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Abstract—Complex dexterous manipulations require switching
between prehensile and non-prehensile grasps, and sliding and
pivoting the object against the environment. This paper presents
a manipulation planner that is able to reason about diverse
changes of contacts to discover such plans. It implements a hybrid
approach that performs contact-implicit trajectory optimization
for pivoting and sliding manipulation primitives and sampling-
based planning to change between manipulation primitives and
target object poses. The optimization method, simultaneous tra-
jectory optimization and contact selection (STOCS), introduces
an infinite programming framework to dynamically select from
contact points and support forces between the object and environ-
ment during a manipulation primitive. To sequence manipulation
primitives, a sampling-based tree-growing planner uses STOCS to
construct a manipulation tree. We show that by using a powerful
trajectory optimizer, the proposed planner can discover multi-
modal manipulation trajectories involving grasping, sliding, and
pivoting within a few dozen samples. The resulting trajectories
are verified to enable a 6 DoF manipulator to manipulate physical
objects successfully.

I. INTRODUCTION

Humans leverage diverse strategies such as dexterous ma-
nipulation, full-body manipulation, and environmental contacts
to manipulate a variety of objects, and the robotics field has
long attempted to imitate these behaviors [2, 17]. However,
it is challenging for optimization-based motion planners to
generate these multi-modal behaviors because contacts lead to
discontinuous dynamics and the changing numbers of contact
points between the robot and the object yield a combinato-
rial number of possible contact sequences. An example is
illustrated in Figure 1 where the robot needs to assemble
a gear box. Since the blue gear is wider than the gripper’s
opening, the robot needs to manipulate the gear into an
upright pose before it can grasp it. A possible solution is to
pivot the gear with a point contact [25] against the external
surface before grasping it. However, existing planning and
optimization techniques struggle to identify such solutions.

Contact-implicit trajectory optimization has been explored
for its ability to discover complex trajectories for dexter-
ous manipulation [18] and locomotion problems [19]. Here,
contact is modeled with complementarity constraints between
contact forces and relative accelerations, and the optimization
is formulated as a mathematical program with complementar-
ity constraints (MPCC) [23]. However, it is well known that
MPCCs become very challenging to solve as the number of
complementarity constraints increase, so past contact-implicit
methods were strictly limited to a small handful of potential
contact points. This has so far limited their applicability to

Fig. 1: A robot equipped with a two-fingered gripper may
need to re-orient and grasp parts to assemble a gear box.
This problem is difficult as the algorithm has to reason about
performing a non-prehensile grasp, rotating, and/or sliding
before the pick and place action. [Best viewed in color.]

objects with non-convex and complex shapes.
This paper introduces the simultaneous trajectory optimiza-

tion and contact selection (STOCS) algorithm to address the
scaling problem in contact-implicit trajectory optimization. It
applies an infinite programming (IP) approach to dynami-
cally instantiate possible contact points between the object
and environment inside the optimization loop, and hence the
resulting MPCCs become far more tractable to solve. STOCS
extends prior work on IP for robot pose optimization [28]
to the trajectory optimization setting. We demonstrate that it
can solve for manipulation trajectories involving changes of
contact between object and environment.

Although STOCS is contact-implicit for object-environment
contact, it still requires pre-selected robot-object contact state
(i.e., a manipulation mode). It is also still a local trajectory
optimization method, so its output is sensitive to the spec-
ified temporal resolution and initial trajectory. We address
these limitations by introducing a sampling-based planner that
uses STOCS to incrementally construct a manipulation tree,
which helps it solve for longer-horizon trajectories that change
manipulation mode between pushing, pivoting, and grasping.



Fig. 2: Illustrating the workflow of the proposed multi-modal manipulation planner, which could plan for manipulation behaviors
consisting a sequence of manipulation modes. Given the start and goal pose of an object as input, the planner incrementally
constructs a manipulation tree through using STOCS to steer the object to reach as far as possible toward randomly-sampled
subgoals until the goal pose is reached. [Best viewed in color.]

Each extension of the tree uses STOCS as a local planner to
reach as far as possible toward randomly-sampled subgoals.
The workflow of the proposed multi-modal manipulation plan-
ner is illustrated in Fig. 2.

Contributions of this paper include:

1) The novel contact-implicit trajectory optimizer STOCS
optimizes manipulation trajectories for nonconvex objects
and improves computational efficiency by dynamically
instantiating nonpenetration, force balance, and comple-
mentarity constraints at contact points selected within the
optimization loop.

2) The utility of STOCS is demonstrated as a local planner
in a sampling-based planner to extend a tree with sampled
manipulation modes toward sampled subgoals.

Our experiments show that STOCS is able to make relatively
large jumps through the state space, which helps facilitate
rapid progress in planning. The proposed method is verified
on several planar manipulation problems involving pivoting
and grasping in simulation, as well as using a physical 6 DoF
manipulator.

II. RELATED WORK

Several methods have been proposed to generate manipu-
lation behaviors with changing contacts, and the techniques
most related to this paper include contact implicit trajectory
optimization, sampling-based motion planning, and task and
motion planning. The key challenge is the hybrid nature of
contact that splits a solution trajectory into discrete segments,
in which contacts are added or removed between segments,
but continuous motion within a segment must satisfy multiple
continuous constraints, such as force and torque balance,
nonpenetration, and complementarity.

A. Contact Implicit Trajectory Optimization

Contact-implicit trajectory optimization (CITO) has been
studied extensively in dexterous manipulation and legged loco-
motion literature [18, 19, 22, 16]. It was proposed to overcome
limitations of prior trajectory optimization techniques that

make use of a pre-defined mode sequence for contact inter-
action during manipulation/locomotion resulting in a phase-
based constrained optimization [9, 27]. This allows to cast
trajectory optimization as one large non-linear optimization
which can be solved to optimize the timings and variables
associated with each of the individual modes[3]. However,
coming up with such a mode sequence requires contact mode
enumeration, which becomes intractable in all but the simplest
problems. CITO addresses this problem by modeling all pos-
sible points of contact as complementarity constraints, and the
trajectory optimization can be cast as a mathematical program
with complementarity constraints (MPCC) [22]. CITO can
then simultaneously optimize the mode-sequence as well as
the contact forces during interaction.

However, CITO becomes extremely challenging to solve
when there are a large number of possible contacts, leading
to large numbers of complementarity constraints. Thus, the
main limitation of this approach is that the set of allowable
contacts must be predefined and needs to be relatively small.
In contrast, our approach overcomes this shortcoming by
adjusting active contact set simultaneously during trajectory
optimization.

B. Sampling-Based Motion Planning

Sampling-based motion planning methods such as rapidly
exploring random tree (RRT) [14] have proven to be effective
for motion planning, and have been used to generate dexterous
and nonprehensile manipulation trajectories [2, 4]. In [2], the
T-RRT variant [13] is used to plan in-hand manipulation and
shows the ability to plan for trajectories which require discrete
switch-overs of manipulation contact mode (push location).
However, only push motion and only geometry primitives are
used in the planning. In [4], RRT is combined with contact
mode enumeration [12] to plan for long-horizon contact-rich
manipulation trajectories. Different motion primitives such as
pushing, pivoting and grasping could be discovered by this
approach, and combination of them can be used to fulfill long-
horizon manipulation. However, it is difficult to select fruitful
contact modes and velocities in random fashion, which leads
to very large trees, slow convergence rates, and jerky paths.



In contrast, our method achieves generating more efficient
trajectories with few nodes in the explored tree by embedding
a powerful trajectory optimization as a local planner inside the
sampling-based planner.

C. Task and Motion Planning

Task and Motion Planning (TAMP) solves long-horizon
planning problems [7] by integrating a search over plan
skeletons and the satisfaction of constraints over hybrid action
parameters. The complexity of planning through contacts is
reduced by introducing predefined motion primitives. In [26],
TAMP shows the potential to solve sequential manipulation
and tool-use planning problems. However, all objects are
assumed to have a sphere-swept convex geometry to make
trajectory optimization fast and differentiable, but this assump-
tion is a severe limitation on applicable objects. Also, most of
the TAMP methods require expert knowledge and engineering
efforts to predefine states and manipulation primitives. On the
contrary, our proposed method applies to more general object
and environment geometries, and can also discover different
motion primitives involving pivoting and sliding within the
STOCS optimizer.

III. APPROACH

We wish to plan contact-rich manipulations that may include
change of manipulator contact state for arbitrary-shaped object
and environment geometries, e.g., reorientation and translation
of large parts for assembly, peg in hole, and object packing.
Three example tasks with corresponding initial and goal poses
are shown in Fig. 3.

Our approach consists of two components. The first is the
STOCS algorithm, which solves for object trajectories for
a given manipulation mode. The second is a multi-modal
sampling-based planner that constructs a manipulation tree to
guide the planning towards the goal using STOCS to perform
each extension of the tree. The workflow of the multi-modal
planner is illustrated in Figure 2 on page 2.

A. Problem Description

Our method requires the following information as inputs:
1) Object initial pose: qinit ∈ SE(2).
2) Object goal pose: qgoal ∈ SE(2).
3) Object properties: a rigid body O whose geometry, mass

distribution, and friction coefficients with both the envi-
ronment µenv and the manipulator µmnp are known.

4) Environment properties: rigid environment E whose ge-
ometry is known.

5) Manipulation primitives: all the allowable contact states
between the manipulator and the object.

Our method will output a trajectory τ which includes the
following information at time t:

1) Object configuration: qt.
2) Manipulation primitive and manipulator’s configuration:

cmnp
t , and qmnp

t .
3) Manipulation force: ut.
4) Object-environment contact state yt.

Fig. 3: The start and goal pose of the multi-modal manipula-
tion tasks. In Task 1, the arrow illustrates the orientation of
the object. All the objects are not graspable at the start pose.
[Best viewed in color.]

5) Object-environment force zt.
We make the following assumptions:

1) All objects and environment are rigid.
2) A set of manipulation primitives are pre-specified as a set

of manipulator contact points/surface, specified in object-
relative coordinates.

3) Change of manipulator contact state (i.e., regrasping) is
only allowed when the object can stably be supported by
the environment alone.

4) Quasi-Static: the motion of the manipulated object is slow
enough that the forces acting on it are in equilibrium at
each instant of time along the trajectory.

B. STOCS Trajectory Optimizer

STOCS is a novel CITO algorithm for manipulation that
allows multiple changes of contact between the object and
environment for a given manipulation mode. CITO methods
formulate contact as complementarity constraints and require
solving a MPCC. STOCS enables the application of MPCC
on complex object and environment geometries by embedding
the detection of salient contact points and contact times
inside the trajectory optimization outer loop. Force variables
are introduced for all of these contacts. Each instantiated
MPCC iteration has relatively few constraints and is optimized
for a handful of inner iterations before new contact points
are identified. Force values are maintained from iteration to
iteration to warm start the next MPCC. The workflow of
STOCS is shown in Fig. 4.

Semi-infinite programming (SIP), infinite programming
(IP) for contact-rich trajectory optimization. To illustrate
how STOCS works, we start from the SIP/IP problem that
STOCS is designed to solve, and explain where the infinitely
many optimization variables and constraints come from. A
SIP problem is an optimization problem in finitely many
variables x ∈ Rn on a feasible set described by infinitely
many constraints:

min
q∈Rn

f(q) (1a)

s.t. g(q, y) ≥ 0 ∀y ∈ Y (1b)



Fig. 4: Illustrating the workflow of STOCS. Given the start pose qstart, goal pose qgoal, and a manipulator contact state cmnp,
STOCS iterates between using the Maximum Violation Oracle to instantiate contact points, and solving a finite dimensional
MPCC to decide a step direction until the convergence criteria is met. STOCS does not need a predefined contact set and can
select the contact points simultaneously while solving trajectory optimization. [Best viewed in color.]

where g(q, y) ∈ Rm is the constraint function, y denotes the
index parameter, and Y ∈ Rp is its domain.

In the case of pose optimization with collision constraints,
q describes the pose of the object, y is a point on the surface
of the object O, where Y ≡ ∂O denotes that surface of O,
and g(·, ·) is the distance from a point to the environment.
Typically, optimal solutions will be supported by contact at
some points, i.e., g(q⋆, y) = 0 will be met for the optimal
solution q⋆ at some set of points y.

In the case of trajectory optimization, constraints need to be
instantiated in space-time, which means y = (t, p) includes
both time t and contact point p on the object’s surface.
However, to make the resulting optimization problem more
stable, in this work, we assume that once a contact point is
instantiated, it will be active during the whole trajectory.

An additional challenge is posed when forces need to be
considered as part of the solution to ensure force and moment
balance of the object, since force variables need to be intro-
duced to the optimization problem at each point of contact. We
do this by defining z : Y → Rr as an optimization variable. In
2D scenario, for a given contact point y, z = [zN , z+, z−] is
expressed in a reference frame with zN normal to the contact
surface, and z+, z− tangent to the contact surface. Given an
infinite number of contact points, infinitely many optimization
variables will be instantiated, which makes the optimization
become an IP problem in which the number of variables and
the number of constraints are both possibly infinite [1].

In our formulation, each object state along a trajectory must
satisfy the following constraints:

1. Bound Constraint:
qt ∈ Q, ut ∈ U , zt(y) ∈ Z ∀y ∈ Y (2)

2. Distance Complementarity Constraint:
0 ≤ zt(y) ⊥ g(qt, y) ≥ 0 ∀y ∈ Y (3)

3. Force Inequalities:

h(qt, y, zt(y)) ≥ 0 ∀y ∈ Y (4)

4. Control Inequalities:

c(qt, ut) ≥ 0 (5)

5. Integral Constraint:

sq,u(qt, ut) +

∫
y∈Y

sz(qt, y, zt(y))dy︸ ︷︷ ︸
=:s(qt,ut,zt;Y )

= 0 (6)

Eq. (2) ensures that nonzero forces are only exerted at points
where objects are in contact, i.e. z(y) ≥ 0 only if contact
is made at y, that is g(q, y) = 0. Friction cone constraints
are included in the inequalities h(q, y, z(y)) ≥ 0 in (3). We
constrain the control input in (4) to make sure the manipulator
can only push the object rather than pull the object. Finally,
force and torque balance is expressed in (5) as an integral of
the force field over the domain Y . Here, sq,u(q, u) represents
the force and torque applied by gravity and the manipulator,
and sz(q, y, z(y)) represents the force and torque applied on
an index point y by the contact force z(y). The sum gives the
net force and torque experienced by the object, which should
be 0 at quasistatic equilibrium.

We impose these constraints for each state along a trajectory,
along with additional constraints that make sure the relative
tangential velocity at a contact is zero when the correspond-
ing friction force is inside the friction cone ((7e) below).
Hence, we formulate the following infinite programming with
complementarity constraints trajectory optimization (IPCC-



Algorithm 1 STOCS
Require: qstart, qgoal, cmnp

1: Y0 = [ ] ▷ Initialize empty constraint set
2: z0 ← ∅ ▷ Initialize empty force vector
3: x0 ← initialize trajectory(qstart,qgoal,cmnp)
4: for k = 1, . . . , Nmax do
5: ▷ Update constraint set and guessed forces zk
6: Add all points in Yk−1 to Yk, and initialize their forces in zk

with the corresponding values in zk−1

7: Call the oracle to add new points to Yk, and initialize their
corresponding forces in zk to 0

8: ▷ Solve for step direction
9: Set up inner optimization Pk = P (Yk)

10: Run S steps of an NLP solver on Pk, starting from
xk−1, zk−1

11: if Pk is infeasible then return INFEASIBLE
12: else
13: Set x∗, z∗ to its solution, and ∆x← x∗ − xk−1, ∆z ←

z∗ − zk−1

14: Do backtracking line search with at most Nmax
LS steps

to find optimal step size α such that ϕ(xk−1 + α∆x, zk−1 +
α∆z;µ) ≤ ϕ(xk−1, zk−1;µ)

15: ▷ Update state and test for convergence
16: xk ← xk−1 + α∆x, zk ← zk−1 + α∆z
17: if Convergence condition is met then

return xk,zk
return NOT CONVERGED

TO) problem denoted as P (Y ):

min
q,q̇,u,z

f(q, q̇, u, z) (7a)

s.t. q0 = qstart (7b)

(2), (3), (5), (6), q̇t ∈ Q̇ ∀t ∈ T (7c)
qt − qt+1 + q̇t∆t = 0 ∀t ∈ T (7d)
0 ≤ v(qt, q̇t, y) ⊥ h(qt, y, zt(y)) ≥ 0

∀y ∈ Y, ∀t ∈ T (7e)

where f(q, q̇, u, z) :=
∑

t∈T [fq,q̇,u(qt, q̇t, ut) +∫
y∈Y

fz(qt, y, zt(y))dy], ∆t is the time step duration,
and T = {0, . . . , T − 1} with T the total number of
time steps in the trajectory. For the sake of brevity, we
use the notation q = [q0, · · · , qT ], q̇ = [q̇0, · · · , q̇T−1],
u = [u0, · · · , uT−1], z = [z0, · · · , zT−1]. With a little abuse
of notation, we use zt = [zt(y) ∀y ∈ Y ] where zt(·) is the
mapping and zt is a concatenation of all the instantiated
variable for all y ∈ Y .

To solve the IPCC-TO problem, STOCS (Alg. 1) includes
the following subroutines.

Exchange method. The IPCC-TO problem P (Y ) not only has
infinitely many constraints, but also introduces a continuous
infinity of variables in z. To solve it using numerical methods,
we hope that z only is non-zero at a finite number of points.
Indeed, if an optimal solution q⋆ is supported by a finite subset
of index points Ỹ ∈ Y , then it suffices to solve for the values
of z at these supporting points, since z should elsewhere be
zero. This concept is used in the exchange method to solve
SIP problems [15], and we extend it to solve IPCC-TO.

The exchange method progressively instantiates finite index

sets Ỹ and their corresponding finite-dimensional MPCCs
whose solutions converge toward the true optimum [24]. The
solving process can be viewed as a bi-level optimization. In the
outer loop, index points are selected by an oracle to be added
to the index set Ỹ , and then in the inner loop, the optimization
P (Ỹ ) is solved. The outer loop will then decide how much
should move toward the solution of P (Ỹ ). Specifically, if we
let (x̃∗ = [q∗, q̇∗, u∗], z̃∗) be the optimal solution to P (Ỹ ),
then as Ỹ grows denser, the iterates of (x̃∗, z̃∗) will eventually
approach an optimum of P (Y ).

Given a finite number of instantiated contact points Ỹ ⊂ Y ,
we can solve a discretized version of the problem which only
creates constraints and variables corresponding to Ỹ . Force
variables zt are instantiated for each index point at each
time step, and we replace the distribution z(y) with a set of
Dirac impulses: zt(y) =

∑
i δ(y − yi)zt,i. Hence, integrals

are replaced with sums and we formulate the finite MPCC
problem P (Ỹ ) in the following form:

min
q,q̇,u,z

f̃(q, q̇, u, z) (8a)

s.t. (2), (3), (5), q̇t ∈ Q̇ ∀t ∈ T (8b)
(7b), (7d), (7e) (8c)

s̃(qt, ut, zt; Ỹ ) = 0 ∀t ∈ T (8d)

where f̃(q, q̇, u, z) :=
∑T−1

t=0 [fq,q̇,u(qt, q̇t, ut) +∑
y∈Ỹ fz(qt, y, zt(y))], and s̃(qt, ut, zt; Ỹ ) = sq,u(qt, ut) +∑
y∈Ỹ sz(qt, y, zt(y)) = 0.

Oracle. The key question is how to form the index sets Ỹ .
A naive approach would sample index points incrementally
from Y (e.g., randomly or on a grid), and hopefully, with
a sufficiently dense set of points the iterates of solutions
will eventually approach an optimum. But this approach is
inefficient, as most new index points will not yield active
contact forces during the iteration.

Instead, we use a maximum-violation oracle that upon each
iteration adds the closest / deepest penetrating points between
the object and the environment, at each time step along the
trajectory. This strategy was used in [10] to avoid collision
between robots and environments in trajectory optimization,
and our experiments indicate that this approach is successful
in trajectory optimization with contact as well.

Merit function for the outer iteration. After solving P (Ỹ )
in an outer iteration, we get a step direction from the current
iterate (x̃, z̃) toward (x̃∗, z̃∗). However, due to nonlinearity, the
full step may lead to worse constraint violation. To avoid this
problem, we perform a line search over the following merit
function that balances reducing the objective and reducing the
constraint error on the infinite dimensional problem P (Y ):

ϕ(x, z;µ) = f(x, z) + µ∥b(x, z)∥1, (9)

where b denotes the vector of constraint violations of Problem
(8). Also, in SIP for collision geometries, a serious problem is
that using existing instantiated index parameters, a step may go
too far into areas where the minimum of the inequality g∗(q) ≡



miny∈Y g(q, y) violates the inequality, and the optimization
loses reliability. So we add the max-violation g∗−(x) to b, in
which we denote the negative component of a term as ·− ≡
min(·, 0).

Convergence criteria. We denote the index set Ỹ instantiated
at the kth outer iteration as Yk, the corresponding MPCC as
Pk = P (Yk), and the solved solution as (xk, zk).

The convergence condition is defined as α∥[∆x,∆z]∥ ≤
ϵx ·nxz and |zk|T |g(qk, Yk)|+|v(qk, q̇k, Yk)|T |h(qk, Yk, zk)| ≤
ϵgap·ncc and |s(xk, zk, Yk)| ≤ ϵs·T and

∑
t g

−∗
k (xk,t) < ϵp·T ,

where nxz is the dimension of the optimization variable and
ncc is the number of complementarity constraints, ϵx is the
step size tolerance, ϵgap is the complementarity gap tolerance,
ϵs is the balance tolerance, and ϵp is the penetration tolerance.
With a little abuse of notation, g(xk, Yk) is the concatenation
of the function value of all the points in Yk, and similar for
v(qk, q̇k, Yk) and h(qk, Yk, zk).

C. Multi-Modal Manipulation Planner

The multi-modal manipulation planner uses sampling to
enable robot-object contact state switches, while STOCS is
used to optimize changes of contact between the object and
environment. Alg. 2 presents the proposed planner, which
combines STOCS with a T-RRT [13] approach to guide tree
expansion toward the goal.

Algorithm 2 Multi-modal Manipulation Planner
Input qinit, qgoal
Output tree T

1: T ← initialize tree(qinit)
2: while qgoal /∈ T do
3: qideal ← sample random configuration(C)
4: qparent ← find nearest neighbor(T , qideal)
5: if transition test(qparent, qideal, qgoal) then
6: stable← stability test(qparent)
7: if stable then
8: cmnp ← sample mnp contact state(qparent)
9: else

10: cmnp ← parent mnp contact state(qparent)
11: qnew ← STOCS(qparent, qideal, cmnp)
12: if qnew ̸= null then
13: add node qnew to T
14: add edge qparent → qnew to T

The sample random configuration function has a prob-
ability p1 of returning a random sample qideal from the
configuration space C, a probability p2 of returning a random
sample whose rotation angle is sampled from the angles of
all the possible stable poses of the object on a plane, and a
probability 1−p1−p2 of returning the goal configuration qgoal.
Without p2, the probability of a stable pose to be sampled
is 0, and the switch of manipulation contact state will never
be triggered. The find nearest neighbor function returns the
nearest neighbor of qideal in the tree T using the weighted
SE(2) metric defined as:

dist(q1, q2) =
√
w1 · (d2x + d2y) + w2 · d2θ (10)

where dx = q
(x)
1 − q

(x)
2 , dy = q

(y)
1 − q

(y)
2 , dθ = min(|q(θ)1 −

q
(θ)
2 |, 2π − |q(θ)1 − q

(θ)
2 |), and w1 and w2 are the weights that

balance the importance between translation and rotation.
The transition test function follows T-RRT [13] to decide

whether to accept to propagate the tree from qparent towards
the newly sampled configuration qideal or not. This loosely
guides the propagation of the tree toward the goal while still
allowing the tree to steer away from the goal with lower
probability. We define the cost Cq of a configuration q as
dist(q, qgoal), and the transition test is done by comparing the
cost of qparent and qideal. Define ∆C =

Cqideal
−Cqparent

dist(qparent,qideal)

as the normalized change in cost. The new sample will be
discarded if Cideal exceeds a maximum bound Cmax, and the
new sample will be accepted if ∆C ≤ 0. But if ∆C > 0, then
qideal is accepted with probability

p(qparent, qideal) = exp

(
∆C(qparent,qideal)

KT

)
, (11)

where K is a normalization factor defined as the average of
Cqideal

and Cqparent , and T is the temperature parameter that
is used to control the difficulty level of transition tests. T is
adaptively tuned during sampling as in T-RRT.

The stability test function checks if the object O is
stable at the input configuration in the environment E
without any manipulation force. This is accomplished by
solving an IPCC problem. If qparent is stable, then the
sample mnp contact state function will randomly select an
allowable manipulator contact state cmnp at this configuration.
If qparent is unstable, then the manipulation contact state will
be inherited from qparent.

The permissible manipulation modes may be defined in a
problem-dependent manner to reflect the manipulation primi-
tives available to the robot. The modes used in our experiments
are illustrated in Fig. 5. Two-point contact is only possible
when the object is at certain upright rotation angles, and one-
point contact is permissible at surfaces not in contact with the
environment.

For each extension of the tree, STOCS is configured with
an objective function f̃(q, q̇, u, z) = W

∑
t dist(qt, qgoal)

2 to
guide the object toward qgoal as close as possible. When a
stable angle of the object is sampled by sample random
configuration, we set w1 = 0 and w2 = 1 to disregard the
translation components in the objective function, and STOCS
will try to steer the object to the target angle. Otherwise, we
use w1 = w2 = 1. W = 5 is used in the experiments.

IV. EXPERIMENTAL RESULTS

We evaluate STOCS and the proposed multi-modal manip-
ulation planner by performing several numerical experiments
and some physical experiments. The proposed methods are
implemented in Python using the PYROBOCOP framework
[23], which uses the IPOPT solver for optimizations [6]. All
experiments were run on a single core of a 3.6 GHz AMD
Ryzen 7 processor with 64 GB RAM.



Fig. 5: Allowable manipulator contact states for objects used
in the experiments. One-point contact allows the manipulator
to slide on a designated surface of the object, and two-point
contact is a fixed contact location relative to the object’s frame.
[Best viewed in color.]

Fig. 6: Left: start and goal pose of a pivoting task. Right: free-
body diagram of the object-robot-environment contact during
the pivoting. [Best viewed in color.]

A. Experiments on STOCS

First, we compare STOCS with vanilla MPCC to evaluate
the efficacy of dynamic contact selection. We finely discretize
the object geometries to better illustrate the advantages of our
method. Vanilla MPCC involves adding all index points in Y
to an MPCC problem without selection, resulting in a larger
optimization problem than Pk in STOCS. Both optimization
formulations are tested on the pivoting task illustrated in Fig. 6.
Parameters used in the experiments include:

• Manipulation mode: one point of robot-object contact.
• Physical parameters: Object mass m = 0.1 kg, environ-

ment friction coefficient µenv = 0.3, manipulator friction
coefficient µmnp = 0.7.

• Algorithm parameters: Nmax = 100, ϵx = ϵgap =
ϵs = ϵp = 1e−4, S = min(30 + 10k, 200), T = 20 and
∆t = 0.1.

The results are presented in Table I. We observe that STOCS
can be around one to two orders of magnitude faster than
MPCC, and can solve problems that MPCC cannot solve due
to limitation of computational resources. STOCS selects only
a small amount of points from the total number of points in
the objects’ representation on average, which greatly decreases
the dimension of the instantiated optimization problem and
reduces solve time.

Next, we test STOCS with different manipulator modes and
goal poses, including goals that are infeasible or unreachable.
As shown in Fig. 7, STOCS steers the object to the goal pose
as close as possible while satisfying all the constraints imposed
by the selected manipulator contact state and the environment.

STOCS MPCC
Object # Points Time (s) Outer iters. Index points Time (s)

Box 104 47.6 8 2.00 6672.8
Peg 104 223.5 13 3.23 8573.1
Mustard 247 402.2 13 4.85 OoM

TABLE I: Numerical optimization results of STOCS and
MPCC on the pivoting task. Number of points in the object’s
representation (# Point), solve time (Time), outer loop iteration
number (Outer iters), and average active index points for each
iteration (Index points) are reported in the table. OoM means
out of memory.

Fig. 7: Start pose, goal pose, and selected manipulator contact
state are shown on the left side, and the corresponding trajec-
tories solved by STOCS are shown on the right. STOCS steers
the object to the goal pose as close as possible while satisfying
all the constraints imposed by the selected manipulator contact
state and the environment. [Best viewed in color.]

B. Experiments on Multi-modal Manipulation Planner

Next we test the proposed multi-modal manipulation plan-
ner on tasks requiring one or more changes of manipulation
mode. Parameters used in the experiments include:

• Physical parameters: Object mass m = 0.1 kg, environ-
ment friction coefficient µenv = 1.0, manipulator friction
coefficient µmnp = 1.0.

• STOCS parameters: Nmax = 10, ϵx = ϵgap = ϵs =
ϵp = 1e−4, S = min(30 + 10 ∗ k, 200), T = 5 and
∆t = 0.1.

• Multi-modal planner parameters: Cmax = 2. Runs are
terminated after a maximum of 500 extensions.

All experiments in this section are evaluated under 10 different
random seeds.

Results on the 3 tasks of Fig. 3 are illustrated in Fig. 8.
The solution trajectories demonstrate that the planner discovers



Direction Forward Reverse
Task 1 2 3 1 2 3
Success 9/10 9/10 8/10 10/10 10/10 10/10
Nodes
(median)

in tree 26 21 18 8 14 10
in path 13 14 13 7 11 6

Time (s)
min 334 633 401 99 327 316
median 1300 1310 1048 425 3360 2014
max 3712 4472 1837 3747 5882 7712

STOCS calls
(median)

25 24 27 7 15 10

TABLE II: Success rate, number of nodes in the tree and the
path, the planning time, and the number of STOCS called of
the proposed planner on 3 tasks with different initial and goal
pose. Forward direction has the same start and goal pose as
shown in Figure 3 on page 3, and reverse direction has the
start and goal pose interchanged.

T 3 5 10
Task 1 2 3 1 2 3 1 2 3
Success 9/10 8/10 8/10 9/10 9/10 8/10 8/10 10/10 10/10
Nodes
(median)

in tree 39 28 18 26 21 18 18 12 6
in path 14 20 13 13 14 13 12 9 5

Time (s)
min 422 410 221 334 633 401 595 926 606
median 915 906 385 1300 1310 1048 2072 1726 1648
max 1884 1752 1275 3712 4472 1837 6994 2959 5590

TABLE III: Success rate, number of nodes in the tree and the
path, and the planning time of the proposed planner on 3 tasks
with different total number of time steps T for STOCS.

the changes of manipulation mode from one point contact to
two point contact or vice versa, and can switch from pivoting
to grasping to sliding. The sampled trees are also plotted,
illustrating that very few nodes are actually sampled and the
planner makes quite direct progress toward the goal.

Timing and success rates on the same tasks as well as
their reversed versions, in which the start and goal pose are
interchanged, are shown in Tab. II. We see that STOCS is
only called a few dozen times at most, and the transition
test is effective at rejecting ineffective pose samples. We also
explored how the planner performs as the total number of time
steps T in STOCS is varied. As can be seen in Tab. III, the
success rate slightly increases as T increases and the number
of nodes in the tree and solution path decreases. This can
be explained by the longer time horizon enabling STOCS to
make larger steps in the state space, giving a better chance to
connect to the goal pose within the sample limit. However, a
larger T increases solve times overall, since each call of the
local planner solves a larger optimization problem.

Hardware experiments are performed to evaluate the
planned trajectories. A Mitsubishi Electric Assista industrial
position-controlled arm with a F/T sensor mounted at the wrist
of the robot is used in the experiment. The default stiffness
controller of the robot is used to execute the planned force
trajectories. To implement the optimal force trajectory on the

(a) Trajectories

(b) Trees

Fig. 8: Plans generated by the multi-modal manipulation plan-
ner for four tasks. (a) Waypoint object poses along solution
trajectories, with colors representing different manipulation
modes. (b) Trees explored by the planner corresponding to
the above trajectories. Nodes are highlighted in bold red and
waypoints along edges are colored in the same manner as
above. [Best viewed in color.]

object, we design a reference trajectory for the robot that
presses into the object such that the robot would apply the
desired force for the estimated stiffness constants for the low-
level robot position control.

Since the computed trajectory is executed without object
pose feedback, execution error can accumulate. Thus, we use
AprilTags [20] (Fig. 9) to track the pose of the object, and
after a single-mode manipulation trajectory is completed, the
object pose feedback is used to adjust the execution of the
next mode’s trajectory. Some trajectories recorded during the
robot experiments are shown in Fig. 9.

V. CONCLUSION AND DISCUSSION

This paper proposed STOCS, a novel contact-implicit tra-
jectory optimization and infinite programming algorithm to
generate manipulation trajectories involving sliding and piv-
oting. It also proposed the use of STOCS in a multi-modal
manipulation planner that uses sampling-based planning to



(a) Reorient and place a box

(b) Pack a mustard bottle

(c) Unplug and lay down a peg

Fig. 9: Snapshots along the trajectories executed on the real
robot. (a) Reorient and place a box. (b) Pack a mustard bottle.
(c) Unplug a peg and lay it down on a plane. AprilTag
pose feedback is used to adjust trajectories only when the
manipulator contact state changes. [Best viewed in color.]

generate plans involving changes of manipulator contact state.
Experiments show that STOCS scales to complex geometries
better than standard contact-invariant optimization, and the
proposed multi-modal planner is validated on several manip-
ulation tasks in simulation and on a real robot.

One limitation of STOCS is that it assumes quasi-static
motion. We plan to investigate how the quasi-dynamic assump-
tion, which has been used in previous work [3, 5, 21], can
be formulated in an infinite programming framework. We also
plan to investigate speeding up the optimization, possibly using
sequential quadratic programming [8] with warm starts and
incorporating time-active contact sets and deactivating contacts
to decrease the number of variables and constraints.

Future work could also refine the multi-modal planner.
Experiments suggest that approximately half or more of the
time spent in STOCS fails to make progress toward the target
object pose, since the selected robot contact points cannot
manipulate the object in the desired direction (for example,
the second row of Fig. 7). Methods for sampling manipulator
modes so that the target configuration is reachable (and vice
versa) would reduce computation times significantly. We also
wish to explore the use of more sophisticated grasp generators
in manipulator mode sampling, and explore applying our
algorithms to fully 3D problems.

Finally, we note that our planned paths may be suscepti-
ble to pose or environmental uncertainty during execution.
Possible approaches may include robust optimization tech-
niques [25], or feedback controllers to monitor the contact
state and adjust the control appropriately [11]. We plan to
explore these avenues in future work.
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