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Abstract—In this paper, we discuss the mechanics and planning
algorithms to slide an object on a horizontal planar surface via
frictional patch contact made with its top surface. Here, we
propose an asymmetric dual limit surface model to determine
slip boundary conditions for both the top and bottom contact.
With this model, we obtain a range of twists that can keep
the object in sticking contact with the robot end-effector while
slipping on the supporting plane. Based on these constraints, we
derive a planning algorithm to slide objects with only top contact
to arbitrary goal poses without slippage between end effector
and the object. We validate the proposed model empirically
and demonstrate its predictive accuracy on a variety of object
geometries and motions. We also evaluate the planning algorithm
over a variety of objects and goals demonstrate an orientation
error improvement of 90% when compared to methods naive to
linear path planners. For more results and information, please
visit https://www.mmintlab.com/dual-limit-surfaces/.

I. INTRODUCTION

Planar sliding is an important skill allowing robots to move
objects that are too large to fit in standard grippers, too heavy
to lift, or are occluded such that grasps are not possible [1].
Planar pushing, referring to when the robot pushes on the
exposed sides of an object, has recently garnered significant
attention [2, 3, 4, 5, 6, 7]. However, planar pushing is not
possible when the sides of the object are occluded. For
example, Fig. 1 shows that the robot is unable extract the
book from the corner by pushing on its sides. However, this
task is possible by imparting a wrench through the frictional
contact patch made on the book’s top surface.

In this paper, we propose an asymmetric dual limit surface
model that governs the motion of planar objects subject to
patch frictional contacts on both the top and bottom surfaces.
This model characterizes stick/slip boundaries at both surfaces
as a function of the coefficients of friction, object inertia,
contact patch sizes, and applied normal forces. We additional
propose an open-loop stable planning algorithm that exploits
this model to compute robot trajectories that maintain sticking
contact with the object while sliding it on the surface. The
plans are easily deployed with a simple impedance controller
and enable precise sliding of object to arbitrary goal poses.

Our work is closest to [8], where a pivoting planner and
controller were developed to sliding an object to arbitrary
goal orientations. The robot end-effector only translates and
is allowed to slip w.r.t. to the object. While effective, the

Fig. 1: (a) Human sliding a book with palm on a horizontal
surface. (b) Robot sliding a book with top contact. Here, the
book is trapped by two walls meaning that planar pushing
cannot solve this task due to side occlusion.

proposed strategy is focused on object orientation control
and requires accurate force feedback. In contrast, our method
produces sticking contacts between the object and robot to
achieve desired poses, is open-loop stable, and only requires a
simple vertical impedance controller to maintain normal force
within generous bounds. Also related, [1] proposes a friction
cone based approach to sliding with pure translation but does
not control object orientation.

A. Problem statement

Consider the exemplar sliding task shown in Fig. 1(b),
where the robot is to slide the object on a horizontal surface
to a desired pose. We assume that the robot has established a
patch contact above the geometric center of the object and is
applying normal force Ne(t) to the top surface. Further, we
assume quasi-static motion (inertial forces are negligable) and
that the end-effector, object, and support are rigid.

Let qe(t) ∈ SE(2) and qo(t) ∈ SE(2) denote the 2D
poses of the end-effector and the object, respectively. We
define qerr ∈ SE(2) as the relative 2D pose of the object
w.r.t. to the robot, i.e., qerr(t) = qe(t) − qo(t). As shown
in Fig. 2, at the beginning of each path, the end effector is
aligned with the object, i.e., qerr(0) = 0. Then the relative
2D pose along the path qerr(t) only deviates from its initial
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Fig. 2: Schematic of the sliding problem. Here, qe(t), qo(t)∈
R3 are the 2D pose of the end-effector (black frames) and the
object (blue frames) respectively. At time t = 0, qe(0), qo(0)
are set to be 0. The green arrows represent the pose error qerr
between end-effector and the object.

value due to slip between the end-effector and object. Given
an arbitrary object goal pose qg ∈ SE(2), our goal is to design
an input composed of the end-effector trajectory and normal
force u(t) = [qe(t), Ne(t)] to minimize the final pose error:

u∗ = argmin
u

||qo(T )− qg||

where T is time at the end of the path. Our key insight is to
compute u(t) such that qerr(t) = 0 along the entire path and
qe(T ) = qg . Intuitively, the first constraint imposes sticking
contact between the robot and object, and the second constraint
imposes that the end-effector reaches the goal object pose,
driving the object to this pose.

II. RELATED WORK

Planar manipulation contact mechanics have a long and rich
history in robotics. Howe et al. [9] studied the contact between
a robot finger and an object during slippage under both torsion
and shear. Goyal [10] defined the limit surface as the boundary
of the set of all possible friction wrenches to characterize
friction between two surfaces. In a subsequent work from
Howe et al. [11], different models for the limit surface were
proposed and compared, with a simplified ellipsoidal model
being proposed for reducing computation complexity. Xydas
et al. [12] presented modeling and experimental results to
evaluate the relationship between the normal force and the
radius of contact for soft fingers. Shi et al. [13] derived a model
of sliding dynamics based on the limit surface contact model
at each fingertip. In this work, we also use the ellipsoidal
approximation of the limit surface to model friction behavior
for each contact and extend these models to a multi-contact
scenario.

Modeling, planning and control of planar pushing have been
widely studied. Stüber et al. [2] conducted an extensive survey
of methods of robot pushing planning and control, including
both analytical and data-driven methods. Lynch and Mason
[14] proposed a motion planning algorithm that considers the
sticking interaction to find trajectories towards target goals.
Agrawal et al. [4] introduced a method for learning the
intuitive physics and planning of unknown objects using deep
neural networks and visual data obtained through poking.

Li et al. [5] presented Push-Net, a deep recurrent neural
network model that enables a robot to reposition and reorient
objects. Push-Net learns the center of mass of unknown objects
and predicts motion through visual data obtained through
pushing. Suresh et al. [6] proposed a method to estimate
both object shape and pose in real-time from a stream of
tactile measurements. Byravan and Fox [7] introduced SE3-
NETS, deep neural networks designed to model and learn rigid
body motion from raw point cloud data. They demonstrated
the performance of SE3-NETS in both simulation and real-
world scenarios. Yu et al. [3] conducted a comprehensive study
of different friction models by pushing objects with various
materials, shapes, contact locations, directions, velocities, and
accelerations. We choose the material for experiments based
on this work.

The problem of planar manipulation with top contacts
[15, 16, 17, 8, 18, 1, 19] is less discussed than planar
pushing problems. This type of manipulation is usually called
as dragging or sliding, in comparison with pushing, which
relies on normal force on object sides. All these works also
rely on a quasi-static analysis and Coulomb friction with
limit surface modeling, as well as soft contacts that allow
moment transfer. Kao et al. [15] studied a generic manipulation
problem with compliance and sliding, followed by studies
of the mechanics of manipulating a business card with two
sliding robot fingers on a frictionless table [16, 17]. However,
frictionless assumptions are not realistic when sliding heavier
objects. The work in [8] derives a hybrid dynamical system,
validated via simulations and experiments, to predict and
control the motion of the object and the interaction forces,
providing conditions for sticking, slipping and pivoting. They
also posed a potential planning problem of finding trajectories
to slide an object from an initial to a desired pose such that
the contact between surfaces is maintained and the normal
force is within desired limits, though the problem remains
unsolved in the work. The work in [18] discussed the design
of a controller to reduce the undesired slippage between top
surface of object and robot finger of an unknown object,
but this work is performed only in simulation and rely on
accurate force/torque control. The work in [1] includes a
model free method for dragging an object to manipulate object
with unknown dynamic and friction parameters. However, this
works focused on planar translation, while not considering
controlling rotation by sliding. The work in [19] proposed a
polynomial force-motion model for planar sliding with data-
driven methods.

In the sliding problem we discuss in this paper, we proposed
a path planning algorithm to prevent slippage between end-
effector and object under a specified normal force while
sliding. This slippage-free planning algorithm aim to work not
only for translation but also rotation, without force feedback
along the path.

III. MECHANICS OF PLANAR SLIPPAGE-FREE SLIDING

To drive the object pose to its desired value with an open-
loop controller, our key insight is to choose robot motions such



that qerr(t) = 0 ∀ t, i.e., maintaining sticking contact (no
slip) between the object and the end-effector while the object
slides on the supporting plane along the entire path. We refer
to this motion as slippage-free sliding. To achieve slippage-
free sliding, here we derive the asymmetric dual limit surface
model that describes resultant object motions subject to patch
top and support contacts. We first discuss the mechanics of
planar object sliding by reviewing the fundamental concept
of limit surfaces. Next, we will present the asymmetric dual
limit surface and dual limit cone models. Lastly, we will
derive slippage-free twists boundary constraints that result in
slippage-free motion.

A. Limit Surfaces Model

The limit surface is defined as the boundary of the set of
all possible frictional wrenches that a supporting contact patch
can offer [10]. This boundary also characterizes the set of
all possible instantaneous object twists due to the frictional
interaction between the object and its support contact. In
Fig. 1(b), when we focus on the book, for the contact between
the book and supporting plane, the plane is the supporting
contact, while for the contact between the book and end-
effector, the end-effector is the supporting contact.

In general, calculating the limit surface in closed-form is
impossible; however, the seminal work of Howe and Cutkosky
[11] proposed an ellipsoidal approximation in wrench space
that has proven effective in a variety of later studies [14, 12,
20, 21, 22, 13]. Here, we also make use of this model. Let
w = [fx, fy,mz]

T be a friction wrench on the object from the
supporting contact in the contact frame. The ellipsoidal limit
surface can be expressed as:

wTAw = 1

where A = Diag{(a1N)−2, (a2N)−2, (a3N)−2}. Assuming
isotropic friction with Coulomb friction model, we have
a1 = a2 = µ, where µ is the friction coefficient between
the contact and the object, and N is the normal force at
that contact. We can represent arbitrary contact patches using
their equivalent radius ro [11] to generate the ellipsoidal limit
surface. Using this radius, we can write the maximum friction
torque about the contact normal as a3 = r0cµ, where r0 is
the equivalent radius of the object and c ∈ [0, 1] is a constant
corresponding to object geometry. This constant is obtained
by integration and for a uniform pressure distribution with the
equivalent radius contact, c ≈ 0.6 [12, 13]. We can now write
the relationship a3 = rca2 = rca1 where we note that for
same contact geometry, A ∝ N , i.e., that the size of the limit
surface is proportional to the normal force while maintaining
the limit surface axes ratios.

As is standard with the ellipsoidal limit surface approx-
imation [18, 20, 19, 1, 8], we assume that the maximum
static friction is equal to the kinetic friction under the same
normal force. Static friction wrenches are inside or on the
limit surface, while dynamic friction wrenches are on the
limit surface. When the object slides on the contact plane, the

Fig. 3: (a) Schematic of dual limit surfaces model in case (III)
or (IV) mentioned in Section III-B. The blue ellipse represents
the limit surface between the object and end-effector while the
orange ellipse represents the limit surface between the object
and the supporting plane. Wrenches on the top and bottom red
surfaces mean the object is moving on the supporting plane
or is static. Wrenches on the green surface mean the object is
sticking on the supporting plane while the end-effector slips
on the object or is static. Wrenches inside the green and red
surfaces mean the object is static. Schematic of slippage-free
twists on the dual limit surfaces model in case (III) or (IV)
mentioned in Section III-B. Slippage-free twists are the set of
normal directions of all points on the green surface, which is
also shown as green volume on panel (c). In cases (II) and
(V), the red and green colored regions switch.

wrench wc lies on the limit surface and the surface normal at
this point is the instantaneous object twist direction [11].

B. Asymmetric Dual Limit Surface and Cones Model
To develop the asymmetric dual limit surfaces model, con-

sider Fig. 1(b) where the end-effector is in contact with the top
surface of the object while the object is also in contact with a
supporting plane. Here, the supporting planes are perpendicu-
lar to the direction of gravity. For scenarios in which the end-
effector is aligned with the object’s center, we have two center-
aligned contact surfaces. For each contact surface, we can plot
a limit surface corresponding to the normal force. These limit
surfaces will have different geometries due to inertia of the
object and relative contact patch sizes, creating an asymmetry
that can be exploited for control.

Let Ne denote the normal force applied by the end-effector
to the object, then the normal force between the object and
supporting plane Np is the sum of the gravitational force and
the applied normal force:

Np = mg +Ne

For a choice of Ne and physical parameters (mass, friction,
and equivalence radii), we can plot the 2 limit surfaces in the
object wrench space – Fig. 3(a) shows an example. With the
quasi-static assumptions, considering force-torque balance in
the x-y plane, we have:

we +wp = 0

where we is the wrench applied by the end-effector to the
object projected to supporting plane contact frame, wp is the
wrench applied from the supporting plane to the object.



Fig. 4: Schematic of dual limit cones in 5 cases. The middle row shows dual limit cone schematics, where red surfaces represent
the contact between the end-effector and object while the green surfaces represent the contact between object and supporting
plane. The bottom row shows the projections of dual limit cones on to the F-T plane. Also, overlayed are the 2D dual limit
surfaces shown as ellipses for a range of normal forces. The slippage boundaries are the points at which the ellipses intersect
and are the boundaries between the red and green surfaces.

These two wrenches are equal in magnitude but opposite in
direction, considering that both limit surfaces are symmetric
to the origin point, we can use single point in this dual limit
surfaces to represent this pair of friction wrenches.

Both we and wp must be inside or on their respective limit
surfaces. As a result, the frictional wrench should be inside or
on the intersection of both limit surfaces in Fig. 3(a). For each
type of ellipsoidal limit surfaces interaction, there are at most
3 possible motions: i) neither the object or the end-effector
moves (inside both green and red surfaces), ii) the object slips
on the supporting plane while sticking to the end-effector (on
green surface), and iii) the object sticks to the supporting plane
while the end-effector slips on the object (on red surface).

There are 5 distinct types of ellipsoid interactions, as shown
in Fig. 4 (where Fig. 3 is an example of cases (II) and (V)).
To visualize this, we first note that planar translation along
the Fx and Fy axes are equivalent due to the assumption of
symmetric and homogeneous friction properties. Thus, we can
reduce the dual limit surfaces at a given normal force to a 2D
space where one axis represents the friction force and the other
represents friction torque. Next, we add the axis of normal
force Np to visualize how dual limit surfaces change with
respect to the normal force. We call this construct the dual
limit cone, visualized in Fig. 4. This model extends the work
in Sampaziotis and Doulgeri [1], as the cross-section along T -
Np plane is the Friction Cone Diagram with pure translation.
Cross-sections at a given Np parallel to T-F plane represent
dual limit surfaces at that normal force. The two cones are
shifted along the Np axis by the magnitude of the gravitational
force acting on the object. The projection of the intersection
of the two cone limit surfaces to the F-T plane represents the
boundary of slippage for all normal forces. These five cases

are determined by the following parameters:

pT = (µere − µprp)/(µprp), pF = (µe − µp)/µp

where pT and pF are the differences between the slopes of
the two cones along the T and F axis, respectively. These five
cases are shown in five columns in Fig. 4. In each column, the
top row is the condition, the middle is the 3D visualization
of the dual limit cones, and the bottom is their projection
on the F-T plane. This projection shows the boundary of
slippage independent of the normal force Ne. The robot is
able to maintain sticking contact with the object by imparting
wrenches in the green zone.

Changing normal force will change the relative size of these
2 limit surfaces, as it will change the ratio between normal
forces applied through each contact:

R =
Ne

Ne +mg

Increasing normal force increase the ratio R, which results
in changing the intersection between the 2 limit surfaces. We
note that since Ne and mg are both greater than zero, then the
upper limit of R = 1. In case (I), no matter what the normal
force is, the limit surface between the object and end-effector
is always inside that of the object and supporting plane, thus
the end-effector will always slip on the object. In cases (III)
and (IV), when the normal force Ne is smaller than:

Neslip =
µpmg

µe − µp

will lead to the relationship described by case (I) where the
end-effector will always slip on the object.

In case (IV), increasing the normal force may result in the
limit surface of the object and supporting plane to lie entirely



inside the limit surface of the end-effector and object, which
means the object will always follow the end-effector. The
boundary normal force will be:

Nestick =
rpµpmg

reµe − rpµp

when the normal force Ne is bigger than Nestick, the object
will always stick to the end-effector. Similarly, we obtain the
slip condition for case (II) and (V):

Neslip =
rpµpmg

reµe − rpµp

and the sticking boundary force for case (V):

Nestick =
µpmg

µe − µp

In the following section, we will not discuss case (I) as
the object cannot move no matter what wrench is applied.
We will discuss cases (II) and (III) with normal force greater
than Neslip, and case (IV) and (V) with normal force between
Neslip and Nestick, as in these ranges, case (IV) behaves
similarly to (III) and case (V) behaves similarly to case (II).

C. Slippage-free Twist Range

The object will follow the end-effector when the end-
effector has sticking contact with the object, while the object
is slipping on the supporting plane. To realize this, the wrench
imparted to the object by the end-effector must lie inside its
respective limit surface, while the wrench imparted to the
object by the support must lie on its respective limit surface,
i.e., the green surface in Fig. 3(a). These wrenches are also the
set of wrenches that can move the object. The limit surface
model determines that for each friction wrench, the object
twist will be in the direction of the surface normal of the
limit surface at that wrench, as shown in Fig. 3(a). Then all
normal directions of the aforementioned wrench set result in
the set of all object twists in the plane, shown in Fig. 3(b). We
define the set of all twists for which the object can follow the
end-effector as slippage-free twists. Then for all slippage-free
twists, the following relationship holds:

kv(Ne) ·

√
v2x + v2y

|ω|

{
≥ 1, case (III) and (IV)
< 1, case (II) and (V)

(1)

where kv(Ne) is the slope of the normal to the 2D limit surface
of the object and end-effector at the intersection of the limit
surfaces when the normal force is Ne. kv is the maximum ratio
(case (III) and (IV)) or the minimum ratio (case (II) and (V))
between angular velocity and linear velocity without slippage
between the end effector and object. This slippage-free twist
relationship (Eq. 1) is the kinematic constraint for moving any
object without slippage between the object and end-effector
with the normal force Ne under the quasi-static assumption.

To provide intuition, consider case Fig. 4(c). kv provides
the upper bound for object rotation for a given δ = (vx, vy)
linear twist and corresponds to the wrenches at the intersection
of the green and red surfaces, i.e., the slippage-free boundary.

For any choice of wrench in the green surface, the robot will
maintain sticking contact while sliding the object; however,
the object rotation will be strictly smaller for the same given
δ linear motion. In practice, we can multiply kv by a “safety
factor” to plan more conservative paths that maintain distance
to the boundary and ensure no slippage between the end-
effector and object will happen. This safety factor relaxes
some of the stronger assumptions made earlier and allows
for some uncertainty in the model parameters. We discuss the
estimation of the model parameters in the Experiments and
Results sections.

IV. MOTION PLANNING FOR SLIDING

In this section, we derive a planning algorithm that exploits
the slippage-free constraint Eq. 1 to compute open-loop stable
robot paths that slide the object to arbitrary poses in the plane.
This constraint must hold for every time step. To simplify
planning, we fix the normal force Ne throughout the path,
thus kv is also fixed. Due to the use of the safety factor, the
precise value of the normal force during execution does not
impact the motion or its stability.

To compute an optimal path, we pose the planning problem
as a quadratic programming. We denote planned path as
τ = [qT

1 , q
T
2 , . . . , q

T
n ]

T . Here, q1 and qn are the start and
goal poses, respectively. We also denote linear interpolation
path from q1 and qn as [q̂1

T , q̂1
T , . . . , q̂n

T ]T . We want to
minimize both the distance from the connecting line between
the start and goal poses and the second derivative along the
whole path. The first component is responsible for accuracy
while the latter is for smoothness. Then the path planning
problem can be expressed as a quadratic constraint quadratic
programming (QCQP) problem as follows:

min
τ

C1

n∑
i=1

(qi − q̂i)
T (qi − q̂i)

+ C2

n∑
i=3

[qT
i−2, q

T
i−1, q

T
i ]P[qT

i−2, q
T
i−1, q

T
i ]

T

s.t. q1 and qn are given

[qT
i−1, q

T
i ]K[qT

i−1, q
T
i ]

T

{
> 0, case(III), (IV)
< 0, case(II), (V)

∀i ∈ [2, . . . , n]

where C1, C2 are weights of distance from linear interpolation
and second derivative. Matrix P accounts for the second
derivative of the path, and it is constructed as:

P = (
[
1 −2 1

]T [
1 −2 1

]
)⊗ I

where I ∈ R3×3 denotes identity matrix. Matrix K in Eq.
(IV) is the velocity constraint for each time step, and it is
constructed as follows:

K =

[
1 −1
−1 1

]
⊗ diag(kv, kv,−1)

Once computed, the optimal robot path τ will drive the object
to the desired goal pose.



Fig. 5: Experiment setup for planar sliding with palm manip-
ulation.

V. EXPERIMENTS

A. Experiment setup

Our experimental setup is shown in Fig. 5. Here, the robot
is equipped with a 3D-printed end-effector with a silicone gel
tip to provide a small amount of compliance to ensure patch
contacts. The objects slide on a 0.5 inch thick Derlin/Acetal
Copolymer plastic board as the supporting plane mounted on
a 6 DOF ATI Gamma force torque sensor (resolution: (0.0125
[N], 0.0007 [Nm])) at a maximum sample-rate of 7000 [Hz].
The board provides a uniformly distributed friction coefficient
and has high rigidity.

The objects used for the task are shown in Fig. 6. They are
3D printed with carbon fiber filled nylon from ONYX. We
chose five different shapes for the objects and their support
surfaces: square, rectangle, round, triangle and an irregular
shape. They all share the same material, thickness, mass, and
relative position of Apriltags. An Intel Realsense D435 camera
is fixed to the world frame for tracking. Four Apriltags are
attached to the top of each object to prevent tracking failure
due to occlusion, as shown in Fig. 6. The mass of each object
is approximately 50 [g].

We used the Kuka MED LBR 14 R820 7 DOF robot
to manipulate the end-effector. The robot is controlled in
impedance Cartesian mode for compliance. Before executing
each path, we set the normal force by lowering the end-effector
until the force read by the F/T sensor reaches the desired value,
then the path is executed at the same height, regardless of
variation in normal force values. For planning and execution
tasks, trajectories were computed using Matlab R2021b and
sent to the robot through the ROS network. For the model
validation, each path was executed 4 times with paths mirrored
in translation and rotation to reduce potential sources of error
due to calibration.

Fig. 6: 3D printed objects with 4 Apriltags to avoid occlusion
while tracking. The support surfaces are: circle, rectangle,
square, triangle and an irregular shape. They share the same
top geometry that is center-aligned with the bottom surface
geometric center. The relative pose of the Apriltags is common
to all objects.

B. Model Identification and Evaluation

In this section, we present experiments to evaluate the
asymmetric dual limit surfaces and dual limit cones models.
To generate data, we designed short path segments with the
following features: i) each segment has constant linear and
angular velocity, ii) the variation among segments provides
a uniform distribution over the limit surface based on priori
guesses of friction parameters. Each segment is repeated for
normal forces in N = {3, ..., 9}[N] .

To execute each segment, the robot end-effector moves
above the object’s center, then applies the normal force. Once
the force read by the sensor is stable, the robot executes one
of the designed segments. After executing each segment, the
robot moves the object back to the center of the supporting
plane with pure translation and repeats the previous steps. Each
segment is executed 3 times.

For each segment, object and end-effector poses as
well as force torque measurements are recorded: d =
{qe(0), qe(T ), qo(0), qo(T ), Ne, fx, fy, τ} where T repre-
sents time at the end of execution. We used a data-set of
D = {d1, ...,d532} segments to fit the friction models by
jointly optimizing over the parameters θ = {µr, µp, re, rp}.
We note that as part of the fitting, segments must be catego-
rized as slipping and sticking. To evaluate whether the object
has slipped w.r.t. to the end-effector during execution, the robot
compares the difference between the initial and final poses
of the object to the total change in its end-effector pose. If
these differences exceed a threshold value, then the path is
flagged for slippage. The threshold is set to be 0.05 [Rad] for
orientation error, 0.005 [M] for position error.



Fig. 7: Model validation experiments: Each point represents the wrench measured during a path segment. Red points denotes
slippage, while green ones denotes no slippage. Overlayed are the fitted dual limit surface cones for each object. The red and
green surfaces are fitted models.

Fig. 8: Exemplar planned paths for end-effector with different goal poses. Each subfigure shows the planned path using a
black curve with the blue arrows representing the orientation along the path. Here, the green and red arrows represent the start
and goal poses, respectively. Arrows are used to show both position and orientation at the same time. All paths start from the
origin and end at given goal poses. (a)-(d) show planned trajectories in cases (III) and (IV), (e) shows trajectory in case (II)
and (V). The key insight is that the computed paths are often complex and winding to address the limited control authority
in generating changes in orientation along the path. This limit is due to the frictional constraints between the end-effector and
the object as well as the object and environment determined by the dual limit surface models.

Fig. 7 shows the fitted models overlayed with the force
torque data. Each point in Fig. 7 represents the wrench values
for each segment in the object frame. The green and red points
represent slippage-free and slippage segments while the green
and red surfaces are the fitted cone models, respectively. We
note that when the end-effector slips w.r.t. the object, the as-
sumptions that end-effector is always at the center of the object
no longer holds, thus the red points are imprecise estimates of
the dual limit cones shown in Fig. 4. This imprecision explains
the uncertainty in the boundary between the two types of
motion. We note that the results are presented in one quadrant
for clarity as the data and models are axisymmetric due to the
uniform pressure and homogeneous friction assumptions.

C. Path Planning Evaluation

In this section, we evaluate the planner for cases (III)
and (IV) over a variety of paths. For all paths, we use the
parameters (n, kv, C1, C2) = (30, 1.25, 10, 1).

The step number n = 30 balances the path smoothness
and computational complexity. kv quantifies the amount of
permissible rotation relative to translation, and the constants
C1 and C2 balance the relative importance of smoothness and
precision. Fig. 8 illustrates the object trajectory for several
exemplar paths. The paths are shown as black curves and the
green arrow and red arrows represent the start and goal poses.
The blue arrows represent the pose (position and orientation)



TABLE I: Path execution RMSE results.

Object Round Square Rectangle Irregular Triangle Average
Linear Planner Pos. RMSE [m] 0.0013 0.0014 0.0013 0.0020 0.0019 0.0016
Linear Planner Ori. RMSE [rad] 0.1885 0.3354 0.1918 0.1646 0.1471 0.2055

Proposed Planner Pos. RMSE [m] 0.0009 0.0015 0.0013 0.0018 0.0019 0.0015
Proposed Planner Ori. RMSE [rad] 0.0071 0.0087 0.0072 0.0171 0.0176 0.0116

Fig. 9: RMSE of object pose with respect to the goal pose at the final step of the planner for both linear and our method for
a variety of normal forces. We highlight that the orientation error of our methods planned paths drops to less than 10% of
linear paths. This is because our model explicitly considers frictional constraints and produces paths that enable the robot to
maintain sticking contact to correctly orient the object. We note that linear position errors for both methods are approximately
the same. Further, these position errors are negligible since the error due to Apriltag measurements has an RMSE of 0.0008
[m] in position and 0.002 [Rad] in orientation.

along the path.
We note that as the ratio between the linear positional

distance and the total rotation of the goal pose increases w.r.t.
to the initial pose, the planned paths gradually change from
a coil to a straight line. When the ratio is higher than 1/kv ,
planned paths will all be the same as linear paths, as the linear
motion satisfies the slippage-free constraints. But when the
difference between the initial and goal orientation is small,
the path planned is closer to a straight line, which fits our
expectation. We also show one example of planning in case (II)
and (V) in Fig. 8(e). Here, the object cannot translate without
rotation, and the planner computes a straight translation with
periodic rotations about the connecting line segment.

To evaluate the path planning algorithm, we measure the
pose errors between the goal and achieved poses at the end of
each path for both our proposed method and the linear planner.
In all paths, we kept the end-effector moving in the same
horizontal plane. The physical parameters are fit to cases (III)
or (IV). We executed 162 paths with translation magnitudes
ranging from 0.02 to 0.04 [m], rotation magnitudes from 0.5
to 0.9 [Rad], and normal forces from 3 to 5 [N]. These path
parameters are chosen based on the size of supporting plane,
size of the object, and friction coefficients. In addition to
our approach, we consider a planner that linearly interpolates
between the beginning and end poses in SE(2) and moves the
end-effector along this path.

The RMSE of relative pose errors at the end of both paths
are shown in Tab. I and in Fig. 9. The results show that

using our proposed planner, there is a significant improvement
in orientation error (≈ 90%) when compared to the linear
planner. This is because our model explicitly considers fric-
tional constraints and produces paths that enable the robot
to maintain sticking contact to correctly orient the object.
We note that linear position errors for both methods are
approximately the same. Further, these position errors are
negligible since the error due to Apriltag measurements has
an RMSE of 0.0008 [m] in position and 0.002 [Rad] in
orientation.

Fig. 10 shows example robot planned paths and correspond-
ing object paths in configuration space for a given goal from
both our approach and the linear planner. Here, the (x, y) axes
represent translations, and z axis represents rotation θ. The
blue curve shows the end-effector path computed from our
method and the red curve shows the corresponding realized
object path. We note that the object closely follows the end-
effector and reaches the desired goal. In contrast, the green
curve is the linear end-effector path from the start pose to
the goal, while the orange curve is the corresponding object
trajectory. We highlight that the object fails to follow the end-
effector with the linear path, where the deviation is especially
pronounced in rotation. Fig. 11 shows a visualization of paths
and results for both scheme with their corresponding real-
world experiments.

VI. DISCUSSION & LIMITATIONS

In this paper, we developed a novel slippage-free path plan-
ning algorithm the allows the robot to precisely slide objects



Fig. 10: Visualization of a pair of exemplar paths in configu-
ration space where the axes represent x, y and θ. Both paths
starts from the origin and end at [0, -0.01, -0.7]. The blue and
red curves are the end-effector and object trajectories resulting
from our method, while green and orange lines are end-effector
and object trajectories with the linear path.

Fig. 11: Visualization of the object path starting from the
origin and ending at 5 [cm] to the right, with 90◦ clockwise
orientation chage. In each row, the left shows the scheme of
pose, the right shows the pose in real scene. (a) shows the
start and desired goal pose, (b) shows the planned path and
corresponding sliding result, (c) shows the linear path and
corresponding sliding result.

to arbitrary goal poses in the plane using only top contact. Our
planner exploits a novel dual limit surface model that provides
explicit slip/stick constraints and that are identified during task
execution. We evaluated the model and planning algorithm
with a Kuka iiwa Med robot with object of various geometries
and demonstrated its effective performance over the naive
linear path planner, particularly for significant reductions in
rotation error.

There are a few limitations with this work: First, while the
dual limit surface experiments show that the model is accurate,
the boundary of fitted surfaces does exhibit some uncertainty
for points close to it. We hypothesize that the cause could
be: i) violations of the uniform pressure assumption, ii) when
the end-effector slips on top of the object, the two contact
patches are no longer aligned, iii) uncertainty in wrench
measurement and force control that cannot be neglected. Thus
in the path planning and execution experiments we used more
conservative parameters to guarantee the slippage-free path.
Fig. 9 shows that there’s almost no difference in position
error between the planned paths and naive paths. The reasons
could be: i) Apriltag and Realsense camera cannot provide
enough accuracy, ii) The deformation of the end-effector tip
was ignored.

Future iterations of the planner and model can result in a
more comprehensive planning algorithm that also takes the
normal force into account, reducing the normal force when
executing a more straight section along the path, so that the
robot can apply less effort and decrease energy consumption.
Also the model can be extended to compensate for the end-
effector’s possible deformation and address more general
scenarios such as a tilting supporting surface and off center
end-effector and object contact.
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