
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

RoboNinja: Learning an Adaptive Cutting Policy
for Multi-Material Objects

Zhenjia Xu1, Zhou Xian2, Xingyu Lin3, Cheng Chi1, Zhiao Huang4,
Chuang Gan5†, Shuran Song1†

1 Columbia University 2 CMU 3 UC Berkeley 4 UC San Diego 5 UMass Amherst & MIT-IBM AI Lab
https://roboninja.cs.columbia.edu/

Abstract—We introduce RoboNinja, a learning-based cutting
system for multi-material objects (i.e., soft objects with rigid cores
such as avocados or mangos). In contrast to prior works using
open-loop cutting actions to cut through single-material objects
(e.g., slicing a cucumber), RoboNinja aims to remove the soft part
of an object while preserving the rigid core, thereby maximizing
the yield. To achieve this, our system closes the perception-
action loop by utilizing an interactive state estimator and an
adaptive cutting policy. The system first employs sparse collision
information to iteratively estimate the position and geometry of
an object’s core and then generates closed-loop cutting actions
based on the estimated state and a tolerance value. The “adap-
tiveness” of the policy is achieved through the tolerance value,
which modulates the policy’s conservativeness when encountering
collisions, maintaining an adaptive safety distance from the
estimated core. Learning such cutting skills directly on a real-
world robot is challenging. Yet, existing simulators are limited
in simulating multi-material objects or computing the energy
consumption during the cutting process. To address this issue,
we develop a differentiable cutting simulator that supports multi-
material coupling and allows for the generation of optimized
trajectories as demonstrations for policy learning. Furthermore,
by using a low-cost force sensor to capture collision feedback, we
were able to successfully deploy the learned model in real-world
scenarios, including objects with diverse core geometries and soft
materials.

I. INTRODUCTION

Imagine slicing a piece of avocado from its seed (Fig. 1)
– we need to carefully slice through the soft outer flesh to
locate the rigid seed and then follow the contours of the seed
to maximize the volume of the slice. In some cases, we would
need to switch the cutting trajectory when the knife collides
with the seed. All of these maneuvers must be performed
while adhering to the physical constraints of the knife and its
interactions with both the soft and rigid parts of the avocado.

This simple yet intricate task illustrates the challenges of
cutting multi-material objects, which is significantly more
difficult than cutting through single-material objects that often
could be accomplished with an open-loop cutting trajectory
[13, 28, 46, 34, 60, 61]. In this paper, we are interested in
enabling robots to effectively and efficiently perform this task.
Using the above example, we could summarize the unique
capabilities required for acquiring such a skill:
• Multi-objective optimization under complex physical

constraints. To perform the task, the system needs to

† indicates equal advising.

Cutting 
Trajectory

Retract 
Trajectory

Collision

Soft

Rigid

Fig. 1: RoboNinja is designed to cut multi-material objects with an
interactive state estimator and adaptive cutting policy. Left: When
the knife encounters a collision with the invisible core, the algorithm
updates the core estimation and re-plans the cutting trajectory after
a few retracting actions. Right: We deploy the learned model on a
physical robot, allowing it to cut fruits in a way that maximizes the
cut-off mass while minimizing collision occurrences.

simultaneously optimize several objectives – maximizing
the total yield (cut-off mass of the soft material), avoiding
collisions with the rigid core, and minimizing energy con-
sumption. Many of these objectives require comprehensive
physical reasoning beyond simple geometry analysis.

• Interactive state estimation for extreme partial observ-
ability. In most cases, the rigid core is not observable on
the surface. Hence, it requires the system to continuously
estimate the location and geometry of the core through in-
teraction, that is, through cutting and sensing the collision.
This state estimator will continuously inform the cutting
policy in a close-loop manner.

• Adaptive policy for out-of-distribution scenarios. While
the state estimator could infer the core geometry based
on contacts, there will always be instances where the
shape of the core falls outside the training distribution.
An inaccurate estimation could lead to repetitive collisions
in the same location. In these scenarios, the cutting policy
needs to “adaptively” update its cutting strategies to avoid
getting stuck.

As the first step towards enabling this new robot capability,

https://roboninja.cs.columbia.edu/


we introduce RoboNinja, a learning-based cutting system that
combines an interactive state estimator and an adaptive cutting
policy. The interactive state estimator uses sparse contact
information to iteratively estimate the position and shape of
the core. The cutting policy, optimized to increase cut-off yield
and reduce collision occurrences and energy consumption,
produces cutting actions in a closed-loop manner, based on the
estimated state and a tolerance value. The tolerance value is a
function of past collision events and actively controls the pol-
icy conservativeness when encountering new collisions (e.g.,
keeping a distance from the estimated core location). This
adaptivity is critical for handling out-of-distribution scenarios
where the state estimation could be inaccurate.

Learning such cutting skills directly on a real-world robot
system is challenging and potentially dangerous. However,
existing simulators in the literature are limited in simulating
multi-material objects, especially the coupling between rigid
and soft bodies under forceful manipulations such as cutting.
Therefore, we develop a new differentiable simulator for the
proposed multi-material object cutting problem, allowing us
to use gradient-based optimization for generating trajectories
as demonstrations for policy learning.

Finally, when deploying the learned policy, we demonstrate
that with the simple collision feedback captured by a low-cost
(less than $10) force sensor, we can successfully transfer the
model learned in the simulator directly to real-world scenarios,
including out-of-distribution object geometries and materials,
thanks to its adaptivity.

In summary, the primary contribution of this paper is
RoboNinja – the first robotic system demonstrating the ca-
pability of multi-material object cutting. To build this system,
we make the following technical advancements:
• The formulation of the multi-material cutting task and a

differentiable simulator that could perform multi-objective
trajectory optimization for collecting demonstrations.

• A learning-based cutting method with an interactive state
estimator and an adaptive cutting policy.

• The deployment of our method on a real-world robotic
system with low-cost sensory feedback.

Videos of experiments, the code for the simulator and the
cutting system, as well as the CAD models for the benchmark
objects are available at https://roboninja.cs.columbia.edu/.

II. RELATED WORK

A. Differentiable Physics Simulation for Policy Learning

In recent years, a number of differentiable simulation en-
vironments have been proposed to accelerate policy learning.
These include 1) simulators parameterized by neural networks
[24, 23, 39], which haven’t proved to be capable of accurate
simulations involving complex interactions between multi-
phase materials required in cutting scenarios, and 2) analytical
simulators implemented in a differentiable way, leveraging
either automatic differentiation tools [15] or analytical gradient
computation rules [16]. The latter is used to provide gradient
information to accelerate policy search in various robotic tasks,
including locomotion [55], soft robot design [50], soft body

manipulation [17, 54, 40], etc. To handle realistic sensory input
outside of the simulation environment, prior methods distill the
knowledge learned in simulators into visuomotor policies that
take images [25] or point clouds [26] as input. In contrast, the
state of multi-material objects in our task, such as the shape of
the rigid core inside, is not directly observable. As such, our
method learns an interactive state estimation network based
on encountered collision events to address the challenge.

B. Simulation Environments for Cutting

There has been a significant amount of research conducted
on simulating the cutting process of different materials. The-
oretical analysis is commonly applied in metal cutting [32, 6]
and brittle materials research [11, 33, 62]. Besides, various
numerical methods are utilized to simulate the fracture of
deformable objects. They could be further classified into mesh-
based methods, such as the Finite Element Method (FEM)
[13, 2, 22, 53, 38, 18], and mesh-free methods, including
Position-based Dynamics (PBD) [36, 3] and Material Point
Method (MPM) [14, 49, 51, 52]. The work most related to
ours is “DiSECt” by Heiden et al. [13], where the FEM-based
cutting simulator achieves differentiability through continuous
contact formulation and damage modeling. In contrast to these
prior works that only simulate the cutting process of a single
material, our differentiable simulator stands out by accounting
for both the external soft material and the internal rigid core,
utilizing MPM for its ability to accurately and efficiently
simulate the dynamics of elastoplastic objects and the coupling
between different materials.

C. Interactive Perception

Interactive perception (IP) [5] leverages physical interac-
tion to gather information about the environment. It is com-
monly used for scene reconstruction with occluded objects
[58, 20, 43, 42] and kinematic object structure discovery
[19, 10, 35, 30]. The integration of tactile signals becomes
increasingly popular in this field, especially in material clas-
sification [8, 7], object recognition [27, 57, 56, 44, 45], and
shape reconstruction [1, 4, 31, 29]. Recently, Xu et al. [56]
recognize 3D objects with active tactile explorations. Wang et
al. [29] present a curiosity-driven object reconstruction method
using the modality of touch. These prior works only consider
rigid or articulated objects. Our work advances the field of
interactive perception by applying it to a new and challenging
task: multi-material object cutting.

D. Robotic Cutting

Many robotic systems have been developed for cutting tasks
in various domains such as meat [28], vegetables [46, 34,
60, 61, 41], and dough [25, 26]. Researchers also utilize
multimodal haptic sensory data to enhance system robustness
[59]. As an alternative to traditional cutting using knives, hot
wire cutting tools [9, 47] are adopted in various sculpting and
industrial applications. Previous works mostly deal with only
single-material objects and study how to cut through them,
where open-loop orthogonal cutting is typically sufficient. In

https://roboninja.cs.columbia.edu/


Cut

Re-estimate

Current 
Tolerance 
Value (    )

Adaptive
Cutting 
Policy

Cutting 
Policy

(a) Environment (b) State Estimation

(c) Cutting Policy

Execution

(1) retract
(2) update collision map

(b) Training 

State
Estimator

Collision 
Point

…

(a) Demonstration Collection (b) Training

…

Collision & Retract

Iterative
State 

Estimation
Network 

Past + current collisions Estimated core geometry Estimated core (SDF) + knife pose Next action 

+ 

Re-estimate

Cut

Action Space

Current 
Tolerance 
Value (    )

Adaptive
Cutting 
Policy

Estimated core (SDF) + knife pose Next action 

+ 
knife

Fig. 2: RoboNinja Overview. The robot initially performs actions based on an initial estimation. In the event of a collision with the rigid
core, the robot retracts a few steps (indicated in red). The robot then re-estimates the core’s position and geometry (indicated in green) and
generates the cutting action using the updated state estimation (indicated in blue).

this work, we study the problem of cutting multi-material
objects with the goal of removing soft material from an
invisible rigid core, which requires controlling under physical
constraints such as avoiding collisions with the rigid core,
and continuous state estimation from sensory feedback in a
partially observable environment. Therefore, we propose to
equip our system with an interactive state estimation network
and an adaptive policy to address the task.

III. METHOD

In this work, we study a multi-material object cutting
task, where the goal is to manipulate a tool to cut off soft
material from a rigid core while maximizing the yield (the total
amount of soft material being removed), as well as minimizing
the number of collisions with the core and the total energy
consumption.

Considering the complex objectives and the real-time nature
of this task, we decide to employ the standard teacher-student
framework: slow while accurate expert demonstrations act as
the teacher (optimized with the differentiable simulator), and
a lightweight learning-based policy as a student is trained to
imitate the teacher’s behavior and is deployed at inference
time. Specifically, we first build a physics-based differentiable
simulator supporting multi-material coupling to gather ex-
pert demonstrations via gradient-based trajectory optimization.
Next, we train an interactive state estimation network to infer
the position and the geometry of the core based on collected
collision signals. Afterward, a cutting policy is trained to
generate actions based on the core estimation and the knife
state. This policy not only imitates the behavior of the expert
demonstrations but also adaptively adjusts the conservativeness
to retract from the core after the collision. An overview of
the execution is illustrated in Fig. 2. The robot first starts
the cutting process by executing actions based on an initial
estimation from a learned prior. Upon collisions with the core,
the state estimation is immediately updated. To avoid high
energy consumption due to in-place rotation within fiber-rich
flesh, the robot retracts a few steps and then replans the cutting
trajectory using the updated state estimation. In this process,

the system progressively updates the estimated state, leading
to an accurate estimate of the position and geometry of the
invisible core after multiple collision events, which in turn
allows a physically plausible cutting trajectory to cut off most
of the soft material.

In the following sections, we first present our expert demon-
stration process in §III-A, where we develop our differentiable
cutting simulator and perform gradient-based trajectory opti-
mization. We then detail the iterative state estimation in §III-B
and the adaptive cutting policy in §III-C. Finally, we present
a hardware setup that includes a low-cost force sensor for
deploying our policy in real-world scenarios (§III-D).

A. Multi-objective Trajectory Optimization with a Differen-
tiable Simulation Environment

Differentiable cutting simulation environment We build
a cutting simulation environment to support the modeling
of both soft and rigid materials, as well as the coupling
between them. The soft material in our scene, e.g. flesh of
fruit is represented using an elastoplastic continuum model
simulated with MLS-MPM [14], treated by the von Mises
yield criterion. In contrast to FEM [13], MPM-based methods
naturally support arbitrary deformation and topology change.
For rigid bodies in the scene, including the rigid core, the
knife, and the support surface (a chopping board), we represent
them as time-varying signed distance fields (SDFs), converted
from imported external meshes. We model the contact between
soft and rigid materials by computing surface normals of the
SDFs and applying Coulomb friction [48]. Material separation
occurring during the cutting process is handled by MLS-MPM,
which inherently supports modeling sharp and clean split of
material points in the soft material. The simulator is imple-
mented with Taichi, a domain-specific language that supports
auto differentiation. We implemented our computation process
by building an explicit computation graph and keeping track
of all the intermediate variables over time, which allows end-
to-end gradient flow from the loss computation back to the
action input.

Multi-objective trajectory optimization At each step, we



1

En
er

gy
 C

on
su

m
pt

io
n

Steps Simulation

2

3Knife

Particles

Current
Next

1

2

3

Energy Calculation

Fig. 3: Energy Calculation. [Left] Illustration of energy computation
in simulation. Particle position and velocity are changed due to
collision with the knife. The cumulative work from the knife to
each collided particle is considered as the energy consumption of the
agent. [Middle] A plot of energy consumption at each step. [Right]
Visualization of knife poses at some representative steps. Note that
large energy consumption incurs around the rapid rotations in the
trajectory. (e.g., steps 1 and 3).

consider a cutting action parameterized by the knife orientation
θ along the z axis and a vertical displacement δ p⃗ = (δx,δy)
within the x − y plane (see Fig. 2). To further ensure the
smoothness of the cutting trajectory, we impose an additional
constraint on the magnitude of the displacement: ∥δ p⃗∥= 2mm.
Since our differentiable simulator allows gradient-based trajec-
tory optimization, we collect cutting trajectories in the simula-
tor assuming access to all ground truth information, including
the mesh of the rigid core and the position and velocity of
each particle representing the soft material. Trajectories are
optimized using the following objectives:

• Cut mass: one primary goal of a cutting policy is to
maximize the total amount of the soft material being
removed by a cutting trajectory. This objective Lm is
computed by accumulating the mass of all material points
removed from the rigid core at the end of each episode.

• Collision occurrences: an ideal cutting trajectory should
be able to avoid unnecessary collision events during its
course. Our simulator represents both the core and the
knife by time-varying SDFs. The collision between them
is detected by sampling N uniform points on the knife
surface and checking whether they penetrate the core.
In order to make this optimization process differentiable,
we model the discontinuous contact between the knife
and the core in a soft manner, following [17, 54], and
compute a differentiable collision loss for optimization:
Lcol = ∑

N
i=1 ∥max(di + d̂,0)∥k, where di represents the

penetration distance of the i-th sampled point, and d̂ is
an additional safety margin. In practice, we found N = 5,
k = 4, and d̂ = 2cm to be sufficient to produce good
trajectories.

• Energy consumption: in order to produce a natural and
smooth motion trajectory during a cutting process, our
system also optimizes energy consumption. We estimate
the energy loss Le based on the work done by the knife
during its motion at each step, which is computed by
summing the product of the distance traveled and force
experienced by each material point in contact with the

(a)

(b)

0 100 200300Iter 50

Fig. 4: Optimization Process of Cutting Trajectory. As illustrated
in the first column, the cutting trajectory is initialized with a pre-
designed collision-free path. After 300 optimization iterations, the
knife is able to cut off most of the soft materials with optimized
energy consumption.

knife: Le = Σ j
m j∆⃗v j

∆t · ∆p⃗ j, where ∆⃗v j and ∆p⃗ j denote
the change in velocity and position for each particle j,
respectively. In Fig. 3, we illustrate the energy consumption
of each step in an example cutting episode.

During trajectory optimization, we initialize using a pre-
designed and translational collision-free trajectory that tra-
verses down from above the object till touching the support
surface, and optimize the trajectory loss by summing the above
objectives: Ltotal = Lm +ηcolLcol +ηeLe, where ηcol and ηe
are coefficients for balancing different objectives. Examples of
the optimization process are shown in Fig. 4.

B. Interactive State Estimation

The purpose of the state estimation module is to deter-
mine the location and shape of the initially invisible core
using collision signals collected during the cutting process.
As illustrated in Fig. 2, the input is a sparse collision map
within the x − y plane, where each filled pixel represents
a collision point encountered during the trajectory traveled
until the current time step. We employ an 11-layer U-Net
architecture to estimate the 2D mask of the rigid core.

To facilitate offline training, we randomly select k points on
the contour of the training cores to mimic collision signals that
might be received during actual execution. Here k is an integer
uniformly sampled from a uniform distribution with a range
[0, 9]. The model is trained using the ground truth geometry
as supervision and optimized with Binary Cross-Entropy loss.
During the inference phase, a pre-determined threshold Sthr is
used to convert the predicted probability map to a binary core
mask.

C. Adaptive Cutting Policy

The goal of the cutting policy is to generate the cutting
action at each step. The policy network takes the signed
distance field of the estimated core mask, the current knife
pose, and an additional tolerance value τt as input. It pre-
dicts the cutting action at , parameterized by the translational
δ p⃗ = (δx,δy) and rotational movement δθ of the knife.
Tolerance value τt controls the level of the conservativeness
of the action. A lower tolerance value results in the knife



Strain
Gauge

A/D 
Converter

Power Supply

Lid

Knife 
Support

Base

analogue

digit

UPD

(a) Real-world setup (b) Exploded View

Raspberry Pi

Load CellA/D Converter

DC-DC Step Down Module

Lid

Knife Support

BaseUR5

a) Real-world setup (b) Exploded View
Raspberry Pi Zero

Knife

Fig. 5: Hardware. We design and construct a compact cutting tool
equipped with a force sensor. The force is measured by a strain
gauge as an analog electrical signal. The signal is then converted
to a digital signal and transmitted to the robot controller through an
A/D converter and a Raspberry Pi Zero, respectively.

getting closer to the estimated core, thus increasing the risk of
collision. Conversely, a higher tolerance value leads to a more
conservative action, keeping the knife farther from the core to
prevent potential collisions. We initialize the tolerance at each
step as 0. Upon collisions, the robot first retracts the knife
for Rdis steps based on the history of actions, then executes
actions with an increased tolerance value by τ+ for Rdis step,
and then linearly decay the tolerance τ afterwards to produce
a smooth trajectory.

We use the demonstrations {D} collected in the differ-
entiable simulator to train our cutting policy. The tolerance
value of the actions in the demonstration is assumed to be
0, and we use data augmentation to generate training data for
tolerance values τ larger than 0 in the following way: For each
demonstration, Di = [s0,a0,s1,a1, · · · ,sN ,aN ,sN+1], where si
and ai represents the knife pose and action at each step, we
generate another knife trajectory Ŝ = [ŝ0, ŝ1, · · · , ŝN , ŝN+1] by
moving the current knife trajectory away from the core in the
direction of the x-axis by τ . To increase training robustness,
a gaussian noise is added to the action sequence. Finally, the
quadruple (τ,s∗0,ai, ŝi+1), along with the core geometry is used
for training, where s∗0 is calculated analytically using ai and
ŝi+1. The cutting policy is trained with Mean Squared Error
(MSE) loss.

D. Real-world System Setup

We design and build a low-cost, force feedback system for
deploying our method on a real-world UR5 platform. Figure
5 shows an image and the exploded view of our hardware
system. A strain gauge load cell measures the shear force
experienced by the connected knife as an analog signal. This
signal is amplified and converted into digital readings by an
HX711 A/D converter at 80 Hz. The digital measurement of
the shear force is then processed by the Raspberry Pi Zero and
transmitted to the robot controller via Wi-Fi. The entire system
is powered by UR5’s tool I/O power, and all these components
are compactly assembled inside a 3D-printed container. The
load cell and the AD converter are the core components of our
hardware system to achieve real-time force feedback and are
priced at $8 in total1, significantly cheaper than a force-torque
sensor. In practice, it is noteworthy that the cutting friction of

1Amazon link: https://www.amazon.com/gp/product/B08KRV8VYP

4 nodes

(a) Training Distribution (b) Novel Distribution

2 nodes Triangle Rectangle Ellipse

Fig. 6: Generated cores for training and evaluation

Fig. 7: 3D printed cores in real-world evaluation. 8 in-distribution
geometries (gray) and 5 out-of-distribution geometries (yellow).

different soft materials varies greatly; thus, we manually set
the threshold for each material when converting the continuous
force signal into a binary collision signal.

IV. EVALUATION

In this section, we first evaluate the cutting performance
of our proposed method through comparison with various
baselines and variants in simulated environments. We further
validate our approach by conducting experiments on a real-
world setup. Additionally, we conduct ablation studies to
evaluate the contribution of each component of our system
to its overall performance.

A. Policy Evaluation in Simulation

Dataset and Experimental Setup We generate 300 and 100
multi-material objects for training and evaluation, respectively.
Each object comprises a rigid core surrounded by soft material.
The soft material is simulated as elastoplastic material using
the following parameters: λ = 1388.89Pa, µ = 2083.33Pa,
σ = 200Pa, ρ = 103kg/m3, where λ and µ are Lamé parame-
ters, σ the yield stress, and ρ the density. The contour of the
cores used in training is parameterized by a cubic spline with 3
equally spaced nodes, with 3 degrees of freedom in total. The
horizontal coordinate for each node is sampled from a uniform
distribution with range [−0.035m, 0.035m]. We subsequently
concatenate a fixed back contour and extrude this 2D polygon
into a 3D mesh. The 100 cores used in the evaluation are
divided into two sets: 50 cores with the same distribution as the
training cores and 50 out-of-distribution cores, which consist
of 5 categories with 10 cores each: (1) 2 nodes, (2) 4 nodes,
(3) triangle, (4) rectangle, (5) ellipse. Examples of the training
and testing cores are shown in Fig. 6.

Implementation Details For trajectory optimization in the
demonstration collection process described in Sec. III-A, we
use ηcol = 2e4 and ηe = 0.15. We generate one expert tra-
jectory for each core in the training set, where optimizing

https://www.amazon.com/gp/product/B08KRV8VYP


…

…

Time

Completion

Stuck

Stuck

Energy exceeds limit

G
re
ed

y
N
N

N
on

-A
da

pt
iv
e

Ro
bo

N
in
ja

RL …
Jittering & 

conservative

Fig. 8: Evaluation on in-distribution geometries. Each column shows an iteration (continuous execution until a collision). In the 2D view
(left), the ground truth geometry is shown in gray, and the estimation is shown in brown. In both views, the forward trajectory of the knife
is demonstrated in blue, and the retraction trajectories due to collision are visualized in red. The cutting trajectory of [RL] is very jittering
and becomes too conservative after a few collisions. [Greedy] strictly follows the contour of the estimated geometry, leading to exceeding
energy consumption during abrupt rotations. Both [NN] and [Non-Adaptive] can’t complete the cutting task within 10 collisions. [RoboNinja]
is able to iteratively update the estimate of the core after each collision and adaptively adjust the cutting trajectory with optimized energy
consumption.

In-distribution Geometries Out-of-distribution Geometries
Completion↑ Cut Mass↑ Collision↓ Avg Eng↓ Max Eng↓ Completion↑ Cut Mass↑ Collision↓ Avg Eng↓ Max Eng↓

RL 0.600 0.540 0.030 0.380 1.33 0.540 0.534 0.038 0.326 1.270
Greedy 0.560 0.803 0.029 0.625 2.632 0.280 0.724 0.033 0.630 2.621
NN 0.400 0.585 0.045 0.242 1.106 0.300 0.472 0.048 0.233 1.072
Non-Adaptive 0.460 0.595 0.044 0.226 0.857 0.400 0.529 0.048 0.224 0.945
RoboNinja 1.000 0.875 0.028 0.357 0.862 0.880 0.799 0.033 0.342 0.988

TABLE I: Cutting performance on in-distribution and novel geometries.

each trajectory takes 300 gradient-based updates using the
Adam optimizer [21] with a learning rate of 1e−2. Examples
of the optimization process are shown in Fig. 4. The state
estimation network has an input and output size of 256×256.
The classification threshold (Sthr) is set to 0.3. The training
data is generated by randomly sampling 0 to 9 collision points.
In the adaptive cutting policy, the number of retraction steps
after a collision (Rdis) is set to 8, and the tolerance increment
(τ+) is set to 0.005. To achieve a smooth trajectory, the
tolerance value is linearly decayed to 0 within 5 steps after
increasing. Both networks are implemented in PyTorch [37]
and trained using the Adam optimizer with a learning rate of
1e−4 and a weight decay of 1e−6. A comprehensive ablation
study of some critical parameters is presented in Sec. IV-C.

Metrics. We use the following metrics to evaluate the
cutting performance:

• Completion Rate. To measure the completion rate of each
cutting task, we consider an execution as “completed” if
the knife reaches the chopping board and as “failed” if
either the number of collisions exceeds 10 or the energy

loss value for any single step exceeds 3.0, as defined in
Sec III-A. An episode is terminated as soon as it’s con-
sidered “failed”, and all subsequent metrics are evaluated
considering only the action sequence executed before the
termination.

• Cut Mass Ratio. This metric measures the ratio of the re-
moved mass to the total mass of the soft material originally
attached to the rigid core. In case of failed execution, the
cut mass only considers the soft material on the right side
of the cutting trajectory executed till termination.

• Collision Ratio. To account for variations in trajectory
length, we normalize the number of collisions by the length
of each trajectory.

• Avg / Max Energy. We also evaluate the energy consump-
tion averaged over all steps, as well as the maximum
energy consumption incurred at a single step during the
whole trajectory.

Baselines. We compare our proposed system to the follow-
ing alternative approaches:

• RL: A model-free reinforcement learning policy operating



Greedy NN Non-Adaptive RoboNinja
2 

no
de

s
4 

no
de

s
Tr

ia
ng

le
Re

ct
an

gl
e

El
lip

se
RLCore

Fig. 9: Evaluation on out-of-distribution geometries. The cores sampled from each category are shown in the first column, followed by
trajectories produced by each method. Both [NN] and [Non-Adaptive] may get stuck, especially when the geometries (e.g., Triangle and
Rectangle) are significantly different from the training set. Both [Greedy] and [RoboNinja] have a strong generalization ability to handle
various novel geometries. However, [RoboNinja] consumes much less energy than [Greedy], leading to smoother and more natural cutting
trajectories.

within the same observation and action space, as well
as using the same collision-retraction mechanism as our
method. This policy is trained using Soft Actor-Critic
(SAC) [12], using a dense reward function given by
R = Lt

m −Lt−1
m − η(Lt

e −Lt−1
e ), where Lt

m and Lt
e are

the cumulative cut mass and energy consumption till step
t, respectively. Upon collision, the cumulative cut mass
will decrease due to automatic retraction, resulting in a
negative reward, which naturally functions as a collision
penalty. The goal of the RL algorithm is to maximize the
cumulative reward, which is equivalent to maximizing the
total cut mass and meanwhile minimizing the total energy
consumption in our setting. Through a grid search over the
energy weight η , we found the best value to be η = 0.05.
We train the policy with 3 random seeds and report the
best performance.

• NN. This approach uses a nearest neighbor cutting policy
in place of our adaptive cutting policy. At each step, it
retrieves the most similar core from the training set based
on the current state estimation result, and executes the clos-
est action step selected from the associated demonstration
trajectory based on the current knife pose.

• Greedy. This approach adopts a heuristic policy instead
of our adaptive cutting policy. It determines the movement
direction and knife rotation at each step in a greedy manner
with the aim of maximizing the cut mass while avoiding
collision with the estimated core. The primary difference
between this method and ours is that it does not factor in

energy consumption.
• Non-Adaptive. This is a non-adaptive variant of our system

which uses a fixed tolerance value of 0.

B. Results and Analysis

Qualitative results are summarized in Fig. 8 and Fig. 9.
Quantitative evaluations are reported in Tab. I.

Comparison to model-free RL. The cutting task is success-
fully completed by [RL] in over 50% of the cases. However,
the resulting cut mass is significantly inferior compared to that
of [RoboNinja]. As demonstrated in Fig. 8 and 9, the conserva-
tive cutting trajectories of [RL] maintain a significant distance
from the bottom part of the core. In contrast, [RoboNinja]
leverages explicit core estimation to follow the contour of the
core, resulting in a significantly higher cut mass. Moreover,
the cutting trajectories of [RL] display a noticeable level of
jitter, deviating from ideal human-like behavior. Additionally,
the knife could get stuck occasionally due to the lack of an
explicit adaptive mechanism.

Comparison to Greedy. Compared to [Greedy], [RoboN-
inja] with a learning-based cutting policy achieves around
+44% improvement in terms of completion rate. While
[Greedy] is able to strictly follow the contour of the estimated
geometry and maximize the cut mass, the policy does not
consider energy consumption. This may result in physically
implausible actions, such as abrupt knife rotations. In contrast,
our cutting policy, which imitates trajectories optimized with
the energy consumption objective, is able to sacrifice a small
amount of cut mass ratio in exchange for much less energy



Energy 
Weight 

0.05 0.15 0.6

(a)

(b)

55.6    0.983 39.4    0.968 33.5    0.938 33.2    0.756

54.9    0.976 37.5    0.966 33.9    0.924 31.9    0.881
Energy   Cut Mass Energy   Cut Mass Energy   Cut Mass Energy   Cut Mass

0

Fig. 10: Trajectories optimized with different weights of energy
loss. Cumulative energy consumption and the cut mass ratio are
shown in red and blue, respectively. Without any energy penalty, the
trajectory strictly follows the contour of the core and cuts off most
of the soft material. However, the knife has to rotate rapidly to avoid
collision with the core, which results in large energy consumption.
In contrast, a large energy penalty leads to a conservative policy
where the rotation of the knife is less noticeable. An appropriate
energy weight achieves a balance between energy consumption and
cut mass. The one used in our final system [0.15] is able to cut off
over 90% with similar energy consumption as [0.6].

Energy Weight (ηe) 0 0.05 0.15 0.6

Cut Mass Ratio ↑ 0.977 0.955 0.923 0.854
Energy Consumption ↓ 53.08 36.20 32.96 30.79

TABLE II: Effects of different energy weights

consumption. This is evident in the energy consumption values
in Tab. II, where the average and maximum energy consump-
tion of [RoboNinja] is 40% and 60% less than [Greedy].

Comparison to NN. [NN] directly leverages the action from
the demonstration, which reduces the chance of exceeding
the energy limit. However, the performance of [NN] relies
heavily on the retrieved nearest neighbor trajectory, making
it susceptible to any potential errors in the state estimation
result. As shown in Fig. 8, in [NN]’s last step, a slight
mismatch between the actual core and the retrieved one results
in a collision. Afterward, if the state estimation doesn’t have
enough change after the collision, the policy will be stuck
since the retrieved nearest neighbor remains the same. In
contrast, [RoboNinja] is able to adapt the cutting policy to
be more conservative when the state estimation is inaccurate
and thereby avoiding being stuck due to collision.

Effect of the adaptive cutting policy. As shown in Fig.
8, [Non-Adaptive] behaves similarly to [NN] and suffers from
getting stuck at the same location. Thanks to the adaptability of
[RoboNinja], the policy successfully bypasses the peaks of the
core with a higher tolerance, which improves the completion
rate by over +54%.

Generalization to novel geometries. Despite being trained
on a single type of core geometry, our policy is able to handle
cores with novel geometries thanks to its adaptive cutting
policy. Triangles and rectangles are particularly challenging, as
they contain straight edges and sharp corners not present in the
training data. The qualitative comparison in Fig. 9 shows that
other baselines may fail due to exceeding energy consumption
([Greedy]) or getting stuck at one collision location ([RL],

State Estimation 
Threshold (Sthr)

Number of Collision

Cu
t M

as
s 

Ra
tio

Retract
Distance (Rdist)

Tolerance 
Increment (     )

1

0

0.15

0.5

4

0.009

18
0.0015

(a) Ablation on different hyperparameters (b) State estimation using different threshold

(c) Cutting with different tolerance

0

0.02

Our final system

𝜏+

Fig. 11: Ablations on algorithm parameters. [Left] summarizes the
effects of several critical hyperparameters in the algorithm. Detailed
discussion about their effects and trade-off can be found in Sec. IV-C.
[Right-Up] State estimation results with different thresholds. [Right-
Bottom] Cutting trajectories with different tolerance increments.

In-distribution Geometries Out-of-distribution Geometries
COMP↑ Cut M↑ COLL↓ COMP↑ Cut M↑ COLL↓

Non-Adaptive 0.125 0.489 0.049 0.200 0.438 0.048
RoboNinja 1.000 0.877 0.027 1.000 0.824 0.028

TABLE III: Cutting performance of real-world evaluation. Here
COMP, Cut M, and COLL represent Completion Rate, Cut Mass
Ratio, and Collision Ratio respectively.

N
on

-A
da

pt
iv
e

Ro
bo

N
in
ja

Fig. 12: Real-world comparison. [Non-Adaptive] has the drawback
of getting stuck even when the state estimation is very close. In
contrast, [RoboNinja] leverages an adaptive cutting policy that allows
it to bypass the peak and successfully reach the bottom.

[NN], and [Non-Adaptive]). In contrast, [RoboNinja] can
iteratively update state estimation after the collision and adjust
the cutting policy to avoid getting stuck, achieving a balance
between energy consumption and the cut mass.

C. Ablation Studies

The following experiments study the effects of a few critical
parameters and design choices. The experimental results are
summarized in Fig. 10 and Fig. 11.

Energy weight (ηe) First, we want to validate the effect
of energy penalty on trajectory optimizations. From the qual-
itative results in Fig. 10, we can observe that the trajectories
optimized with no energy penalty strictly follow the contour
of the core, but the knife rotation changes frequently to avoid
collisions between the knife spine and the core. In contrast,
a large energy weight derives an over-conservative cutting



Av
oc

ad
o

Time
M

an
go

Final state
1st cut

1st cut

2nd cut

2nd cut

3rd cut

3rd cut

Fig. 13: Evaluation on real fruits. The left part illustrates the cutting execution on both an avocado and a mango, with an initial rotation
angle of 0°, -45°, and 45°, respectively. The last column displays the final state after one cut and all three cuts.

4 
no

de
s

Tr
ia

ng
le

in
-d

is
tr

ib
ut

io
n

Time

done

Final state

Fig. 14: Realworld evaluation on 3d printed cores and kinetic sand. Our simulation-trained policy demonstrates strong generalization
capabilities, effectively handling both in-distribution and out-of-distribution cores in a real-world setting. With only a few collisions, it is
able to accurately estimate the core geometry and cut off the majority of the sand with a smooth cutting trajectory.

behavior. An appropriate energy weight should achieve a good
balance between energy consumption and cut mass. The one
used in our final system (0.15) is able to cut off over 90%
of the soft material while consuming a comparable amount of
energy when compared to the one with a large energy weight.

State estimation threshold (Sthr) We evaluate our policy
with different state estimation thresholds ranging from 0.15
to 0.5. Fig. 11 (b) indicates that the estimation results are
consistent on the area to the left of the core boundary estimated
from collision signals. However, the variation in the threshold
value leads to a visible difference in the unexplored area. A
small threshold suggests a larger estimated geometry, resulting
in a more conservative policy with both fewer collisions and
less cut mass (blue line in Fig. 11 (a)). We choose 0.3 in our
system to achieve a balance between the number of collisions

and the cut mass ratio.
Tolerance increment (τ+) Fig. 11 (c) demonstrates the

cutting trajectories on the same core with different tolerance
values. An aggressive cutting policy with a small tolerance
will increase the cut mass but also increase the chance of
collisions. As to the tolerance adaptation strategy, the green
line in Fig. 11 (a) shows that a large tolerance increment value
τ+ results in a conservative policy with fewer collisions and
a smaller cut mass.

Retract distance (Rdis ) Another important design choice is
the retract distance, which determines the number of retraction
steps after a collision. The yellow line in Fig. 11 (a) indicates
different trends. From 18 to 8, the cut mass ratio increases
significantly with a small increase in the number of collisions,
but such benefits no longer exist afterward. Therefore, 8 is



selected as the retract distance in the final system.

D. Evaluation on a Real-world Setup

We directly evaluate the trained model on a real-world
platform, where a UR5 robot is equipped with a knife and
a force sensor described in Sec. III-D.

3D printed cores. In Fig. 7, we 3D print 8 in-distribution
and 5 out-of-distribution geometries from the test set. As
for the soft material, we use Kinect Sand as a proxy be-
cause of its stable physics property. Although a 1-DoF force
sensor is sufficient for collision detection, it cannot reflect
the energy consumption caused by abrupt rotations. Hence,
in our evaluations, we only consider the first three metrics,
which are completion rate, cut mass ratio, and collision ratio.
For the sake of safety, we exclude [Greedy] from real-world
evaluations and select [Non-Adaptive] for comparison. The
termination criteria for the real-world evaluation are reaching
the bottom (completed) or more than 10 collisions (failed).
Following the same criteria as in simulation, if the execution
is failed, the soft material to the right of the knife’s trajectory
is considered to be cut off. The quantitative results in Tab.
III and qualitative comparison in Fig. 12 show that [Non-
Adaptive] gets stuck in most cases. In contrast, [RoboNinja]
is able to bypass the core after a few collisions and complete
all test cases. The more detailed qualitative results in Fig. 14
demonstrate that [RoboNinja] is able to accurately estimate
core geometry with sparse collision signals only, and cut the
soft part off the cores with not only in-distribution but also
out-of-distribution geometries in real-world scenarios.

Fruits. We then evaluate our model on real fruits, including
avocados, mangos, and plums. To better resemble real-world
scenarios, we execute the same policy multiple times with
different initial rotation angles about the y-axis to cut off
more soft material from different directions. Additionally, we
augment our vertical cutting trajectory with an additional
horizontal and repetitive back-and-forth slicing primitive to
effectively cut through fiber-rich material, such as mango2 and
plum skin. Qualitative results on an avocado and a mango
are shown in Fig. 13, demonstrating that our model trained
with procedurally generated geometries is able to generalize to
various fruit cores in the real world. Additionally, the ability
to extend the policy allows it to cut off soft material from
different directions, making it more practical in the real world.

Meat. We also evaluate our cutting policy on real bone-in
meat, specifically, oxtail. In order to resemble real-world situ-
ations more realistically, we employ a bimanual setup, where
one arm with a parallel-jaw gripper (WSG50) holds the bone
and the other arm performs the cutting action. As raw meat is
difficult to cut even with the bask-and-forth slicing primitive
due to the high collagen content inside tendons, we choose
to use cooked meat in this experiment. Qualitative results in
Fig. 15 demonstrate RoboNinja’s strong generalization ability

2Note that since the force required to create the initial opening on the
mango skin exceeds the force limit of our robot, we had to manually remove
a small piece of skin at the top.

Zoom-inBimanual Setup

Time

Fig. 15: Evaluation on real meat. We deploy our cutting policy on
a bimanual setup, with one arm using a parallel-jaw gripper to hold
the bone and the other arm using a knife to cut the meat. The cutting
trajectory and core estimation are shown at the bottom.

in meat-cutting scenarios with novel bone geometry and soft
material property.

E. Limitations and Potential Improvements

There are several limitations and potential improvements of
our system: (a) The knife may exhibit visible deformations
(i.e., bending) in real-world scenarios, causing deviations in
behavior compared to simulation and disrupting the accuracy
of state estimation due to misleading collision positions. This
could be addressed by incorporating more accurate knife
modeling in our simulator. (b) In this work, we consider
the scenario where the object being cut is secured using an
external fixture, and our primary objective is to optimize the
trajectory of the cutting tool. In practice, cutting is a bimanual
problem, which typically involves coordination between both
arms, one to hold and reorient the object and the other to
execute the cutting. In the meat-cutting scenario, we attempt
to employ such a bimanual setup; however, this setup uses
one arm to fix the meat bone and does not fully consider
the coordination required between both arms. In addition,
human counterparts use a dexterous hand with a soft exterior
to firmly hold the object without damaging it, rather than a
rigid gripper. Developing such hardware for a dual-arm robotic
system, along with the coordinated control policies to perform
cutting more efficiently and safely is a promising direction.

V. CONCLUSION

We introduce RoboNinja, a robotic system for cutting multi-
material objects. The system utilizes demonstrations collected
in our newly developed differentiable simulator to train an iter-
ative state estimator and an adaptive cutting policy. It enables
the robot to cut soft material off the rigid core while optimizing
for both collision occurrences and energy consumption. We
also present a low-cost real-world cutting system with real-
time force feedback and collision detection, which is used
to testify our proposed method on a real robotic setup. Our
experiments show that our method is able to generalize well
to novel core geometries and even real fruits. We hope our



experimental findings and the newly developed simulator could
inspire future work on robot learning involving interactions
with multi-material objects.

ACKNOWLEDGEMENT

We would like to thank Huy Ha, Zeyi Liu, and Mandi Zhao
for their helpful feedback and fruitful discussions. This work
was supported in part by NSF Awards 2037101, 2132519,
2037101, and Toyota Research Institute. Dr. Gan was sup-
ported by the DARPA MCS program and gift funding from
MERL, Cisco, and Amazon. We would like to thank Google
for the UR5 robot hardware. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

REFERENCES

[1] Peter K Allen and Paul Michelman. Acquisition and
interpretation of 3-d sensor data from touch. 1990. 2

[2] P Areias and Timon Rabczuk. Steiner-point free edge
cutting of tetrahedral meshes with applications in frac-
ture. Finite Elements in Analysis and Design, 132:27–41,
2017. 2

[3] Iago Berndt, Rafael Torchelsen, and Anderson Maciel.
Efficient surgical cutting with position-based dynamics.
IEEE computer graphics and applications, 37(3):24–31,
2017. 2

[4] Alexander Bierbaum, Ilya Gubarev, and Rüdiger Dill-
mann. Robust shape recovery for sparse contact location
and normal data from haptic exploration. In 2008
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3200–3205. IEEE, 2008. 2

[5] Jeannette Bohg, Karol Hausman, Bharath Sankaran,
Oliver Brock, Danica Kragic, Stefan Schaal, and Gau-
rav S Sukhatme. Interactive perception: Leveraging
action in perception and perception in action. IEEE
Transactions on Robotics, 33(6):1273–1291, 2017. 2

[6] THC Childs. Friction modelling in metal cutting. Wear,
260(3):310–318, 2006. 2

[7] Vivian Chu, Ian McMahon, Lorenzo Riano, Craig G Mc-
Donald, Qin He, Jorge Martinez Perez-Tejada, Michael
Arrigo, Trevor Darrell, and Katherine J Kuchenbecker.
Robotic learning of haptic adjectives through physical
interaction. Robotics and Autonomous Systems, 63:279–
292, 2015. 2

[8] Heather Culbertson, Juliette Unwin, and Katherine J
Kuchenbecker. Modeling and rendering realistic textures
from unconstrained tool-surface interactions. IEEE trans-
actions on haptics, 7(3):381–393, 2014. 2

[9] Simon Duenser, Roi Poranne, Bernhard Thomaszewski,
and Stelian Coros. Robocut: Hot-wire cutting with robot-
controlled flexible rods. ACM Transactions on Graphics
(TOG), 39(4):98–1, 2020. 2

[10] Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song.
Act the part: Learning interaction strategies for articu-
lated object part discovery. ICCV, 2021. 2

[11] Alan Arnold Griffith. Vi. the phenomena of rupture
and flow in solids. Philosophical transactions of the
royal society of london. Series A, containing papers of a
mathematical or physical character, 221(582-593):163–
198, 1921. 2

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018. 7

[13] Eric Heiden, Miles Macklin, Yashraj S Narang, Dieter
Fox, Animesh Garg, and Fabio Ramos. DiSECt: A Dif-
ferentiable Simulation Engine for Autonomous Robotic
Cutting. In Proceedings of Robotics: Science and Sys-
tems, Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.
067. 1, 2, 3

[14] Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin
Zhu, Andre Pradhana, and Chenfanfu Jiang. A moving
least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACM
Transactions on Graphics (TOG), 37(4):1–14, 2018. 2,
3

[15] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun,
Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand.
Difftaichi: Differentiable programming for physical sim-
ulation. arXiv preprint arXiv:1910.00935, 2019. 2

[16] Yuanming Hu, Jiancheng Liu, Andrew Spielberg,
Joshua B Tenenbaum, William T Freeman, Jiajun Wu,
Daniela Rus, and Wojciech Matusik. Chainqueen: A real-
time differentiable physical simulator for soft robotics. In
2019 International conference on robotics and automa-
tion (ICRA), pages 6265–6271. IEEE, 2019. 2

[17] Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou,
Hao Su, Joshua B Tenenbaum, and Chuang Gan. Plas-
ticinelab: A soft-body manipulation benchmark with dif-
ferentiable physics. arXiv preprint arXiv:2104.03311,
2021. 2, 4

[18] Lenka Jeřábková and Torsten Kuhlen. Stable cutting of
deformable objects in virtual environments using xfem.
IEEE computer graphics and applications, 29(2):61–71,
2009. 2

[19] Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:
Building digital twins of articulated objects from inter-
action. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5616–
5626, 2022. 2

[20] Jacqueline Kenney, Thomas Buckley, and Oliver Brock.
Interactive segmentation for manipulation in unstructured
environments. In 2009 IEEE International Conference on
Robotics and Automation, pages 1377–1382. IEEE, 2009.
2

[21] Diederick P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015. 6

[22] Dan Koschier, Sebastian Lipponer, and Jan Bender.
Adaptive tetrahedral meshes for brittle fracture simula-



tion. In Symposium on Computer Animation, pages 57–
66, 2014. 2

[23] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenen-
baum, and Antonio Torralba. Learning particle dynamics
for manipulating rigid bodies, deformable objects, and
fluids. arXiv preprint arXiv:1810.01566, 2018. 2

[24] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenen-
baum, Antonio Torralba, and Russ Tedrake. Propagation
networks for model-based control under partial observa-
tion. In 2019 International Conference on Robotics and
Automation (ICRA), pages 1205–1211. IEEE, 2019. 2

[25] Xingyu Lin, Zhiao Huang, Yunzhu Li, Joshua B. Tenen-
baum, David Held, and Chuang Gan. Diffskill: Skill
abstraction from differentiable physics for deformable
object manipulations with tools. International Confer-
ence on Learning Representation (ICLR), 2022. 2

[26] Xingyu Lin, Carl Qi, Yunchu Zhang, Zhiao Huang, Ka-
terina Fragkiadaki, Yunzhu Li, Chuang Gan, and David
Held. Planning with spatial-temporal abstraction from
point clouds for deformable object manipulation. In 6th
Annual Conference on Robot Learning, 2022. 2

[27] Huaping Liu, Yupei Wu, Fuchun Sun, and Di Guo.
Recent progress on tactile object recognition. Inter-
national Journal of Advanced Robotic Systems, 14(4):
1729881417717056, 2017. 2

[28] Philip Long, Amine Moughlbay, Wisama Khalil, and
Philippe Martinet. Robotic meat cutting. In Ict-pamm
workshop, 2013. 1, 2

[29] Yujie Lu, Jianren Wang, and Vikash Kumar. Curiosity
driven self-supervised tactile exploration of unknown
objects. arXiv preprint arXiv:2204.00035, 2022. 2

[30] Jun Lv, Qiaojun Yu, Lin Shao, Wenhai Liu, Wenqiang
Xu, and Cewu Lu. Sagci-system: Towards sample-
efficient, generalizable, compositional, and incremental
robot learning. In 2022 International Conference on
Robotics and Automation (ICRA), pages 98–105. IEEE,
2022. 2

[31] Takamitsu Matsubara and Kotaro Shibata. Active tactile
exploration with uncertainty and travel cost for fast
shape estimation of unknown objects. Robotics and
Autonomous Systems, 91:314–326, 2017. 2

[32] M Eugene Merchant. Mechanics of the metal cutting
process. i. orthogonal cutting and a type 2 chip. Journal
of applied physics, 16(5):267–275, 1945. 2

[33] O Miller, LB Freund, and A Needleman. Modeling and
simulation of dynamic fragmentation in brittle materials.
International Journal of Fracture, 96(2):101–125, 1999.
2

[34] Xiaoqian Mu, Yuechuan Xue, and Yan-Bin Jia. Robotic
cutting: Mechanics and control of knife motion. In 2019
International Conference on Robotics and Automation
(ICRA), pages 3066–3072. IEEE, 2019. 1, 2

[35] Neil Nie, Samir Yitzhak Gadre, Kiana Ehsani, and Shu-
ran Song. Structure from action: Learning interactions
for articulated object 3d structure discovery. arxiv, 2022.
2

[36] Junjun Pan, Junxuan Bai, Xin Zhao, Aimin Hao, and
Hong Qin. Real-time haptic manipulation and cutting
of hybrid soft tissue models by extended position-based
dynamics. Computer Animation and Virtual Worlds, 26
(3-4):321–335, 2015. 2

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning
library. Advances in neural information processing
systems, 32, 2019. 6

[38] Christoph J Paulus, Lionel Untereiner, Hadrien Courte-
cuisse, Stéphane Cotin, and David Cazier. Virtual cutting
of deformable objects based on efficient topological
operations. The Visual Computer, 31(6):831–841, 2015.
2

[39] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez,
and Peter W Battaglia. Learning mesh-based simulation
with graph networks. arXiv preprint arXiv:2010.03409,
2020. 2

[40] Carl Qi, Xingyu Lin, and David Held. Learning closed-
loop dough manipulation using a differentiable reset
module. IEEE Robotics and Automation Letters, pages
1–8, 2022. doi: 10.1109/LRA.2022.3191239. 2

[41] Amrita Sawhney, Steven Lee, Kevin Zhang, Manuela
Veloso, and Oliver Kroemer. Playing with food: Learning
food item representations through interactive exploration.
In International Symposium on Experimental Robotics,
pages 309–322. Springer, 2021. 2

[42] David Schiebener, Aleš Ude, Jun Morimoto, Tamim As-
four, and Rüdiger Dillmann. Segmentation and learning
of unknown objects through physical interaction. In 2011
11th IEEE-RAS International Conference on Humanoid
Robots, pages 500–506. IEEE, 2011. 2

[43] David Schiebener, Jun Morimoto, Tamim Asfour, and
Aleš Ude. Integrating visual perception and manipula-
tion for autonomous learning of object representations.
Adaptive Behavior, 21(5):328–345, 2013. 2

[44] Alexander Schmitz, Yusuke Bansho, Kuniaki Noda, Hi-
royasu Iwata, Tetsuya Ogata, and Shigeki Sugano. Tactile
object recognition using deep learning and dropout. In
2014 IEEE-RAS International Conference on Humanoid
Robots, pages 1044–1050. IEEE, 2014. 2

[45] Alexander Schneider, Jürgen Sturm, Cyrill Stachniss,
Marco Reisert, Hans Burkhardt, and Wolfram Burgard.
Object identification with tactile sensors using bag-of-
features. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 243–248. IEEE,
2009. 2

[46] Mohit Sharma, Kevin Zhang, and Oliver Kroemer. Learn-
ing semantic embedding spaces for slicing vegetables.
arXiv preprint arXiv:1904.00303, 2019. 1, 2

[47] Asbjørn Søndergaard, Jelle Feringa, Toke Nørbjerg,
Kasper Steenstrup, David Brander, Jens Graversen, Steen
Markvorsen, Andreas Bærentzen, Kiril Petkov, Jesper
Hattel, et al. Robotic hot-blade cutting. In Robotic



fabrication in architecture, art and design 2016, pages
150–164. Springer, 2016. 2

[48] Alexey Stomakhin, Craig Schroeder, Lawrence Chai,
Joseph Teran, and Andrew Selle. A material point
method for snow simulation. ACM Transactions on
Graphics (TOG), 32(4):1–10, 2013. 3

[49] Stephanie Wang, Mengyuan Ding, Theodore F Gast, Leyi
Zhu, Steven Gagniere, Chenfanfu Jiang, and Joseph M
Teran. Simulation and visualization of ductile fracture
with the material point method. Proceedings of the ACM
on Computer Graphics and Interactive Techniques, 2(2):
1–20, 2019. 2

[50] Tsun-Hsuan Wang, Andrew Everett Spielberg, Pingchuan
Ma, Zhou Xian, Hao Zhang, Joshua B. Tenenbaum, and
Chuang Gan. Softzoo: A soft robot co-design benchmark
for locomotion in diverse environments. In International
Conference on Learning Representations, 2023. 2

[51] Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu,
Ming Gao, and Chenfanfu Jiang. Cd-mpm: continuum
damage material point methods for dynamic fracture
animation. ACM Transactions on Graphics (TOG), 38
(4):1–15, 2019. 2

[52] Joshuah Wolper, Yunuo Chen, Minchen Li, Yu Fang,
Ziyin Qu, Jiecong Lu, Meggie Cheng, and Chenfanfu
Jiang. Anisompm: Animating anisotropic damage me-
chanics. ACM Trans. Graph., 39(4), 2020. 2

[53] Jun Wu, Rüdiger Westermann, and Christian Dick. A sur-
vey of physically based simulation of cuts in deformable
bodies. In Computer Graphics Forum, volume 34, pages
161–187. Wiley Online Library, 2015. 2

[54] Zhou Xian, Bo Zhu, Zhenjia Xu, Hsiao-Yu Tung, An-
tonio Torralba, Katerina Fragkiadaki, and Chuang Gan.
Fluidlab: A differentiable environment for benchmarking
complex fluid manipulation. In International Conference
on Learning Representations, 2023. 2, 4

[55] Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio
Ramos, Wojciech Matusik, Animesh Garg, and Miles
Macklin. Accelerated policy learning with parallel dif-
ferentiable simulation. arXiv preprint arXiv:2204.07137,
2022. 2

[56] Jingxi Xu, Han Lin, Shuran Song, and Matei Ciocar-
lie. Tandem3d: Active tactile exploration for 3d object
recognition. arXiv preprint arXiv:2209.08772, 2022. 2

[57] Jingxi Xu, Shuran Song, and Matei Ciocarlie. Tandem:
Learning joint exploration and decision making with
tactile sensors. IEEE Robotics and Automation Letters,
2022. 2

[58] Zhenjia Xu, Zhanpeng He, Jiajun Wu, and Shuran Song.
Learning 3d dynamic scene representations for robot
manipulation. In Conference on Robot Learning (CoRL),
2020. 2

[59] Kevin Zhang, Mohit Sharma, Manuela Veloso, and Oliver
Kroemer. Leveraging multimodal haptic sensory data for
robust cutting. In 2019 IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids), pages
409–416. IEEE, 2019. 2

[60] Debao Zhou, Mark R Claffee, Kok-Meng Lee, and
Gary V McMurray. Cutting,” by pressing and slicing”,
applied to robotic cutting bio-materials. i. modeling of
stress distribution. In Proceedings 2006 IEEE Interna-
tional Conference on Robotics and Automation, 2006.
ICRA 2006., pages 2896–2901. IEEE, 2006. 1, 2

[61] Debao Zhou, Mark R Claffee, Kok-Meng Lee, and
Gary V McMurray. Cutting,’by pressing and slicing’,
applied to the robotic cut of bio-materials. ii. force during
slicing and pressing cuts. In Proceedings 2006 IEEE
International Conference on Robotics and Automation,
2006. ICRA 2006., pages 2256–2261. IEEE, 2006. 1, 2

[62] Fenghua Zhou, Jean-Francois Molinari, and Tadashi Sh-
ioya. A rate-dependent cohesive model for simulating
dynamic crack propagation in brittle materials. Engi-
neering fracture mechanics, 72(9):1383–1410, 2005. 2


	Introduction
	Related Work
	Differentiable Physics Simulation for Policy Learning
	Simulation Environments for Cutting
	Interactive Perception
	Robotic Cutting

	Method
	Multi-objective Trajectory Optimization with a Differentiable Simulation Environment
	Interactive State Estimation
	Adaptive Cutting Policy
	Real-world System Setup

	Evaluation
	Policy Evaluation in Simulation
	Results and Analysis
	Ablation Studies 
	Evaluation on a Real-world Setup
	Limitations and Potential Improvements

	Conclusion

