigger datasets, GPU-
based simulators are becoming an essential tool in robotics.
Unlike CPU-based simulators, they can simulate thousands of
environments in parallel, which makes big data generation
extremely efficient. In fact, several works in robot manip-
ulation and locomotion have empirically demonstrated that
by utilizing GPU-based simulators, you attain a significant
training speed advantage over CPU-based simulators [16} [11].

While parallelism improves efficiency over CPU-based sim-
ulators, the current state-of-the-art GPU-based simulators, like
IsaacGym [16], slow down significantly when simulating non-
convex objects as the number of environments grows. This is
well demonstrated in Figure [2] (left). The simulation time of
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Fig. 1: Snapshot of parallel simulation with BRAX-LOCC,
where two Franka Emika PANDA robots are pushing 25
objects most of which are non-convex. Qualitatively, it robustly
simulates heavy interactions between non-convex objects. We
recommend the readers check the video included in the sup-
plementary material.

IG-SPHERE, which simulates dropping spheres in IsaacGym,
remains more or less similar even as we increase the number
of environments. However, when you simulate non-convex
objects, the speed starts to deteriorate rapidly with respect
to the number of environments, as demonstrated by IG-
CVXD, which approximates non-convex objects using convex
decomposition [[17].

The fundamental reason for the slowdown in IsaacGym is
CD. The most widely-used CD algorithm, GJK [12], only
works with convex objects and needs convex decomposition
for non-convex objects. So to improve its accuracy, we need
to increase the number of elements in the decomposition, but
this significantly increases online computational time due to
an increase in the pairs of elements for which we need to
check the collisions.

Alternatively, we can use a convex hull approximation of
the non-convex objects, denoted IG-CVXH, whose speed also
remains more or less constant with respect to the number
of environments as shown in Figure |Z| (left). However, the
degradation in simulation fidelity is typically too high to bear,
as shown in the approximated collision mesh of objects in
Figure [2] (right).

Furthermore, GJK involves branching, such as if-statements,
and does not have a uniform computational flow (UCF). As a
result, it is difficult to benefit from the advanced optimization
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Fig. 2: (Left) Time for simulating a single time step vs.
the number of environments using IsaacGym and Brax in
object dropping tasks. (Right) An example of the convex hull
approximation of objects used by IG-CVXH.

techniques available in domain-specific GPU compilers such
as XLA [2]. This is well illustrated in the comparison of Isaac-
Gym to Brax [1]]. Brax is a GPU-based simulator that, unlike
IsaacGym, has a UCF for all of its computations. When we
compare Brax and IsaacGym in simulating dropping spheres,
Figure [2] (left) shows that the speed of BRAX-SPHERE is much
higher than 1G-SPHERE. However, this comes at a cost in
generality: Brax is limited to simulating only convex objects,
due to the lack of contact detection algorithms that have a
UCF and handle general shapes. Furthermore, Brax requires
all environments to have the same set of objects to maintain
its UCF.

In [24], the authors created a contact resolution algo-
rithm for a neural network (NN)-based contact detector. They
demonstrated that their method is highly accurate and reliable,
even when simulating a complex task of tightening a nut onto
a bolt. However, their contact detector has a limitation in that
it cannot generalize to different shapes. Our goal is to create a
NN-based contact detector that can handle a variety of shapes
and can easily be used within a physics engine with [24]] as a
contact resolution algorithm. Our approach has a performance
advantage because NNs do not have branching in their compu-
tations, allowing for the use of XLA. Additionally, compared
to GJK which needs to increase its online computation time for
better accuracy, the accuracy of our NN-based contact detector
only depends on the quality and quantity of offline collected
data, while the online computation time remains constant as a
NN prediction.

One simple idea to implement an NN-based collision detec-
tor is to adapt SceneCollisionNet [6] that predicts a collision
between an object and the scene. That is, we first sample a
point cloud from an object mesh, encode each point cloud
into a shape embedding using a shape encoder, and then use
the shape embeddings to predict a collision. However, this
turns out to be data inefficient: because it requires the network
to learn to capture the entire object shape, if we wish to
generalize to a variety of objects, we would need a large
number of realistic object mesh models which are expensive
to obtain.

Inspired by [14] [5l], we instead propose to encode only the
shape of local crops of two objects that are in collision. Our

intuition is that the patterns in local crops of object shapes
are easier to learn than the patterns in global object shapes,
as they are more frequent in data, and can be generated more
cheaply. This intuition is demonstrated in Figure [3]

Our algorithm, called Locc (Local Object Crop Collision
Network), implements this idea by creating local features of
object shapes. More concretely, given the poses and shapes
of two objects of interest, we first define the voxel grid on
the Axis-Aligned Bounding Box (AABB) each object. Then,
we use a shape encoder to compute a feature for each cell of
the voxel grid, and use the poses to create Oriented Bounding
Box (OBB) of the voxel grid of features. We check which
cells are in collision, and then pass only the features from the
colliding cells to a collision predictor. Figure [4] demonstrates

the computations in our LOCC.
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Fig. 3: Consider the figures on the top row, where two
different pairs of objects are in collision. To accurately predict
a collision, a naive object collision detector would need to first
learn to represent the shapes of objects, but this requires many
object shape data because there is a large variability in object
shapes, especially for non-convex objects. Now consider the
figures on the bottom row. In the local crops where collisions
occur, we see that their shapes are extremely similar even
though the global object shapes are totally different. Such
similarity in local crops of object shapes is what we try to
exploit in our algorithm to improve data efficiency.

In our experiments, we first demonstrate that LOCC out-
performs state-of-the-art NN-based collision detectors, such
as GLOBAL-OCN, an adaptation of [6], in terms of speed
and data efficiency. Second, we implement a variant of GJK
that has a UCF and show that LOCC has a 5-10 times speed
gain while having a comparable accuracy. Finally, we extend
Brax, the open-source GPU-based simulator, with LOCC and
the contact resolution algorithm from [24] to support non-
convex objects. We show that the resulting simulator, BRAX-
LOCC, can simulate non-convex objects at a higher speed than



IsaacGym and more general objects than standard Brax. An
example scene from BRAX-LOCC is shown in Figure [I]

II. RELATED WORKS

Collision detection using a neural network Recently, sev-
eral methods have been proposed for neural implicit functions,
which use a neural network to represent a shape. Given spatial
information such as locations in 3D space, neural implicit
functions output values that represent shapes [22, [14} 21, 25]].
Based on these advances, several methods have been proposed
for collision detection using neural implicit functions where a a
set of query points is used to test if a query point lies inside of
both shapes [26} [10]. However, these methods typically require
a large number of query points because their accuracy depends
heavily on the density of the query points. Further, explicitly
reconstructing the shapes of objects, which requires a large
amount of expensive shape data, has shown to be unnecessary
for contact detection [6]].

So instead, several methods [8| 6] propose to predict col-
lision directly to improve data efficiency and speed. More
concretely, in [6], the authors proposed a method that, given
a point cloud of an object of interest, its pose, and a point
cloud of a scene, determines if there is a collision between
the object and the scene. In [§]], the authors propose a method
for learning a function for representing the configuration space
obstacles which is used to check collision for a given robot
configuration. Both of these approaches require learning the
representation of the shape of the entire scene or object. In
contrast, we learn a representation of a colliding local crops
of objects to improve data efficiency.

Further, the primary purpose of [8, 6] is to improve the
motion planning speed. For this, it is sufficient to determine if
a collision has occurred in the current world state. However,
for simulation, we not only need to detect the collisions but
also determine between which objects the contact has occurred
to perform contact resolution. So, we need an object collision
detector that checks the collision between a pair of objects,
rather than between a scene and an object or robot. We will
refer to a NN that takes shapes and poses of two objects of
interest as inputs and predicts a collision as Object Collision
Net (OCN).

Collision resolution using an OCN The goal of contact
resolution is to prevent penetration and resolve contacts so that
the colliding objects move in a direction that is in accordance
with the physics law after contact. In [24]], the authors have
proposed the method for contact resolution using an OCN.
Since we use this method without modification when we
integrate LOCC into Brax, we describe briefly describe how
it works.

For contact resolution, we need two quantities: the set of
contact points and contact forces. To find the contact points
using an OCN, we first use the OCN to detect at what object
pose the collision occurs. Then, we determine the directions
of contact force and torque at object’s center of mass by
computing the gradient of the OCN with respect to the pose.
The intuition is that the steepest pose direction that gets the

objects out of collision is given by the gradient of the OCN,
which must be in the same direction as the contact force and
torque. Using these force and torque directions, we then find
the contact points using the Point Isolation method [[13]].

Once the contact points have been determined, we define the
contact constraints that enforces the colliding objects to move
in the direction of not penetrating further at the contact point.
The contact forces are computed using trajectory optimization
subject to contact constraints and spring motion constraints
based on penetration depth [[19, 3]. Based on these quantities,
the objects follow a simple rigid body dynamics. For more
details, such as how to deal with contact resolution at the
equilibrium, we refer the readers to the original paper [24].

While [24]] has demonstrated the effectiveness of their
contact resolution method in the challenging task of screwing
a nut into a bolt, their OCN was limited to a single bolt and
nut and cannot take object shapes as inputs. Our algorithm,
LOCC, can be seen as a generalization of [24] to a variety of
shapes.

Analytical collision detection methods and their usage in
GPUs GJK [12] is used in a variety of representative physics
engines, such as Havok, PhysX, and Bullet. In practice, GJK
can detect collisions typically in constant time for convex
objects. However, for non-convex objects, we must first make
a convex decomposition of all the objects using a method
such as V-HACD [18], run GJK to check collision for each
pair of decomposition elements in the worst caseﬂ then report
collision if any one of the element pairs is in a collision.

Since GPUs expedite computations by applying the same
function across different environments, it is hard to efficiently
use GJK on a GPU due to branching in computations. We
can, as we show in our experiments, modify GJK to have
a UCF. However, even in this case, the computational cost of
traversing through the pairs of convex elements outweighs that
of the simple feed-forward prediction in LOCC.

Separate Axis Theorem (SAT) is another widely used
method for detecting collisions between convex objects. It
works by projecting the shapes onto different axes and check-
ing for overlap in all dimensions. If there is no overlap on
any axis, then the objects do not collide. This method can
be efficiently implemented on GPUs, as each axis can be
processed in parallel and the results can be combined to
determine if a collision has occurred. SAT requires only simple
arithmetic operations, such as dot products and comparisons,
which can be easily accelerated by GPUs and is used in Brax.
Despite its efficiency, SAT has limited scaling capability when
dealing with complex non-convex shapes because it requires
checking over N; N, axes, where IN; and Ny are the numbers
of edges for objects 1 and 2 respectively.

III. LOCAL OBJECT CROP COLLISION NETWORK

We now describe LOCC which directly evaluates the col-
lision between two objects using their meshes and poses.

'If objects are sufficiently faraway, you can rule them out in the Broad
phase of collision detection.
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Fig. 4: Computational flow in LOCC. In LOCC, there are two modules: shape encoder, and collision predictor. The shape
encoder takes an object shape represented in point cloud as an input, and generates a shape embedding. The collision predictor
takes two shape embeddings and object poses as inputs, and outputs a collision result. K denotes the number of points in the
point cloud of an object shape, M denotes the size of the voxel grid defined on the AABB of an object shape, and H and
F' denote the output dimensions of the first and second MLPs in the shape encoder respectively. Cross-circle symbol in the

shape encoder indicates concatenation.

There are two modules in LOCC: shape encoder and collision
predictor. Like SceneCollisionNet [[6], our shape encoder uses
a voxel grid defined on the object point cloud and computes
cell-wise features. Unlike SceneCollisionNet however, we ex-
ploit locality by passing to the collision predictor only the
local crops of the shape embeddings that are in a collision to
facilitate data efficiency. We now walk through Figure [] that
describes the computations in LOCC.

We first create a point cloud by sampling K number of
points using the mesh of an object. The shape encoder begins
its computation by processing each point using a multilayer
perceptron (MLP), which outputs K x H features, where H
is the output dimension of the MLP. We then compute the
AABB of each object’s mesh and define a voxel grid of size
M x M x M over the AABB. We put the features into the voxel
grid according to the coordinates of their corresponding points
to get features of size M x M x M x H. We process the feature
for each cell using cell-wise max-pooling over the features. We
further process the local feature for each cell by applying a 3D
Convolutional Neural Networks (CNNs) with skip connections
to generate the shape embedding of size M x M x M x F,
where F' is the dimension of the feature at each cell.

In the 3D CNN, we use a U-Net-like architecture [23] but
add an average pooling operation just before the deconvolu-
tion to extract a global feature. This global feature is then
broadcasted to the local features of each cell just after the

deconvolution. The intuition is to encode both local and global
features into each cell feature.

For the collision predictor, we first create the OBB of shape
embeddings of two objects by using their poses. Then, we
select the features in colliding cells. One way to obtain the
cells in a collision is by considering the center point of each
cell of the OBB, and checking if that point is inside of another
object’s OBB. The downside of this approach is that while the
center point may be outside the OBB, the cells may still be
in a collision. To solve this, we add a margin to each cell of
OBB whose magnitude is the distance from the center point
to a vertex of a cell. This way, we are guaranteed not to have
false negatives in detecting the cells in a collision. Using the
features of the selected cells, we apply average pooling, and
the resulting vector gets passed to a collision predictor which
then makes a prediction.

Note that while margin-padding guarantees no false negative
in collision detection, it may result in false positives, and
include more features than needed. However, we found that
adding more information does not usually hurt the perfor-
mance of collision prediction.

There are some notable hyperparameters that are worth
mentioning. First, M is a particularly important hyperparam-
eter and should be chosen based on object sizes. If M is too
small, then the shape embedding will not contain sufficient
information. If M is too big, then it will take up a lot of



memory and checking collisions between two OBBs would
take a long time. After testing values of 5, 6, and 7, we found
that 6 provides a good balance of accuracy and efficiency.

For K, which is the number of points fed into the shape
encoder, its value doesn’t impact testing efficiency because
we keep the shape embedding at a fixed size through cell-
wise max pooling, even when K changes. We set K to 1500
so that we can generate enough points to cover the surface
and capture shape details.

A. Dataset preparation and training

To prepare the dataset we use existing object datasets such
as YCB or Google ScanNet [4] 19]]. Our dataset has the form
{287 ¢ {7 y@)}n_ where z; and 25 denote object
meshes, ¢; and ¢» denote object poses, and y denotes a
collision label. This data is generated by synthetically creating
a collision between two objects.

A naive approach to generate such a dataset is to first sample
two objects from an object set, place them at poses uniformly
sampled from a pre-defined bound, and evaluate the collision
to assign y. However, we found that uniform random sampling
mostly generates trivial cases where two objects are either too
far away or overlap severely. This would make LOCC fragile
to non-trivial cases where objects overlap only slightly.

So, we devised a new strategy: after we sample poses with
large enough bounds, we manipulate the distance between two
objects to create collisions with different overlapping volumes.
Figure [5] demonstrates our strategy. More concretely, we first
compute the shortest-distance vector, J, between two objects,
and then translate one of them along the direction of §. This
way, for a given object pose pair, we can get collision data
points at different overlapping volumes by manipulating the
magnitude of §. In our implementation, we sample the target
magnitude |¢’| from a normal distribution with zero mean and
0.020m standard deviation, and take an absolute value.

Fig. 5: An illustration of distance manipulation for generating
the collision dataset. We first place two objects (green and
yellow) far apart by sampling their poses. We then compute
the minimum distance vector, d, and points p; and ps on this
vector on each object. Then, we move one object by |0] — |d’]
in the direction of § to obtain a data point with the desired
distance of |§’|. The desired distance |§’| is sampled from a
normal distribution.

Using this dataset, LOCC is trained end-to-end with binary
cross-entropy loss, with a regularization term to prevent the
shape encoder from overfitting. The loss function of LOCC is
given by

S>> BCE(fOP (@), ) + ol @)

(d,y)eD

where D = {dD y®}»  is dataset, d®

{29 280 ¢ ¢S is the input, £S5 is the shape encoder,
fEF is the collision predictor, and BCE(4),y) is the binary
cross entropy between the prediction and label y.

During training, we apply a data augmentation scheme
to make LOCC robust to different_ orientations. Concretely,
suppose we have a data point {2\", z{” ¢\? ¢{” y®}. We
first randomly sample a rotation matrix R and then apply R
to both shapes and R ! to both goses to make a new data
point {R -2\’ R-a{" R=10 ¢l &”, 4@}, where
R - z denotes rotating the shape by R and R o q is applying
rotation R to the rotational part of pose q. Note that we can
keep the same label even after these operations because {x, ¢}
and {R-z, R~ oq} occupy the same volume in the 3D space.

IV. EXPERIMENTS
A. Details of training

For the hyperparameters of LoccC , we set K to 1500, and
uniformly sample 1500 points from the surface of the object
mesh. In the shape encoding, we have M = 6, H = 256,
F' = 64. More details about the architecture and the training
hyperperameters are included in the supplementary material.

We use Google Scanned Object (GSO) [9] as our data that
has 1030 object meshes most of which are non-convex. We use
the meshes to generate point clouds and define the center of
the mesh as the center of AABB. Unless otherwise mentioned,
we generate a total of 230 million data points with 230K object
pairs with the strategy in Sec. For training, the learning
rate is set to 0.001 and the batch size to 32. The Adam [15]
optimizer is used with « set to 0.5 in the loss. See the appendix
for more information on network parameters.

For testing, we use two distinct test sets. The first test
set, called known object set, uses the same set of objects
as the training set, but different poses and object pairs. The
total number of object pairs in the training set is 230K, and
there are approximately 1 million possible object pairs. The
second test set, called unknown object set, consists of 30 novel
objects chosen from YCB object set [4] that were not used
during training. In generating the poses for test sets, we use
uniform sampling rather than the method from section to
better characterize the poses that will be encountered during
simulation.

B. Results

We wish to validate the following claims through our
experiments:

o Claim 1 (computational efficiency of LocC) For non-

convex objects, CD with LOCC is more computationally
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environments being simulated in parallel.

efficient than analytical CD algorithms such as GJK and
CD based on implicit shape representation such as [10].

o Claim 2 (data efficiency) LOCC is more data efficient than
the standard OCN that learns the global object shapes to
determine collision such as [6].

o Claim 3 (computational efficiency and generality in
physics simulation) For non-convex objects, physics sim-
ulation with BRAX-LOCC, which integrates Brax, LOCC,
and the contact resolution algorithm from [24]], is faster
and has higher fidelity than IsaacGym, and more general
than Brax which can only simulate convex objects.

To support Claim 1 (computational efficiency), we use two
baselines. The first is the UCF version of GJK written in JAX
so that it can utilize XLA to run faster than the standard
GJK on a GPU. We denote this as UCF-GJK. The second
is CD based on implicit surface (IS), denoted 1S-CD, which
determines collision based on a set of query points as in [10].

Unlike LOCC whose online computation time is fixed and
its accuracy depends on the off-line dataset, UCF-GJK and IS-
CD must trade off their computation time for higher accuracy
by increasing the number of elements in decomposition or the
number of query points. Therefore, we use the accuracy versus
speed plot to evaluate their performances, where the speed is
defined as the number of possible collision checks in a second,
and accuracy is defined as the number of true positive and true
negative predictions divided by the total number of predictions.
For UCF-GIK, there are multiple hyperparameters, so we tested
several hyperparameters and report the one that attains the best
performance.

Figures [62] and [6b] show the results for the known and un-
known object test sets and respectively. In Figure [6a] the result
shows that LOCC achieves the accuracy of about 98% and
96% for known and unknown object sets respectively. This is
comparable to the best accuracy attained by UCF-GJK and IS-
CD, which are 98.5% and 98% for known and unknown object
sets respectively. However, we can see that LOCC achieves its
best accuracy at a speed at least 10 times faster than both
of these methods. This illustrates the advantage of LOCC: by
directly predicting collisions using a NN, it attains a faster
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Fig. 7: This figure illustrates a selection of objects utilized
during training and testing phases. The upper left quadrant
features Google Scanned Objects [9] employed for the train-
ing process. During testing, objects from both the YCB [4]]
(bottom left) and EGAD [20] (upper right) datasets are im-
plemented to demonstrate the generalization capability of our
Loccmodel. Further, we assess LOCC’s adaptability to varying
object scales by adjusting the YCB and EGAD objects by
factors of 0.7x, 1.0x, 1.5x, and 2.0x (displayed in the bottom
right quadrant). The result is a consistent collision accuracy
exceeding 95% across all test cases.

computation time than UCF-GJK and IS-CDwith comparable
accuracy.

Pursuing our investigation into the generalization capability
of our method, we conducted supplementary experiments that
involved training and testing datasets with significantly varied
shapes. In these experiments, our model was trained solely
on the GSO dataset, and then tested on two distinct datasets:
EGAD [20], a compilation of unusually-shaped objects created
to evaluate the robustness of grasping algorithms, and the
YCB dataset [4)], which we adjusted for scale (0.7x, 1.0x,
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Fig. 8: Object shaking simulation task comparing IsaacGym
and BRAX-LOCC.
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1.5x, and 2.0x). Representative samples from both the training
and testing stages can be found in figure [7] Remarkably, our
method consistently delivered prediction accuracy of at least
95% across all the testing datasets. Such results substantiate
the robust adaptability of LOCC.

To support Claim 2 (data efficiency), we adapt SceneColli-
sionNet [[7] to object-object collision detection. This method
does locality and must learn object shapes. We denote this
method as GLOBAL-OCN. The shape encoder of GLOBAL-
OCN is the same as LOCC, except that the features are
globally average-pooled before the de-convolution network in
the collision predictor to extract the global features. To check
the data efficiency, we train GLOBAL-OCN and LOCC with
a varying number of object shapes, and for each number of
objects, we collect 0.1 million object pairs and poses and test
LOCC and GLOBAL-OCN on the novel object set. Table[l|shows
the result.

When the number of training objects is 5 or 20, LOCC has
7-10% higher accuracy than GLOBAL-OCN on average. As you
increase the number of training objects, the gap gets smaller,
indicating that although GLOBAL-OCN can eventually learn
to generalize to novel objects, LOCC does so with a smaller
number of object shapes. This supports our intuition shown
in Figure B} LoCC outperforms GLOBAL-OCN because while
LOCC can just encode the local geometric patterns at contacts
which are similar across different objects, GLOBAL-OCN must
learn to encode global object shapes for which there is much
more variation.

Finally, to validate Claim 3 (computational efficiency in
physics simulation), we compare BRAX-LOCC with IsaacGym
on non-convex object simulation. We simulate 200 distinct
environments with 3 objects, one of which is a bowl, and the

# objects
Methods 5 20 50 100
GLOBAL-OCN || 0.67£0.02 0.83%0.03 092+0.02 0.93%0.01
Locc 0.7740.02  0.90+0.02 0934001  0.93+0.01

TABLE I: Accuracy with varying number of objects in the
training data.

Fig. 9: Example of inaccurate simulation behavior in IG-
CVXH due to a convex hull approximation of objects. The
objects should fall into the bowls but are “floating” in the air
because the bowls have been convexified

rest are randomly selected from the Google Scanned Object
set. The objects get dropped into the bowl, and the bowls get
continuously shaken to create contacts. The example scenes
are shown in Figure [8] and its video is included in the
supplementary material. We could not compare BRAX-LOCC to
Brax because it is limited to convex shapes. We set the size
of the simulation time step, At, to 0.01/4 seconds, with 4
sub-steps.

We measure the simulation speed without rendering. As
Figure shows, BRAX-LOCC is more than 10 times faster
than 1G-CcvXD, which uses GJK and V-HACD, when we
are simulating 30,000 environments. BRAX-LOCC is slightly
slower than 1G-CVXH, which uses a convex hull approximation
of the object shapes. However, 1G-CVXH has significant issues
in simulating non-convex shapes, as demonstrated in Figure [9]

To measure this quantitatively, we compute the absolute sign
distance among all the objects whenever a contact arises, and
take the minimum value. We denote this as min-|sd|. This
quantity measures the penetration depth if the objects penetrate
each other at the contact or the distance between two objects
when the contact is falsely detected. For an ideal simulator,
this value would be zero at every contact. We use default
parameters for GJK in IsaacGym. The results are shown in
Table [

As the table indicates, BRAX-LOCC has the min-|sd| value
closest to zero among all the baselines, indicating that it
has the least penetration depth and the least number of false
positives. This is because IG-CVXD and IG-CVXH inevitably
lose their accuracy due to shape approximation, while the
accuracy of LOCC depends solely on the quality and quantity
of the offline training data.

V. CONCLUSION

We proposed a novel OCN, LOCC, that compared to previ-
ous approaches [8] [6], is more data or computationally effi-



metric (unit: meter)

Simulator .
average  top-10% average  maximum
IG-CVXD 0.0132 0.0302 0.0392
IG-CVXH 0.0709 0.1266 0.1286
BRAX-LOCC(ours) 0.0077 0.0218 0.0338

TABLE II: Statistics on 600 absolute signed distance between
two objects. average is the average of min-|sd|, fop-10%
average is the average of highest 10%, and maximum is the
highest min-|sd| out of 600.

cient. We showed that compared to analytical contact detection
algorithms, our approach achieves higher accuracy and speed
when it comes to simulating non-convex objects in multi-
environment scenarios by making better use of GPU resources.
We integrated LOCC into the open-source physics engine,
Brax, along with the contact resolution algorithm from [24]]
and showed that BRAX-LOCC simulates non-convex objects
while Brax cannot, and show that it outperforms IsaacGym in
terms of speed and fidelity.
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