
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Convex Geometric Motion Planning on Lie Groups
via Moment Relaxation

Sangli Teng, Ashkan Jasour, Ram Vasudevan, Maani Ghaffari

Abstract—This paper reports a novel result: with proper
robot models on matrix Lie groups, one can formulate the
kinodynamic motion planning problem for rigid body systems
as exact polynomial optimization problems that can be relaxed
as semidefinite programming (SDP). Due to the nonlinear rigid
body dynamics, the motion planning problem for rigid body
systems is nonconvex. Existing global optimization-based methods
do not properly deal with the configuration space of the 3D
rigid body; thus, they do not scale well to long-horizon planning
problems. We use Lie groups as the configuration space in our
formulation and apply the variational integrator to formulate
the forced rigid body systems as quadratic polynomials. Then
we leverage Lasserre’s hierarchy to obtain the globally optimal
solution via SDP. By constructing the motion planning problem
in a sparse manner, the results show that the proposed algorithm
has linear complexity with respect to the planning horizon. This
paper demonstrates the proposed method can provide rank-one
optimal solutions at relaxation order two for most of the testing
cases of 1) 3D drone landing using the full dynamics model and
2) inverse kinematics for serial manipulators.

I. INTRODUCTION

The kinodynamic motion planning [1], or trajectory opti-
mization [2], which aims to synthesize robot motion subject
to kinematics, dynamics, and input constraints, is fundamental
in robotics research. A typical formulation of kinodynamic
motion planning is a constrained optimization problem, usu-
ally nonconvex due to the nonlinear dynamics and obstacle
configurations. Despite the nonconvexity of these problems,
the optimization methods that exploit the local gradient infor-
mation have been successfully applied to find local solutions.
Unless problem-specific convexification is accessible [3], there
is generally no guarantee on the global optimality

Indeed, the complexity of motion planning problems with
arbitrary obstacles is high [4–6] that one should not expect an
efficient algorithm for general problems. For motion planning
problems in moderate size, global optimization techniques,
such as mixed integer programming [7–13] and polynomial op-
timization [14–16], have been applied to obtain or approximate
the globally optimal solutions. However, these methods do not
consider robot dynamics or apply approximations that would
sacrifice the modeling fidelity. For motion planning using full
robot dynamics, such engineering compromise would limit the
potential of the robots.

Thus, the natural question is how can we obtain the globally
optimal solution of motion planning problem at the dynamics
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Fig. 1: The proposed geometric motion planning framework on Lie group.
The motion planning problem is usually nonconvex due to the nonlinear
dynamics. By utilizing robot models on Lie group and variation-based dis-
cretization, the motion planning problem can be converted to exact quadratic
polynomial optimization problem (POP). Via the moment relaxation method,
i.e., Lasserre’s hierarchy, the POP can be solved by a sequence of SDPs.
We show that in our case, the second-order relaxation successfully provides
certified globally optimal solutions for most of the testing cases despite the
numerical challenges.

level using exact models? The main challenges are the scal-
ability of the global optimization algorithm and the absence
of proper robot formulations. For the former problem, recent
progress in the Polynomial Optimization Problem (POP), i.e.,
Lasserre’s hierarchy [17, 18], enables one to compute globally
optimal solutions of POPs via a sequence of Semidefinite
Programming (SDP) that can be solved in polynomial time.
For the latter problem, we introduce the Lie group-based
formulation for robots composed of rigid bodies.

In this paper, we show that bridging the geometric robotics
formulation and Lasserre’s hierarchy leads to certifiably op-
timal solutions for motion planning problems using the full
dynamics model. We exploit the property of the configuration
space of rigid body dynamics and apply variational integrator
[19] on Lie groups to generate an exact polynomial formu-
lation. Then we formulate the kinodynamic motion planning
problem as a sparse POP with only quadratic polynomials.
We further leverage Lasserre’s hierarchy to approximate the
globally optimal solutions. The main contributions of this
paper are summarized as follows.

1) Derivation of robotics dynamics model on matrix Lie
groups using the variational integrator in discrete time.
We show that the forced rigid body system can be
represented by exact quadratic polynomials.

2) Formulation of kinodynamic motion planning problem
as a low-order and sparse POP that can be solved via
SDP at finite relaxation order. We show that the proposed
formulation has linear time complexity with respect to the
planning horizon.



3) Evaluations of the proposed algorithms on 3D inverse
kinematics for serial manipulators and trajectory planning
for 3D drone using full dynamics model. We show
that the second-order moment relaxations provide rank-
one globally optimal solutions or provide infeasibility
certificates for most of the testing cases modulo some
numerical issues of the SDP solver.

II. RELATED WORK

A. Sampling-based motion planning

The sampling-based motion planning algorithm has gained
success in recent decades [20–26]. These sampling-based
methods are complete (or, resp. optimal), in the sense that the
probability of finding the solution (or, resp. finding the optimal
solution) converges to one when the sampling is enough
[23, 27]. However, as the completeness of these methods is
only in the sense of probability, there is no guarantee of the
runtime, and the algorithm may run forever if the solution does
not exist. Due to the sampling nature of these algorithms, the
solutions are chattering that need refining by local solvers.

B. Global optimization-based motion planning

The mixed integer programming has been applied to the
collision avoidance or path planning problem for aerial [7], or
ground vehicles [8, 9], and legged robot [10–12]. The work
of [7–9] aims at path planning that omits the dynamics of
the robots. The work of [10–12] applied simplified dynamics
models for legged robot step planning. These methods are
based on simplified models, specifically for legged robots, and
do not consider the 3D kinematics or dynamics constraints.
Research [13] represents the SO(3) surface by the convex hull
in partitioned intervals, thus making the Inverse Kinematics
(IK) problem a mixed-integer convex optimization. Then the
branch-and-bound process [28] is applied to solve the mixed-
integer convex optimization. High accuracy approximation of
the SO(3) would require more intervals that dramatically in-
crease the runtime. These combinatorial methods are complete
and capable of obtaining the globally optimal solutions [27],
while the cost is the exponential time complexity and omission
of the geometry of the configuration space. The combinatorial
methods cannot scale well for long-horizon planning and
complex rigid body configurations.

Piece-wise linear kinematics model and Lasserre’s hierarchy
are applied in [14] to plan paths with collisions defined
by time-varying polynomial inequalities. With the increase
of moment relaxation order, research [14] could asymptoti-
cally find the collision-free path when a moving obstacle is
presented. Research [29] extends such Lasserre’s hierarchy-
based method to develop risk-bounded trajectory planners in
the presence of uncertain time-varying obstacles using the
notion of risk contours [30]. Moment relaxation methods have
been applied to optimal control of hybrid systems [31] in
continuous time. Via a sequence of SDPs, the control input
and state monotonically converge to the global optimum. Sum-
of-squares programming has been applied in [32] to verify the
region of attraction for the feedback controller. Both [31] and

[32] consider Taylor expansions to approximate the nonlinear
robot dynamics. As the Taylor expansion is an infinite series,
finite order approximation can not be exact, and higher order
approximation inevitably increases the size of the higher-order
moment matrix.

Trigonometric functions have been represented as rational
functions in [15, 16] to formulate the kinematic constraints
in the IK problem. Using this parameterization, [16] applies
the Lasserre’s hierarchy to compute globally optimal solutions
of IK and [15] apply the sum-of-squares [33, 34] to certify
the collision-free regions. However, both [15] and [16] only
consider the rotation about a single axis and need to represent
the joint SE(3) pose by a chain of trigonometric polynomials.
The drawback is that when the kinematic chain increases, the
degree of the polynomial representing the pose also increases.
Additionally, [15, 16] are dense formulations as each equality
constraint involves all joint angles. The work of [35] casts the
IK as a problem of finding the nearest point of an algebraic
variety and proves all non-singular poses can be tightly solved
by sparse SDP relaxation [36]. However, this formulation
relies on distance geometry that only applies to kinematic
problems. The work of [37, 38] describe the exact uncertainty
propagation of systems parameterized by trigonometric poly-
nomials using the notion of trigonometric moments. Though
dynamics models are considered in both cases, the constraints
between the Euler angles and their trigonometric functions are
not linear. Such constraints make it hard to lift the dynamics
constraints to the moment space. To solve the above issues,
our geometric-based formulation is sparse and only involves
quadratic polynomials that can be applied for long-horizon
applications.

C. Lasserre’s Hierarchy and certifiable optimality

Lasserre’s hierarchy converts the POP to infinite dimen-
sional linear programming in measure space and approximates
the global solution via truncated moment sequences in finite
dimension [17, 18]. By increasing the order of the moment
matrix, one can monotonically approximate the globally opti-
mal solution of POP by solving a sequence of SDPs. When
the cost function and constraints satisfy certain technical
conditions [39], Lasserre’s hierarchy can converge exactly to
the global optimum in finite relaxation order. For large-scale
problems, the sparsity pattern in POP has been used to reduce
the size of the SDP by breaking the dense moment matrix
into smaller ones [40–42]. For control problems that satisfy
Markov assumption, the sparsity pattern [41, 43] makes the
computation time linear in the problem horizon [42].

Lasserre’s hierarchy has been applied to perception problem
[44] as the certifiable algorithm [45]. The certifiable algorithm
[44, 45] requires that: (i) the algorithm runs in polynomial
time, (ii) returns a globally optimal solution with a certificate
of the optimality, (iii) or fails to do so but provides a bound on
the objective value. When the relaxation order of Lasserre’s
hierarchy is determined, the SDP can be solved in polynomial
time. The optimum of SDP can also be certified as the
globally optimal solution via rank conditions of the moment



matrix or serve as a lower bound estimation for the problem
[18]. Such properties are rarely seen in the existing motion
planning algorithms based on sampling, combinatorial solvers,
or nonlinear local solvers.

Continuous time control problems of polynomial systems
have been lifted to space of measure to obtain optimal
feedback [31, 46–48], region of attraction [49] or back-
ward reachable set [50]. Though asymptotically convergent
approximation by Lasserre’s hierarchy is guaranteed, finite
convergence is not observed in these cases. In this work, we
leverage Lasserre’s hierarchy by converting the discrete-time
motion planning problem to exact POP for a single trajectory.
We find that our numerical simulations can certify the optimal
solution at the second relaxation order.

III. BACKGROUND AND PRELIMINARY RESULTS

A. Polynomial optimization and Lasserre’s Hierarchy

Let R[x] be the ring of polynomial with real coefficients
and x := (x1, x2, . . . , xn). Given an integer r, we define the
set Nn

r := {α ∈ Nn|
∑

i αi ≤ r}. The monomial with degree
up to r can be defined as xα := xα1

1 xα2
2 . . . xαn

n , α ∈ Nn
r , and

we have the canonical basis for polynomial degree up to r:

vr(x) := (1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

2
n, x

r
1, x

r
2, . . . , x

r
n).
(1)

Let s(r) :=

(
n+ r
n

)
be the dimension of vr(x). Then any

r-degree polynomial p(x) : Rn → R could be expressed as:

p(x) =
∑
α

pαx
α = ⟨p, vr(x)⟩, (2)

where p = {pα} denotes the coefficients corresponding to the
basis defined in (1). We define the POP as follows.

Problem 1 (Polynomial Optimization Problem).

p∗ := inf p(x)

s.t. gj(x) ≥ 0, ∀j ∈ {1, . . . ,m}.
(POP)

where p, gi are polynomials. We denote the feasible set as K.

We denote the degree, i.e., the highest order of monomial,
of polynomial g as deg g. Then we have the degree integers
as di := ⌈deg(gi)/2⌉ and dg = max{1, d1, . . . , dm}, where
⌈a⌉ denotes the integer greater than or equal to a.

Given a probability distribution µ(x) in Rn and α ∈ Nn
r ,

then the moment of µ(x) at order α is defined as:

yα = yα1,...,αn = E[xα] =

∫
xαµ(x)dx. (3)

We construct the (truncated) moment matrix Mr(y) ∈
Rs(r)×s(r) via a s(2r)-sequence y = (yα), with rows and
columns labeled the same as in (1). For example, moment

matrix M2(y), with n = 2, r = 2, is:

M2(y) =


y0,0 y1,0 y0,1 y2,0 y1,1 y0,2
y1,0 y2,0 y1,1 y3,0 y2,1 y1,2
y0,1 y1,1 y0,2 y2,1 y1,2 y0,3
y2,0 y3,0 y2,1 y4,0 y3,1 y2,2
y1,1 y2,1 y1,2 y3,1 y2,2 y1,3
y0,2 y1,2 y0,3 y2,2 y1,3 y0,4

 (4)

Suppose y = (yα) ⊂ R be a sequence indexed by α ∈ Nn
r ,

and let the Ly : R[x] → R be the linear functional:

f(x) =
∑
α

fαx
α 7→ Ly(f) =

∑
α

fαyα. (5)

The functional (5) can be interpreted as substituting the
monomials xα in f(x) by corresponding yα to obtain the
numerical value. Then Mr(y) can be constructed by:

Mr(y)(α, β) = Ly(x
αxβ) = yα+β , α, β ∈ Nn

r , (6)

or equivalently, by manipulating the entire vr(x)vr(x)
T:

Mr(y) = Ly(vr(x)vr(x)
T). (7)

Finally, we also have the localizing matrix for gi as:

Mr−di
(giy) = Ly(givr−di

(x)vr−di
(x)T). (8)

One equivalent formulation of (POP) is infinite-dimensional
linear programming over the space of probability with support
on the feasible set K [17, 18], where the objective function
is a linear combination of the entries of the moment matrix.
The detailed formulation of the infinite-dimensional linear
programming formulation is presented in Appendix A.

As searching over an infinitely large moment matrix is
impossible, we approximate the solution by sequences yα with
finite order |α| = 2κ. Thus, we have the relaxed SDP in the
space of moment matrix Mκ(y) as follows.

Problem 2 (Semidefinite relaxation of POP).

ρ∗κ := inf
y∈Rs(2κ)

Ly(p)

s.t. Mκ(y) ≥ 0,

Mκ−di
(giy) ≥ 0,∀j ∈ {1, . . . ,m}.

(SDP)

where p and gj are polynomials.

Because Problem (SDP) gets more constrained as κ in-
creases, we could gradually approximate the globally optimal
solution of (POP). This observation leads to the theory of
Lasserre’s hierarchy.

Theorem 1 (Lasserre’s Hierarchy [17, 18]). Let p∗ be the
optimum of (POP) and the ρ∗κ (resp. y∗κ) be the optimum (resp.
optimizer) of (SDP), then:

1) (Monotone lower bound) ρ∗κ is monotonically increasing
and ρ∗κ ↑ p∗ as κ → ∞.

2) (Rank condition) If the moment matrix satisfies:

rank(Mκ(y
∗
κ)) = rank(Mκ−dg

(y∗κ)),

then ρ∗κ = p∗. In this case, y∗ is a moment sequence that



admits a representing measure on K.
3) (Number of optimizers) If 2) is satisfied, then the number

of optimizers equals to rank(Mκ(y
∗
κ)).

4) (Finite convergence) If (POP) satisfy some suitable tech-
nical condition, under the assumption that Archimedean-
ness condition holds for K, then ρ∗κ = p∗ happens at
some finite order κ∗ [39]. Note that the actual order κ∗

is unknown in advance.

Lasserre’s hierarchy indicates that one can try from the SDP
relaxation with the lowest order and test the rank condition
until it is satisfied to obtain the globally optimal solution. For a
wide range of applications that only have one optimal solution
[44, 51], the rank one optimality condition is expected using
Lasserre’s hierarchy.

Remark 1 (Rank one optimality condition). If
rank(Mκ(y

∗
κ)) = 1, then rank(Mκ−dg

(y∗κ)) = 1 as
Mκ−dg (y

∗
κ) is a non-zero principle submatrix of Mκ(y

∗
κ).

B. Rigid body dynamics

We consider special Euclidean group SE(3) as the con-
figuration space of rigid body motion, where the state

X =

[
R p
0 1

]
∈ SE(3) can be represented by the orientation

R ∈ SO(3) = {R ∈ R3×3 | RTR = I3,det(R) = 1},

and position p ∈ R3. On SE(3), the twist is defined as the
concatenation of linear velocity v and angular velocity ω in
the body frame, i.e.,

ξ :=

[
ω
v

]
∈ R6, ξ∧ =

[
ω× v
0 0

]
∈ se(3),

where (·)× satisfies a×b = a× b, a, b ∈ R3. Note that se(3) is
the tangent space at the identity X = I , and Xξ∧ ∈ TXSE(3).
The reconstruction equation gives the Equation of Motion
(EOM) in continuous time:

Ẋ = Xξ∧. (9)

We have the inertia matrix Jb and the kinetic energy:

Jb :=

[
Ib 0
0 mI3

]
, T (ξ) :=

1

2
ξTJbξ, (10)

where Ib ∈ R3×3 is the moment of inertia in the body frame
and m is the body mass. We arrive at the Euler-Poincaré
equation [52, 53] if we take a variation in TXSE(3):

Jbξ̇ +

[
ω× v×

0 ω×

]
Jbξ = 0. (11)

The challenge of applying Lasserre’s hierarchy is to repre-
sent the rigid body motion via polynomials. Although one can
apply conventional integration schemes such as explicit Euler
or Runge-Kutta method on (11) in vector space, the integration
of the continuous time EOM (9) on SE(3) involves the
exponential map that does not have polynomial formulations in
finite order [54, 55]. If one uses Euler angles to parameterize
R ∈ SO(3), then a mixture of trigonometric polynomial and

R[x] is expected, which highly increases the complexity [38].
Instead, we implement the Lie Group Variational Integrator
(LGVI) that approximates the generalized velocity via the con-
figuration state to avoid the issue of integrating the continuous
time EOM [19].

C. Variational integrator

Consider a mechanical system with the configuration space
Q. We denote the configuration state as q ∈ Q and the
generalized velocity as q̇ ∈ TqQ. Then we have the Lagrangian
given the kinetic and potential energy T (q̇), V (q):

L(q, q̇) := T (q̇)− V (q). (12)

The key idea of a variational integrator is to discretize the
Lagrangian (12) to obtain the discrete-time EOM [19]. The
discretization scheme ensures that the Lagrangian is conserved
in the discrete-time, thus having superior energy conservation
property in the long duration.

We define the time step h ∈ R and the time sequence
{tk = kh | k = 0, . . . , N} ⊂ R. Thus the discrete Lagrangian
Ld : Q × Q → R could be considered as the approximation
of the action integral via

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇)dt. (13)

In this work, we consider the midpoint approximation [19]:

Ld(qk, qk+1) = hT (
qk+1 − qk

h
)− hV (

qk+1 + qk
2

). (14)

Then the discrete variant of the action integration becomes:

Sd =

N−1∑
k=0

Ld(qk, qk+1). (15)

Finally, we take variation in TQ and group the term corre-
sponding to δqk ∈ TqkQ as the discrete version of integration
by parts [19]:

δSd = D1Ld(q0, q1) · δq0 +D2Ld(qN−1, qN ) · δqN

+

N−1∑
k=1

(D2Ld(qk−1, qk) +D1Ld(qk, qk+1)) · δqk.
(16)

where Di denotes the derivative with respect to the i-th
argument. By the least action principle, the stationary point
can be derived:

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (17)

To incorporate the external force f ∈ T ∗
q Q, we can compute

the action integral again using the midpoint approximation as:∫ tk+1

tk

f(t) · δq ≈ h

2
f(tk) · δqk +

h

2
f(tk+1) · δqk+1, (18)

and then incorporate it into (17). We will later show that
discretizing Lagrangian on SE(3) results in polynomial dy-
namics.



IV. METHOD AND MAIN RESULTS

This section introduces our method to formulate the kino-
dynamic motion planning problem as exact POP using matrix
Lie group formulations.

A. Problem formulation
In what follows, we consider the discrete-time kinodynamic

motion planning problem of a rigid body system.

Problem 3 (Discrete Kinodynamic Motion Planning).

min
Yk,uk

Ψ(YN ) +

N−1∑
k=0

L(Yk, uk+1)

s.t. D(Yk+1, Yk, uk+1) = 0, k = 0, . . . , N − 1,

umin ≤ uk ≤ umax, H(Yk+1) ≥ 0, Y0 = Yinit.

(19)

We require that the system state Y contains the configura-
tion state X ∈ SE(3) and velocity ξ ∈ se(3) or its discrete
variants. D(·, ·) is the EOM subject to the initial condition
Y0 = Yinit. For a rigid body system, we consider the discretized
motion by (9) and (11). umax and umin are the input con-
straints, and H(Y ) ≥ 0 denotes other constraints, including
constraints of SO(3) manifold and obstacle avoidance. Ψ(·) is
the terminal cost, and L(·, ·) is the stage cost. If we consider
the terminal constraint, we replace Ψ(·) with the equality
constraint YN = Yg considering the terminal state Yg .

To apply Lasserre’s hierarchy, we require that all the costs
and constraints in Problem 3 are polynomials. As we applied
a direct collocation [2, 56] style formulation, the order of
polynomial will not grow as the planning horizon increases.

B. Polynomial dynamics constraints
We now derive the dynamics model on SE(3) via

LGVI [57–60]. The derivation for on SO(3) has been well-
established in [57–59]. However, a formulation on SE(3)
suitable for POP implementation is absent. We apply the
midpoint approximation (14) to represent the twist ξk using
the configuration state:

Fk := R−1
k Rk+1 ≈ I + hω×

k , ω×
k ≈ Fk − I

h
, (20)

ṗk = Rkvk ≈ pk+1 − pk
h

, vk ≈ RT
k (pk+1 − pk)

h
, (21)

with Fk ∈ SO(3) the pose change. We refer to [58] for the
expression of the kinetic energy of rotation. Then by (14), the
discrete kinetic and potential energy takes the form:

Td :=
1

2h
tr((Fk − I)Ib(Fk − I)T) +

1

2h
m∥pk+1 − pk∥2,

Vd := hm
pk+1 + pk

2
· g, (22)

where g ∈ R3 is the gravity and Ib the nonstandard moment
of inertia [57] that relate the standard moment of inertia Ib
by Ib = tr(Ib)I3 − Ib. Then we define the variation δX ∈
TXSE(3) as:

δX = Xδη∧ ∈ TXSE(3), δη∧ =

[
δω× δρ
0 1

]
∈ se(3). (23)
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Fig. 2: Comparison of the proposed LGVI with explicit Euler integrator for the
rigid body system. The presented twists are computed by LGVI. Considering
the energy at time step k, the normalized energy loss |Ek−E0|

E0
is negligible

for LGVI while the explicit Euler integrator soon diverges.

The detailed derivation and the explanation of the Ib are well
presented in [57, 58]. Here we only derive the position part
not presented in the existing literature. Consider Vd and

Td,p(pk, pk+1) =
1

2h
m∥pk+1 − pk∥2,

then we have the variation of position in the world frame as
δp = Rδρ. Using (17), we have:

D1Td,p = m(
pk − pk+1

h
) ·Rkδρk = m(RT

k

pk − pk+1

h
) · δρk

D2Td,p = m(
pk − pk−1

h
) ·Rkδρk = m(RT

k

pk − pk−1

h
) · δρk

(24)
Similarly, we have the variation for the potential energy as

D1Vd = D2Vd =
hmg

2
·Rkδρk = RT

k

hmg

2
· δρk (25)

We wrap up (24) and (25) to obtain

mRT
k

pk+1 − pk
h

= mRT
k

pk − pk−1

h
+RT

kmgh. (26)

Then, by substituting (20) and (21) into (26), we get

mvk+1 = mF ⊺
k vk + hmRk+1g. (27)

We now present the LGVI for the unconstrained rigid body:

IbFT
k+1 − Fk+1I

b = FT
k I

b − IbFk,

mvk+1 = mF ⊺
k vk + hmRk+1g.

(28)

We note that all constraints are polynomials with degrees
up to two. Similar derivation for SE(3) has been seen in the
research [59, 60]. However, the presented derivation directly
applies variations on TSE(3) in discrete time and does not
rely on the continuous angular velocity ω as in [60]. The
elimination of ω is more suitable for controller design as it
is redundant if we have its discrete variant Fk. The method
in [59] does not consider vk in the tangent space, which is
unsuitable for controller design. To verify the correctness of
the derived integrator, we plot the kinetic energy and twist
for the system without gravity in Fig. 2. We can see that the
kinetic energy is conserved in the long run, while the popular
explicit Euler method with dynamics (11) diverges fast.



C. Polynomial kinematics constraints

We consider the midpoint approximation as our discrete-
time equation of motion for the kinematic part:

Rk+1 = RkFk, pk+1 = hRkvk + pk, (29)

which are also quadratic polynomials. As R ∈ SO(3) con-
tains nine entries while dimSO(3) = 3, we need additional
constraints. Consider the column space:

R := [r1, r2, r3] ∈ R3×3, r1, r2, r3 ∈ R3.

R ∈ SO(3) is equivalent to the following 15 quadratic equality
constraints:

∥r1∥2 − 1 = ∥r2∥2 − 1 = ∥r3∥2 − 1 = 0,

rT1 r2 = rT2 r3 = rT1 r3 = 0,

r1 × r2 − r3 = r2 × r3 − r1 = r3 × r1 − r2 = 03×1.

(30)

The first six equations ensure that ri are orthonormal to each
other, and the last nine equations ensure ri follows the right-
hand rule, which is equivalent to the determinant constraints
but is quadratic.

We introduce two variables, c and s that satisfy c2+s2 = 1
to indicate rotation about a single axis:

Rx =

1 0 0
0 c −s
0 s c

 , Ry =

 c 0 s
0 1 0
−s 0 c

 , Rz =

c −s 0
s c 0
0 0 1

 .

(31)
Ri(θ) denotes a rotation of θ angle about axis i.

D. Sparsity pattern

As Problem 3 satisfies the Markov assumption, we show
it enables the use of Correlative Sparsity (CS) that greatly
reduces the computational burden [41]. Consider the full dy-
namics model represented in (28) and (29), we can formulate
Y in Problem 3 as Yk := (Rk, pk, Fk, vk). Then we also
include (28)-(30) in constraints D and H . We partition the
state into N sets y(Ik) = {(Yi, Yi−1, ui)|i ∈ Ik} indexed by
Ik = {k, k + 1}, k = 1, 2, . . . , N . Then we can verify the
running intersection property [41]:

∀k = 1, . . . , q − 1,∃s ≤ k, Ik+1 ∩
(
∪k
j=1Ij

)
⊆ Is,

by selecting s = k, i.e. Ik+1 ∩
(
∪k
j=1Ij

)
= {k + 1, k + 2} ∩(

∪k
j=1Ij

)
= {k + 1} ∈ Ik. We can see that the cost and

dynamic constraints can also be partitioned into such indexed
sets as D(Yk+1, Yk, uk+1) = 0, H(Yk+1) = 0 and L(Yk, uk)
only involves variable y(Ik). These properties enable the
sparse moment relaxation to have the same result as the dense
version if one breaks the dense matrix Mκ(y) to N smaller
ones that only involve variables in y(Ik) [41]. The detail of
CS is presented in Appendix B. When the relaxation order
is determined, we can see that the size of the variable grows
linearly with respect to the planning horizon [18, 41].

Other than CS, Term Sparsity (TS) has also been ex-
ploited to reduce the computational burden further [40, 44]
by eliminating more variables in the moment matrix. Though

relaxation with TS is looser than CS, the computation time is
greatly reduced.

V. NUMERICAL SIMULATIONS

In this section, we apply the proposed framework to various
robotics applications.

A. Simulation setup

1) Relaxation scheme: For all tasks, the dynamics, con-
straints, and objective functions are quadratic polynomial func-
tions; thus, we have the lowest order for Lasserre’s hierarchy
κ = 1 and the degree parameter dg = 1. However, κ = 1 only
returns a trivial lower bound with infeasible solutions. Thus
we try κ = 2 and find it works well for our cases.

We use the recent state-of-the-art tool CS-TSSOS [40, 43,
61, 62] to explore the CS and TS pattern. Chordal extension
[61] is applied to boost both CS and TS by either extending
matrix size (for CS) or reducing more terms (for TS). As
the CS does not sacrifice the tightness and the problem size
is huge, we always exploit the CS pattern. The CS-TSSOS
supports the maximal or approximately smallest chordal exten-
sion, which is denoted as MD and block, respectively, referring
to the programming API. Assume that the global optimum of
(POP) is p∗ and the optimum of the (SDP) or local Nonlinear
Programming (NLP) solver is ρ, then we have the following
inequalities:

ρTS+MD ≤ ρTS+block ≤ ρCS ≤ ρCS+MD

≤ ρdense ≤ p∗ ≤ ρNLP ,
(32)

where the subscripts denote different sparsity patterns at the
same order κ. As the NLP solver are based on local gradient
information, only local optimum is guaranteed. Therefore,
ρNLP serves as an upper bound of p∗.

2) Evaluation metric: As the optimal value of (POP) can
not be greater than ρNLP , then the problem is upper and lower
bounded by the SDP and NLP result. Thus, we can use the
relative suboptimality as an index of the relaxation gap:

ϵ :=
ρNLP − ρSDP

ρNLP
. (suboptimality)

As the rank condition is subject to numerical error, we
instead check the eigenvalues of each sub-moment matrix as is
shown in Remark 2 in Appendix B. We check if each moment
matrix is rank-one, assuming the unique minimizer. Assume
the eigenvalues of k-th moment matrix λk,i are ranked by their
|λk,i| in descending order. Then we compute the ratio between
the first and the second one to represent the rank condition:

δk =
|λk,2|
|λk,1|

≤ 1, δ = max
k

δk. (rank condition)

As the numerical accuracy is still the bottleneck of the current
SDP solvers for problems of this size, δ will only be used for
comparison with ϵ.

3) Software and hardware setup: The CS-TSSOS is imple-
mented in Julia’s open-source package [40, 43]. CS-TSSOS
converts (SDP) to its dual and passes to the solver MOSEK



[63]. As MOSEK is based on the primal-dual interior point
method, thus it can generate a certificate for infeasibility [64].
We use the certificate returned by MOSEK to indicate the
feasibility of the SDP. If (SDP) is infeasible, then its dual
will be unbounded [34, 63]. Thus MOSEK will return large
objective values even if it fails to generate the infeasibility
certificate. MOSEK also returns SLOW_PROGRESS flag if
the problem does converge successfully, possibly around a
minimum. As the SDP relaxation of POP does not ensure
feasibility or local optimality if the SDP is not tight [18],
for the drone landing case, we use the general purpose NLP
solver IPOPT [65] for local search and the solution from SDP
as the initial guess. All experiments are launched on a desktop
equipped with Intel i9-11900KF CPU and 128 GB memory.

B. Inverse kinematics for serial manipulator
We consider the inverse kinematics problem for n Degrees

of Freedom (DOF) serial manipulator with revolute joints. We
use Xk ∈ SE(3) to represent the pose of k-th joint. Each joint
is modeled as rotating about the local z-axis, i.e., Rz described
in (31) with the angle denoted by ck and sk. Note that one can
also use DH parameters with similar results. Thus, we have
the kinematics chain:

Xk+1 = XkAk+1Tk, X0 = I, (33)

with

Tk :=

[
Rc

k 0
0 1

]
, Ak :=

[
Rz

k Rz
kp

c
k

0 1

]
. (34)

In this formulation, pck is the constant vector defining the arm,
and Ak is the action that describes the rotation of the arm about
the z-axis of joint Xk. Tk is a constant that re-orientates the
pose for joint Xk+1. For joint angle constraints θmin ≤ θ ≤
θmax, we have the following inequality:

cos (θ − θmax + θmin

2
) ≥ cos

θmax − θmin

2
. (35)

Then the IK problem for an N DOF serial manipulator to
reach the target pose Tg ∈ SE(3) is formulated as follows.

Problem 4 (IK for N-DOF serial manipulator).

min
{ck,sk,Xk}

N∑
k=1

(ck − crk)
2 + (sk − srk)

2

s.t. Xk+1 = XkAk+1Tk, k = 0, 1, . . . , N − 1.

Xk ∈ SE(3), c2k+1 + s2k+1 = 1,

ck+1c̄k+1 + sk+1s̄k+1 ≥ clim,

X0 = I,XN = Xg.

(36)

Where c̄k, s̄k and clim correspond to terms in the expansion
of (35). The cost function is parameterized by a reference
joint angle crk = 1 and srk = 0 in our case to ensure unique
solutions. We tested the proposed algorithm on the 6-DOF
manipulator PUMA 560 that has analytical IK solutions [66].
As is shown in Fig. 3, we uniformly sample 14553 positions
in the workspace with random rotations. We validate the
algorithm based on the quality of infeasibility detection, and
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Fig. 3: Samples in the workspace for 6-DOF PUMA 560 manipulator. We
sampled 21×21×33 = 14553 points with 5 cm intervals in the workspace
of size 1m× 1m× 1.6m. The 4712 feasible poses are denoted as red, while
the 9841 infeasible poses are denoted as blue.
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Fig. 4: IK solution for 6-DOF PUMA 560 manipulator. (a) applied the CS
at κ = 2, the green dots denote the infeasible pose that the solver does not
generate an infeasibility certificate, and the objective value is smaller than the
threshold. The black dots denote the feasible poses that the solver does not
converge and terminates as SLOW_PROGRESS. (b) applied CS+MD at κ = 2
with chordal extension. All the green dots in (a) can be certified as infeasible
using this relaxation scheme via the certificate or unreasonably large dual
problem values. The yellow dots denote the feasible poses with convergent
SDP solution. The blue dots denote the case that is still not convergent at this
relaxation scheme. When moving to κ = 3, only one of the cases converges.

all the seven joint poses Xk (including the base joint) directly
recovered from SDP without refining. We consider the pose
as infeasible if MOSEK returns an infeasibility certificate or
unreasonably large objective value. We set the threshold as
1000, which is sufficiently larger than the maximal possible
objective of Problem 4.

The main results are summarized in Table I and illustrated
in Fig. 4. We first apply CS at κ = 2. As shown in Fig. 4(a),
we can see that 239 poses are infeasible but detected as
feasible. We also have 879 feasible poses that the solver fails
to converge and terminates as SLOW_PROGRESS. Then we
apply a slightly tighter relaxation, i.e., CS+MD at κ = 2,
to improve the result. As is in Fig. 4(b), all the infeasible
points can be certified, and 812 out of the 879 feasible cases
converge. For the other 67 cases, we move to κ = 3 with
CS, but only 1 of them converges. Tighter relaxation, such as
CS+MD at κ = 3, will use up the memory.

For the cases successfully solved by MOSEK, the average
rotation and position errors are negligible. For the failed cases
that terminated as SLOW_PROGRESS, some cases have errors
at a comparable level while some have position errors that
can reach 1 m. Compared to the mix-integer programming-
based method [13], the proposed algorithm has highly accurate
solutions when the SDP converges to the optimum, as the
kinematic model we use is exact. As [13] can not avoid the



TABLE I: The average performance of SDP relaxation on Puma 560 manip-
ulator. We launch all the tests from a looser relaxation scheme and move to
a tighter scheme for failed cases. The runtime is based on each individual
relaxation scheme, while the other indices are accumulated from the lowest
scheme. The pose error is based on cases successfully solved by MOSEK.

Relaxation order (κ) 2 2 3
Sparsity pattern CS CS+MD CS
Average solution time (s) 7.8 918.7 804.8
Maximum solution time (s) 18.5 2117.9 1886.5

Average joint orientation error (deg) 6.93e−5 6.93e−5 6.93e−5

Maximal joint orientation error (deg) 0.0231 0.0231 0.0231

Average joint position error (cm) 1.45e−5 1.45e−5 1.45e−5

Maximal joint position error (cm) 0.0191 0.0191 0.0191
Percentage of infeasibility detection 97.57% 100.0% 100.0%
Percentage of convergent SDP (feasible poses) 81.35% 98.58% 98.60%
Overall successful rate (all poses) 92.32% 99.54% 99.55%
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Fig. 5: The runtime for the IK problem with DOF ranging from 6 to 40 tested
on 50 randomly generated manipulators. We find that the time complexity is
linear with respect to the DOF if CS is applied. The median value is denoted
as connected by the black line.

inaccuracy due to the partition of SO(3) manifold, the position
error can be centimeters. Both our method and [16] are based
on moment relaxation and suffer from similar numerical issues
when solving the SDP, while the overall success rates are at
the same level.

Problem 4 has the same sparsity pattern as the kinodynamic
planning Problem 3. Thus, we further tested the runtime for
Problem 4 with DOF ranging from 6 to 40 with 50 randomly
generated parameters Rc

k and pck with CS at κ = 2 to
evaluate the complexity of the algorithm. As is shown in
Fig. 5, the runtime grows linearly with respect to the DOF,
which is consistent with the complexity analysis presented in
[41]. In comparison, [13] has exponential computation time
with respect to the planning horizon due to the combinatorial
formulation. As [16] is a dense formulation, the number of
variables and degrees grows simultaneously. Considering the
size of the moment matrix, [16] has at least polynomial
complexity with respect to the length of the kinematic chain.

C. 3D drone landing

In this task, we consider landing a drone from an initial
pose while avoiding obstacles. We assume that the drone is
controlled by torque τ ∈ R3 and total thrust force fz ∈ R

TABLE II: Drone landing parameters
Simulation constants Values Control parameters Values.
Mass - m 0.5 (kg) P [100, 10, 100, 100]
Inertial - Ib diag(0.3, 0.2, 0.3) (kg/m2) Q [0.1, 10, 0.1, 1]
Gravity - g [0, 0,−9.81]T (m/s2) U [0.1, 0.1]
Time step - h 0.1667s / 0.125s [τmin, τmax] [−5, 5]
Planning horizon - N 30 / 40 [fz

min, f
z
max] [−∞,∞]

Obstacle 1 x2 + (y − 0.5)2 ≥ 0.25 p0, v0, F0 [1, 1, 3]T, 03×1, I3
Obstacle 2 (x− 0.6)2 + (y − 0.5)2 ≥ 0.25 R0 = Ry(θ) θ = 0◦, 60◦, 90◦, 120◦, 180◦

Height constraints z ≥ 0

along the z-axis, both in the body frame. Thus we have the
kinematics model (29) and the forced drone dynamics:

IbFT
k+1 − Fk+1I

b = FT
k I

b − IbFk + h2τ×k+1,

mvk+1 = mF ⊺
k vk + h(Bfz

k+1 +mRk+1g),
(37)

with B = [0, 0, 1]T. We then define the quadratic cost:

Φ(YN ) =P1∥RN − I∥2F,I + P2∥FN − I∥2F,I+

P3∥pN∥2 + P4∥vN∥2,
(38)

L(Yk, uk+1) = Q1∥Rk − I∥2F,I +Q2∥Fk − I∥2F,I+

Q3∥pk∥2 +Q4∥vk∥2 + U1∥τk+1∥2 + U2∥fz
k+1∥2,

(39)

where ∥X∥F,P =
√

tr(XTPX), P ≥ 0, is the weighted
Frobenius norm. The system parameters and cost functions are
shown in Table. II. We set the drone at an initial position with
different pitch angles. We launch the trajectory optimization
with one of the obstacles or in free space. Obstacle 2 blocks
more waypoints of the trajectory planning in the free space
compared to obstacle 1. The whole planning horizon is 5
seconds with 40 steps. For the CS cases without TS, the
SDP has too many variables that used up the memory, so
we reduced the step number to 30. We start with TS+MD
and continue to TS+block or CS if ϵ is large for a former
relaxation scheme. Empirically, we find that ϵ ≤ 1e−3 results
in tight moment relaxation that also guarantees the feasibility
of the solution. Thus, we set ϵ ≤ 1e−3 as a threshold to decide
whether to continue to a tighter relaxation scheme.

The planned trajectories of all cases after being refined by
IPOPT are illustrated in Fig. 6, 7 and 8. The statistics of
the planned trajectories are presented in Table III, IV, and
V. For all tests, TS+MD does not provide an optimality gap
smaller than 0.01. For simple cases in free space or with
obstacle 1, TS+block can solve all the cases with θ ≤ 90◦. For
θ = 120◦, moving to CS also generates certifiable optimality
values. While for θ = 180◦, the CS does not provide certifiable
optimal values. For hard cases with obstacle 2, more numerical
issues are presented. Even the CS sparsity pattern does not
provide certifiable solutions for θ = 60◦ and θ = 180◦.

As the solver returned SLOW_PROGRESS for these failed
cases, we do not know if the SDP relaxation itself is tight at
this order for these initial conditions. However, the solution is
still a good initial guess for local search by IPOPT. We can
also find that the magnitude of ϵ and δ are closely correlated
to each other. When ϵ ≤ 1e−4, the rank-one condition will
likely satisfy as δ is also small.

We further compare the proposed methods with local
solvers. We compute POP using IPOPT and initializations with
different qualities. As the moment relaxation already gives an
initial guess with guaranteed lower bound by suboptimality
metric ϵ, we perturb the refined solution with the smallest
ϵ as our initial guess. For the orientation Rk and pose
change Fk, we perturb it by rotating with a random angle as
R̃k = Rk exp (ζ) where ζ ∼ N(03,1,∆

2I3) is white Gaussian
noise. We perform element-wise random perturbation for other
variables, such as ṽk = vk + ζ. Then we assign different ∆ to
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Fig. 6: 3D drone landing task in free space. The drone starts at an initial position x = 1, y = 1, z = 3 with zero twists and different initial pitch angles. The
robot is guided to land at the origin. The blue, red, and green axes indicate the z, x, and y axes in the body frame. For a large initial pitch angle, the drone
adjusts the orientation in the first few steps and then starts to move to the origin. Only part of the waypoints in the tail of trajectories are presented to avoid
overlap. The statistics of these cases are presented in Table III.
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Fig. 7: 3D drone landing task with obstacle 1. Obstacle 1 blocks some of the waypoints computed from the free space task. All these plots converge to a
locally feasible path after being refined by IPOPT, and the first 4 cases are certified as globally optimal solutions by metric ϵ. The statistics of these cases
are presented in Table IV.
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Fig. 8: 3D drone landing task with obstacle 2. Obstacle 2 blocks more waypoints in the free space task than obstacle 1, which makes the SDP harder to
converge. All these cases converge to locally feasible solutions after being refined by IPOPT, and the first 4 cases have very small optimality gaps. The
statistics of these cases are presented in Table V.

represent the quality of the initial guess. We mainly evaluate
the IPOPT solution via the optimality gap ϵ compared to the
best-known refined solutions by SDP and the convergent status
of IPOPT. For each ∆, we sample 10 times for all the 5 initial
conditions and tasks. The result is presented in Table VI. The
local solver highly relies on the initial guess quality, as shown
in Table VI. However, such a good initial guess is not always
available in practice. Though the local search method is fast,
it is possible that the solver converges to infeasible points.

VI. DISCUSSIONS

We have shown that Lasserre’s hierarchy at the second
order can provide rank-one globally optimal solutions for
most testing cases of the two case studies. More than 99.5%

of the IK problems can be solved, while the remaining
cases are subject to numerical issues. By LGVI, the drone
dynamics can be formulated as exact quadratic polynomials,
which is not possible using a conventional integration scheme
or approximations. The SDP converges well for easy cases
with certified globally optimal solutions while suffering from
numerical issues for hard cases. From the point of view of
computational complexity, the worst-case for arbitrary ob-
stacle configuration still results in SDPs of computationally
intractable size. Thus, a convex representation of free space
[15], obstacles [30, 67, 68], or risk-bounded contours of [69–
71] should be explored.

A more intriguing future direction is to find conditions when
such Lie group-based motion planning problems can be tightly



TABLE III: Statistics of drone landing in free space. TS+block can solve all of the cases with pitch angles smaller than 120◦. For the harder cases, CS is
needed to induce tighter relaxation. These cases are illustrated in Fig. 6.

Ry,0 0◦ 60◦ 90◦ 120◦ 180◦

Sparsity TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS
Suboptimality ϵ 0.0101 ≤ 1e−4 N/A 0.0235 ≤ 1e−4 N/A 0.0589 ≤ 1e−4 N/A 0.3767 0.0046 ≤ 1e−4 0.4102 0.2054 0.0136

Rank condition δ 0.0968 ≤ 1e−4 N/A 0.1702 ≤ 1e−4 N/A 0.4918 6.302e−4 N/A 0.8301 0.5824 ≤ 1e−4 0.9049 0.9653 0.6504
Runtime (s) 397.1 2299.6 N/A 431.4 2185.9 N/A 381.3 2298.5 N/A 373.6 2868.3 6662.0 346.7 3646.5 6820.4

TABLE IV: Statistics of drone landing with obstacle 1. All cases can be tightly solved except the last one. These cases are illustrated in Fig. 7.
Ry,0 0◦ 60◦ 90◦ 120◦ 180◦

Sparsity TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS
Suboptimality ϵ 0.0130 ≤ 1e−4 N/A 0.0252 ≤ 1e−4 N/A 0.0608 ≤ 1e−4 N/A 0.3772 0.0070 ≤ 1e−4 0.3810 0.2083 0.0205

Rank condition δ 0.0965 ≤ 1e−4 N/A 0.1696 ≤ 1e−4 N/A 0.4805 4.631e−4 N/A 0.8240 0.5687 ≤ 1e−4 0.9194 0.9661 0.7051
Runtime (s) 424.0 2598.5 N/A 361.6 2549.9 N/A 426.7 3246.1 N/A 433.5 2863.2 7039.4 409.2 3834.5 8641.7

TABLE V: Statistics of drone landing with obstacle 2. Due to the configurations of the obstacle, this task is more challenging, but the overall optimality gap
using CS is small except for the 180◦ case. These cases are illustrated in Fig. 8.

Ry,0 0◦ 60◦ 90◦ 120◦ 180◦

Sparsity TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS TS+MD TS+block CS
Suboptimality ϵ 0.0499 0.0275 7.731e−4 0.0580 0.0307 0.0035 0.0802 0.0473 ≤ 1e−4 0.3846 0.0154 ≤ 1e−4 0.4231 0.2127 0.0167

Rank condition δ 0.1013 0.0738 0.0369 0.1776 0.0661 0.1207 0.5019 0.1849 0.0016 0.8348 0.6049 ≤ 1e−4 0.9088 0.9632 0.6712
Runtime (s) 391.1 3295.4 8314.3 360.5 3111.7 9310.6 424.2 3471.0 7241.5 416.2 3350.2 7700.8 429.1 3686.7 8180.6

TABLE VI: Statistics of drone landing task solved by IPOPT. We perturb the best optimality guaranteed SDP solution with different noise levels to obtain
the initial guess. The average suboptimality is evaluated on each task with 5 initial pitch angles. For each test case, we sample the initial error 10 times. Thus
the average suboptimality is evaluated by feasible solutions among the 50 random samples. We show that with a small noise level, IPOPT converges to the
best solution obtained by SDP. However, as the noise level increases, the optimality gap grows significantly, and even local feasibility is not guaranteed. We
set the computational budget as 1e4 iterations.

Initialization noise ∆ 0.001 0.01 0.1 0.5 1
Task Free Obs-1 Obs-2 Free Obs-1 Obs-2 Free Obs-1 Obs-2 Free Obs-1 Obs-2 Free Obs-1 Obs-2

Average Suboptimality ϵ ≤ 1e−4 ≤ 1e−4 ≤ 1e−4 ≤ 1e−4 ≤ 1e−4 ≤ 1e−4 0.0115 0.0134 ≤ 1e−4 0.3644 0.4757 0.2406 0.7727 0.7543 0.5652
Timeout (out of 50) 0 0 0 0 0 0 0 0 0 12 8 2 25 15 6

Infeasibility (out of 50) 0 0 0 0 0 0 0 0 0 13 11 13 16 23 13

solved via Lasserre’s hierarchy at the second order, despite
the numerical challenges. Such efforts would be essential for
convex kinodynamic motion planning using the full dynamics
model. The LGVI-based formulation can be extended to multi-
body systems when additional constraints and multipliers are
added [72]. Nonholonomic systems can also be modeled by
LGVI, while the discretization of nonholonomic constraints
needs more attention [73, 74]. More generally, LGVI is aligned
with symmetry-preserving methods in robotics [75] and its
applications in various robot perception and control problems
from a promising research direction.

The memory and time cost of the proposed algorithm is still
high for real-time applications. In view of global optimization,
the complexity is linear w.r.t the planning horizon and poly-
nomial order w.r.t the system dimension (consider the size of
the moment matrix) when the relaxation order is determined.
Such property is an improvement compared to other global
optimization methods, such as combinatorial optimization with
exponential complexity. To improve the scalability for real-
time deployment, combining the global convergence property
of SDP [76] and fast local search on Lie groups [77–81],
should be considered in the future.

VII. CONCLUSIONS

In this paper, we present the novel result: by formulating
the robot dynamics model on Lie groups, one can convert the
motion planning problem to polynomial optimization problems
that can be solved via Lasserre’s hierarchy. We show that

the proposed formulation converts rigid body dynamics as
exact quadratic polynomials. We further formulate the motion
planning problem as a sparse moment relaxation problem. At-
tributed to the low-order and sparse formulation, the resulting
SDP has linear complexity with respect to the planning horizon
and is computationally tractable for the current solvers. The
case study on the inverse kinematics for serial manipulators
and 3D drone landing problems suggests that the proposed
formulation can successfully provide certified globally optimal
solutions for most cases.

APPENDIX A
POP AS INFINITE-DIMENSIONAL LINEAR PROGRAMMING

Problem POP can be converted to the following infinite
dimensional linear programming problem over the space of
measure [17, 18]:

Problem 5 (Infinite dimension linear programming).

p∗ := inf
µ∈M+(K)

∫
K
p(x)dµ, (LP)

with K the feasible set defined in (POP), M(K) the set of
vector space of finite signed Borel measure and M+(K) the
convex cone of nonnegative finite Borel measure on K.

Then, the optimization problem (POP) is equivalent to
finding the Dirac measure δx∗ that is associated with the
minimizer x∗ of (POP). Recall that the Dirac measure has



the property
∫
K p(x)dδx̄ = p(x̄), that enables one to select the

value of p(x) at a given point x̄.

APPENDIX B
SPARSE MOMENT RELAXATION OF POP

Though Lasserre’s Hierarchy enables one to approximate
(POP) by (SDP), the size of (SDP) increases dramatically
as κ and n increase. Therefore, one should fully explore the
structure of the problem to reduce the computational burden.
For many applications in control and planning satisfying the
Markov assumption, only states at consecutive time steps
appear in the system dynamics. The cost function is usually
the sum of stage costs that only contain states within one step.
Motivated by this observation, we introduce the correlative
sparsity.

We define the index set I0 = {1, . . . , n} be the union of
∪q
k=1Ik of q subsets Ik ⊂ I0 that partition the variable x. For

arbitrary Ik ⊆ I0, let R[x(Ik)] denote the ring of polynomials
in the variable x(Ik) ∈ {xi|i ∈ Ik}. We also define the index
set J = {1, . . . ,m} that is partitioned in to q different disjoint
sets Jk, k = 1, . . . , q to group the constraints gj , j = 1, . . . ,m.

Assumption 1 (Sparse structure of (POP), [18, 41]).
1) For feasible set K, there is a large number M , such that

∥x∥∞ ≤ M for ∀x ∈ K.
2) For every j ∈ Jk, gj ∈ R[x(Ik)], such that each

constraint gj(x) ≥ 0 only involves variables in the set
x(Ik) = {xi|i ∈ Ik}.

3) The objective function p(x) ∈ R[x] can be written as
p(x) =

∑q
k=1 fk, with fk ∈ R[x(Ik)], k = 1, . . . , q.

4) The index set Ik satisfy the running intersection property:

∀k = 1, . . . , q − 1,∃s ≤ k, Ik+1 ∩
(
∪k
j=1Ij

)
⊆ Is.

If (POP) satisfies the assumptions, the following sparse
moment relaxations can dramatically reduce the problem size.

Problem 6 (Sparse moment relaxation [18, 41]).

ρ∗κ := inf
y∈Rs(2κ)

Ly(p)

s.t. Mκ(y, Ik) ≥ 0,

Mκ−di(gjy, Ik) ≥ 0,

j ∈ Jk, k = 1, . . . , q.

(sparse-SDP)

Where Mκ(y, Ik) denotes the moment matrix formed by
the variables that appear in the set Ik. We also have a slightly
different rank condition and the special rank-one case for the
sparse moment relaxation.

Theorem 2 (Rank condition for (sparse-SDP) [18, 41]).
(sparse-SDP) is tight, if:

1) If Assumption 1 is satisfied for (POP), and,
2) rank(Mκ(y

∗
κ, Ik)) = rank(Mκ−dg (y

∗
κ, Ik)),

k = 1, . . . , p, and,
3) rank(Mκ(y

∗
κ, Ijk)) = 1 for all pairs (i, k) with

Ijk := Ij ∩ Ik ̸= ∅.

Remark 2 (Rank one optimality condition for (sparse-SDP)).
For the special case of rank one condition, we will only
need to check the first two conditions in Theorem 2 as any
Mκ(y, Ijk) can become a principle submatrix of the Mκ(y, Ik)
or Mκ(y, Ij) after proper invertible row and column permuta-
tions. Thus, Mκ(y, Ijk) is rank one if Mκ(y, Ik) or Mκ(y, Ij)
are rank one matrix.
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