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@ Open the left fridge door @ Remowve the pot lid

@ Mowe the cabbage from pot to fridge

@ Mowe potato to fridge

@ Pick up the tomato

@ Place the tomato

Fig. 1: Example solutions to two task and motion planning problems with complex geometric constraints, for which our PIGINet reduces the planning time
by filtering out infeasible task plans considered during planning. Top: The goal is for all food to be in the fridge. Bottom: The goal is for the tomato to be
in the sink. Directly picking and placing the goal objects in both problems is not possible due to obstruction caused by articulated and movable obstacles.

Abstract—We present a learning-enabled Task and Motion
Planning (TAMP) algorithm for solving mobile manipulation
problems in environments with many articulated and movable
obstacles. Our idea is to bias the search procedure of a traditional
TAMP planner with a learned plan feasibility predictor. The
core of our algorithm is PIGINet, a novel Transformer-based
learning method that takes in a task plan, the goal, and the initial
state, and predicts the probability of finding motion trajectories
associated with the task plan. We integrate PIGINet within a
TAMP planner that generates a diverse set of high-level task
plans, sorts them by their predicted likelihood of feasibility,
and refines them in that order. We evaluate the runtime of our
TAMP algorithm on seven families of kitchen rearrangement
problems, comparing its performance to that of non-learning
baselines. Our experiments show that PIGINet substantially
improves planning efficiency, cutting down runtime by 80% on
problems with small state spaces and 10%-50% on larger ones,
after being trained on only 150-600 problems. Finally, it also
achieves zero-shot generalization to problems with unseen object
categories thanks to its visual encoding of objects. Project page
https://piginet.github.io/,
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I. INTRODUCTION

Planning for long-horizon robotic behavior in complex
environments requires quick reasoning about the impact of the
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environment’s geometry on what high-level plans are feasible.
Many task and motion planning (TAMP) [1, 2] algorithms
accomplish this by balancing the computational time spent on
two processes. One is task planning: finding high-level task
plans consisting of discrete arguments that achieve the logical
conditions specified by the goal. The other is motion planning:
generating continuous motion trajectories that are collision-
free using sampling or optimization.

Balancing between task planning and motion planning is
particularly challenging when manipulable obstacles impose
additional geometric constraints that makes it hard to find
collision-free object placements or arm trajectories. For exam-
ple, a mobile robot may be tasked with rearranging food items
among fridges, cooking pots, and sinks. Doors and other food
items may be blocking all paths that reach the goal objects or
placement regions, as in the problems shown in Figure 1. In
these problems, the number of infeasible candidate task plans
increases exponentially as the planning horizon and number
of objects both increase. An uninformed TAMP algorithm
would waste a substantial amount of time attempting to satisfy
many unsatisfiable constraints associated with infeasible task
plans, e.g. by attempting to solve unsolvable motion planning
subproblems, before working on the feasible ones.

Some manipulation approaches deal with obstruction caused
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by storage units and containers by assuming that there exist
predicates like (reachable sink) or (opened door) to
help eliminate infeasible task plans during the discrete search
process. However, this type of discretization of geometric state
is not applicable to real-world situations where regions can be
partially occupied, doors can be half open, and multiple doors
need to be opened in order to enable reachability. In this paper,
we propose an alternative strategy that avoids discretization
by generating a diverse set of task plans and pruning out the
infeasible task plans using a neural network.

At the core of our framework is PIGINet, a plan feasibility
prediction network based on the transformer architecture.
Given a candidate task Plan with Image features of objects, 2)
the Goal formula, and 3) the relations and continuous values
in the Initial state, PIGINet outputs a probability that the task
plan is feasible. The elements of each action or relation in the
initial state—such as text, object poses, and door joint angles—
are processed to produce embeddings of the same dimension
and fused together to produce each token in the input sequence
to transformer encoder. A pre-trained CLIP model [3] is used
to generate corresponding text and image embeddings. For
each distribution of tasks, the model is trained with up to
4000 plans and plans for up to 600 environments.

We deploy our trained model in a TAMP algorithm that
generates a large number of task plans, sorts them by the
model’s predicted likelihoods of feasibility, and refines them
in order of feasibility until a solution is found. We evaluate
the success rate and runtime of our learning-enabled TAMP
algorithm on unseen problem instances in comparison to a
baseline and ablations. Our experiments show that learning to
predict task plan feasibility can substantially improve planning
performance, cutting down runtime by 80% on problems with
a low dimensional state space and 10%-50% on larger ones. It
also achieves zero-shot generalization to problems with unseen
object categories thanks to its visual encoding of objects.

II. RELATED WORK

Our method builds on prior work in task and motion
planning (TAMP), learning to expedite TAMP, and sequence
prediction for robot manipulation.

a) Task and Motion Planning: One approach to TAMP
first performs a search over high-level task plans and then
refines each plan to be refined using sampling or optimiza-
tion [1]. Two of these algorithms [4, 5] use diverse plan-
ning techniques [6], which identify multiple distinct plans to
produce candidate task plans. Because diverse planners are
unaware of the geometry of the world, many candidate plans
have the same sources of infeasibility, e.g., due to unreachable
objects or regions. As a result, these TAMP algorithms waste
time finding continuous values for similar, unsatisfiable motion
planning problems associated with those task plans. Many
TAMP algorithms contain mechanisms that provide specific
feedback [1]] to the search over task plan using failed mo-
tion queries [[7] or unsatisfiable constraint sets [8]]. However,
these approaches require expensive geometric planning to first
identify failed task plans and second generate feedback.

b) Learning to speed up TAMP: TAMP slows down
exponentially as the problem horizon and the number of
manipulable objects increase. Silver et al. [9] developed a
Graph Neural Network (GNN) approach that ignores irrele-
vant objects in table-top rearrangement problems, taking into
account object obstruction. Khodeir et al. [[10] extended this
approach to predict which samplers should be prioritized when
solving for continuous values. Kim ez al. [11]] learned a cost-
to-go heuristic estimator using a relational embedding of the
state to guide search. Several learning-for-TAMP approaches
learn single-action feasibility classifiers using object poses and
relative distances [12], depth image [13| [14} [15], or point
cloud [16] encoding of the environment. Compared to work
on action feasibility, our approach of classifying feasibility
of entire plans enables us to 1) discard infeasible task plans
without ever performing motion planning and 2) consider
constraints arising from actions late in the plan that restrict
choices early in the plan (e.g. whether two doors need to be
opened depends on how many objects must be placed inside
later and how large they are). Also, we are leveraging, instead
of replacing, task planning [10, [17], by providing the learner
with sound task plans, easing the learning burden and, in
practice, greatly expanding the learner’s ability to generalize
to varied initial states, goals, and even actions. Furthermore,
we are deploying powerful pre-trained language and vision
models to represent complex scenes in order to learn models
that generalize well from relatively small amounts of training
data (150-600 problems for each problem set).

c) Sequence-based modeling for robotic manipulation:
We are inspired by recent works that used attention-based
neural networks to encode the state, fusing multi-modal inputs,
and making object-centric decisions. Zhu et al. 18] generate
the next action name and action parameters by encoding
the states as symbolic and geometric scene graphs and then
process them with GNNs. Liu er al. [19] predict object
poses for semantically meaningful arrangements by encoding
text and point-cloud embeddings in the same sequence for a
transformer encoder. Blukis er al. [20] generate subgoals given
language instructions by encoding a sequence of previous sub-
goals and combining them with a language embedding. Yuan
et al. [21] learn object embeddings by encoding a sequence
consisting of image patches of the whole scene and canonical
views of each object in a transformer architecture and then
use the learned embedding for querying object spatial relations
or a direction for gripper movement. Our work uses similar
techniques for merging multi-modal input but deals with more
complex spatial relationships between objects, reasoning about
obstruction while also dealing with extraneous inputs due to
the large state space of our mobile manipulation problems.

IIT. PROBLEM FORMULATION

We represent TAMP problems using an extension of the
Planning Domain Definition Language (PDDL), a logic-based
action language, that supports planning with continuous val-
ues [22]. We define a TAMP domain (P,C,A) by a set
of predicates P, constants C and actions A. Predicates and



Init

IsJointTo(door3, fridgel)
IsType(tomatol, @food)
Supported(tomatol, table2, pg)

Goal

Closed(door3)
In(tomatol, storagespace2)
On(tomatol, table2)

TABLE I: Example initial facts (Z) and goal conditions (G),
where @ indicates constants.

Plan skeleton Task plan ™

(pull, fridgel:doorl)
(pick, tomatol)

pull(fridgel:doorl; ag, ?a1, ?g1, ?t1)
pick(tomatol; po, ?qe, g, ?t2)

TABLE II: An example plan skeleton and corresponding task
‘Plan used for plan feasibility prediction. Symbols starting with
? are variables to be assigned during skeleton refinement.

actions can be represented as tuples consisting of a name and
a list of typed arguments. The arguments may be (1) discrete,
such as object and part names, or (2) continuous, such as object
poses, object grasps, robot configurations, object joint angles,
and robot trajectories. Constants name objects that are useful
by all problems in the domain, such as object categories.

A TAMP problem (O,Z,G, A) is defined by a set of objects
O, a set of initial literals Z, and a conjunctive set of goal
literals G. A literal is a predicate with an assignment of values
to its arguments. The set of initial literals defines a state of the
world. Each grounded action defines a deterministic transition
of the world state. Table[[|shows some example literals of each
construct. Note that “fridgel:doorl”, “fridgel:spacel”, and
“fridgel” are three different objects in the planning problem
since they afford different actions.

A solution is a finite sequence of grounded action instances
that, when sequentially applied to the initial state Z, produces
a terminal state where the goal literals G all hold. During the
course of planning, many TAMP algorithms reason about plan
skeletons 7, partial solutions where the continuous arguments
are yet to be bound (denoted by the prefix ?). Some skeletons
can be turned into solutions through refinement by searching
over continuous values for unbound parameters that satisfy the
plan’s constraints, such as inverse kinematics and collision-free
constraints. However, successfully refining a skeleton is not
always feasible. A task plan 7 is a skeleton without continuous
arguments, as shown on the right of Table [[I}

Usually, task plans are produced and refined in order of plan
length. Our idea is to refine them in order of plan feasibility,
the likelihood that the refinement process can find a set of
values for all continuous arguments in 7. The role of the
plan feasibility predictor f is to take in a task plan 7, initial
literals Z, and goal literals G, and output a score f(Z,m,G), as
shown in Figure [2| We use f generically as a scoring function
for ranking a batch of task plans for refinement. Note that
this work addresses traditional TAMP, where the system is
assumed to be deterministic and observable. Thus, the planner
has full observability of the state, which includes information
such as the pose of each object, even if it’s occluded from
the perspective to the camera or fully enclosed, as well as
whether the object is supported by its initial container. Since
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Fig. 2: The input and output of our plan feasibility predictor.
Input is tokenized high-level actions, goal conditions, and
facts in the initial state. Output include the predicted likely-
hood that the high-level plan can be refined to produce motion
trajecories to satisfy all geometric constraints.

the feasibility checker also has access to the full state, we
render images from desired camera poses to take advantage
of pre-trained computer vision networks that takes in RGB
image input, as shown in Figure [3| Here, 6 image viewpoints
are used because (a) the kitchen is wide and objects will be
too small to be useful for feature extraction when the camera
is far away and (b) we need cameras that are looking from
top-down views (to see the empty area in a sink or pot) and
side views (to see into cabinets and fridges).

IV. LEARNING METHOD

Given a TAMP problem and a task plan, PIGINet first builds
a dictionary of embeddings for objects, continuous values, and
text using type-specific encoders. Next, it converts each action
in the plan, each literal in the goal, and the initial state into
tokens and stack them to produce one input sequence for a
transformer encoder. The decoded output is the probability of
plan feasibility. The architecture is illustrated in Figure []

A. Encoding objects, text, and continuous values

Constructing the input sequences requires encoding strate-
gies for elements of different modalities that form the initial
state, goal, and candidate plan, including objects, texts, and
continuous values.

Objects in the planning problem are represented by images.
We use images as an approximation of the geometric state to
leverage vision models. Although the planner has full state
information including collision geometries, the task planning
process normally would not consider geometry as it reasons
over symbolic states. We 1) render RGB images of the scene
from C cameras and query instance segmentation of each
object {{mc,o}le}'oo:'l, 2) extract their features with a pre-
trained vision network fi,,, 3) concatenate the features from
different cameras for each object, and 4) reduce the dimension
of the resulting feature vectors with a three-layer Multi-Layer
Perceptron (MLP),

Gimg(0) = MLPing ([ fimg(¥1,0); -3 fimg(TC0)])-

Text used in the domain, which includes the names of
predicates and actions as well as constants, is represented
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Fig. 3: Example camera poses and segmented images rendered
in PyBullet. The images with only background color are
omitted. Cameras 1-4 form an array that covers the whole
kitchen, while Cameras 5-6 look at goal-related regions.

as feature vectors with the same dimension as object and
value embeddings. There is a fixed number of such words
in a domain, such as SupportedBy, Pull, and @bottle.
For a word w, we first describe it using a colloquial English
phrase or sentence s. Rephrasing helps the network deal with
out-of-distribution names in the domain description file such
as isjointto, which is rewritten to “this is a joint of
that object”. Then, we encode it with a pre-trained language
embedding network fi,; and transform the output feature
through a linear and a ReLU layer,

= MLP[exz(ftexl(S))'

Continuous values in the initial literals, such as object
poses p = (z,y, z,yaw) and door joint angles a = (0,), are
each treated as typed tuples. We define a fixed set of value
types 7 and their corresponding tuple length L. First, we
normalize the values to fall in the range [—1, 1]. For example,
the z,y, z values are normalized with respect to the bounding
box of the world. The door angles, originally are in [0, £,per]
where 0 means the door is fully closed and Li,p., < m,
are normalized to [0, 1]. Then, we zero-pad tuples of varying
lengths to become feature vectors of the same dimension
Z | L;. For example, if value v = = (v1,...,vr,;) has type
T;, the resulting vector © has zero in all positions except
from 77 £; to S7_, L;. Then, we concatenate a one-hot
encoding of 7; with ¢. For example, if py = (z,y, 2, yaw)
and ag = (0,) are the only values used in the initial literals,

gtexl(w)

T =1[1,2], L =[4,1], the processed features will be
Do : [ 170 75%729727)’&“”0]’
~— N— ——
T=1, type is pose normalized value
andag:[ 0,1  ,0,0,0,0, o
~—~— ~~

T=2, type is angle normalized value
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Fig. 4: PIGINet architecture. Left: Encoding of objects, values,
and text into feature vectors of the same length. Right:
Construction of input sequence for transformer encoder from
lists of variable lengths from the plan, goal, and initial state.

Lastly, we process the resulting feature vectors with a linear
and a ReLU layer,

Gvat(V) = MLP,y([one-hot(4, |T1); 0]).

B. Transformer encoder for Plan, Images, Goal, Init

We view each literal in Znit and Goal, as well as each action
in 7, as one list of multi-modal elements z = [z1,..., Z;]
with element types t = [t1,...,1,,]. For literals, m € [2,4];
for actions, m € [1,2]. We produce a token out of the
list by mapping each element of the tuple to its feature
embedding, averaging the embeddings, and then adding a
positional encoding. We choose to average the embeddings,
as opposed to concatenating them, in order to handle tuples
of varying length. In practice, the two aggregation methods
yield similar training performance. Positional encodings are
used by transformer architectures as an addition to each input
tokens because the order matters for sequence-based models.
Each action in 7 has a different sinusoidal positional encoding
pel® where k is the number of actions. For the set of literals in
G and in Z, the sequence of constituting literals doesn’t matter,
so the positional encoding could denote their token type. All
literals in G have the same learned positional encoding peg,
and all literals in Z have the same learned positional encoding
per. In summary, the process of translating a list z into an
input token x, is as follows, where gi, € [Gimg, Grext> Gvat] are
defined previously and type(z) € [r,G,Z],

= h(at) = 000 + ek

=1

The transformer encoder takes in the sequence of tokens x
representing 7, G, and Z,

= (1), ooy (7, )y (G ), s Gy ) BT ), oo (T, )]

T1:n



Embeddings of initial literals are dropped uniformly at
random when the length of the sequence exceeds the max
sequence length n. We use multi-headed attention to enable
each position in the sequence to attend to others, except
for within the plan tokens. The plan tokens use a causal
mask, to build in the bias that the feasibility of one action
doesn’t depend on future actions. In practice, models trained
with causal-plan mask and full mask achieve similar learning
performance. Using three layers of residual attention blocks,
we get an output y with the same length as input z,

Y1.n, = Transformer(xy.y,).

We keep only the first position of the output and add linear
and sigmoid layers to produce a nonnegative feasibility score,

f(7T7 g7I) - MLPout(yl)-

C. Training

We train PIGINet using the binary cross-entropy classifi-
cation loss between the prediction and the label. We add a
positive weight to the loss function according to the ratio of
negative to positive training examples. The models are trained
until prediction accuracy converges on the validation set. We
use the confidence of the prediction as feasibility score. The
whole architecture is trained end-to-end.

V. PLANNING ALGORITHM

We developed a new PDDLStream [22] algorithm, batch-
sorted, that uses our PIGINet for feasibility prediction by
feeding it a large number of candidate task plans for scoring.
Algorithm [I] gives the pseudocode for the main algorithm
BATCH-SORTED-TAMP. Similar to the focused algorithm [22],
it lazily instantiates a set of free action parameters X, that
stand in for actual continuous values, using the available
sampling operations. Namely, it recursively creates free pa-
rameters that optimistically represent the possible output of
the sampling operations. The subroutine NEW-PARAMETERS
increases the depth of the recursive parameter instantiation.

BATCH-SORTED-TAMP repeatedly searches for %k distinct
plan skeletons to make up a single skeleton batch Ilg, where
k > 1. New plans are identified by performing a forward plan-
space search FORBID-SEARCH that forbids any previously
identified plans II from the search’s open list [23]]. After k
attempts, the batched plans II; are scored using the learned
feasibility predictor f(w,G,Z). Plans that are predicted to
have feasibility < 0.5 are discarded. The rest are sorted in
decreasing order of predicted likelihood of feasibility. The
algorithm attempts to refine each plan in order using sampling
via REFINE-PLAN. This involves searching over combinations
of sampler output values that bind each free parameter and
jointly satisfy the preconditions of each step in the plan. The
first fully-bound plan 7, is returned as a solution.

When running without a feasibility predictor (i.e.
f(m,G,Z) = 1), BATCH-SORTED-TAMP is a complete
algorithm for PDDLStream planning, assuming that FORBID-
SEARCH is a complete discrete search. This follows from

the fact that the set of parameters X defines a finite
discrete search subproblem. FORBID-SEARCH will eventually
enumerate all solutions to this problem. Once exhausted,
NEW-PARAMETERS expands the subproblem, admitting
more solutions. We attempt to refine each solution using
REFINE-PLAN, which can be done indefinitely, for example,
in a parallel thread. When a feasibility predictor is present
and also produces false negatives, we can obtain a complete
algorithm by, rather than rejecting them, refining them at a
lower computation rate. Finally, because these algorithms are
complete for PDDLStream, they are also probabilistically
complete with respect to the underlying manipulation problem
if the samplers satisfy some sample coverage properties [24].

Algorithm 1 Batch Sorted TAMP Plan Prediction

Require: Feasibility predictor: f(m,G,Z) — [0,1]
1: procedure BATCH-SORTED-TAMP(O,Z, G, A; k)

2: X<« 0 > Initialize plan free parameters
3: M+ 0 > Initialize identified plans
4 while True do

5: I < 0 > Initialize batch of at most k plans
6: for i € {1,...,k} do

7 7 <— FORBID-SEARCH(O, X,Z, G, A;1II)

8 if m # None then > Identified a new plan
9: nHu= {7T}

10: I, U= {7‘(}

11: else > Infeasible: add more parameters
12: X U= NEW-PARAMETERS(O,Z, X)

13: P={(f(r,G,T),7) | mell}

14: for (p, 7) € reversed(sorted(P)) do

15: if p > 0.5 then > Filter plans
16: T« = REFINE-PLAN(7;Z, G)

17: if 7. # None then

18: return 7w, > Return the bound solution

VI. DATA GENERATION

We study a collection of tasks that require moving objects
to target surfaces or storage units, using actions move (robot
motion), pick and place (prehensile object manipulation),
and pull (operating single degree-of-freedom mechanisms
such as doors and drawers). We use problem set to refer to a
set of problems that are similar in object types, initial object
relations, and goal formulas, but vary in scene layout, object
assets, and initial world configuration.

We first experiment with a simple setting, the Fridge (FG)
problems, where the scene contains a small set of objects so a
single camera can capture all objects. Then we experiment
in a larger setting, the Kitchen (KC) problems, where the
problems contain extraneous articulated and movable objects.
Because the kitchens are wide, there are 6 simulated cameras:
4 arranged in a line pointing to the front face of the long
kitchen space and 2 close-up cameras pointing at the sink and
cooking pot from a top-down view. Together, they capture the
shape and visibility of objects. In practice, we observe that



models trained without images from the close-up cameras tend
to perform not as well.

We briefly describe the problem sets as follows. For detailed
descriptions of all seven problems and differences in PIGINet
hyper-parameters for training on them, please see Appendix.

A. The Fridges problem sets

There are fridges on top of tables and food items that
need to be in the fridge. Each fridge door is either closed
50% of the time, or open at a position sampled uniformly
at random across its joint limits. We also randomly sample
the pose of objects, the height of tables, and the initial base
configuration of a PR2 robot, as shown in Figure[5[(a). We used
articulated URDFs from the PartNet-Mobility dataset [25]
and food meshes sourced online. We generated the scenes
using seven fridge assets, nine food assets, and 11 table
assets. Overall, the problems contain 1-2 movable objects, 1-
2 surfaces, 1-2 storage units, and 1-5 doors. Successful task
plans to the problems include 1 pick-and-place and 0-2 pulls.

B. The Kitchens problem sets

The Kitchen problems have similar randomized properties
as the Fridges problem set: the poses of movable objects and
positions of doors for storage units are randomly sampled. The
kitchen environments have different compositions of furniture
and appliances but the same number of movable objects,
including two food items, two bottles, and two pill bottles
in each scene, as shown in Figure [5(b). The objects are drawn
from an asset library consisting of seven assets for each object
category, except for the small upper cabinets, of which we
used three. The manipulable objects include all goal-related
movables and doors, with an additional movable object and
one storage unit (with unrelated doors) when the goal region
is a storage unit. By adding irrelevant objects to the problem,
we test PIGINet’s ability to choose plans that don’t involve
those objects based on the goal and initial state. The other
objects in the scene are used as static collision bodies. Overall,
the problems contain 2-5 movable objects, 2-4 surfaces, O-
2 storage units, and 0-5 doors. Successful task plans to the
problems include 1-3 pick-and-place and 0-2 pulls.

C. Data collection

After sampling a scene and a goal, we run the batch-sorted
planning algorithm without any feasibility checking to gener-
ate up to 100 task plans for the problem. The planner refines
each plan until it finds one solution as a positive example. All
attempted but failed task plans are labeled as negative exam-
ples, as are task plans involving task-irrelevant objects. Labels
are noisy, as they are estimates of plan feasibility. Deciding
plan feasibility is NP-hard (via a 3-SAT reduction), making
obtaining exact labels computationally intractable. Thus, we
assign a label to be positive if the planner found a solution
within a timeout. We render the segmented images in the
PyBullet simulator offline, which includes segmented object
links such as doors. If an object is occluded, its associated
images will consist entirely of the background color. We save

the problem (O,Z,G) along with corresponding images and
one task plan as one data point.

We generated a dataset of 600 problems for problem set
table-to-fridge and fridge-to-fridge; 500 for
counter—-to-storage and counter—-to-pot, 250 for
pot-to-storage, and 150 for counter-to-sink and
sink-to-storage each. The names of the problem set
describe the initial placement region(s) of goal objects and
their destination placement region(s). We both train our models
and evaluate the integrated planners on individual problem
sets, except for the last one where problems involving two
different kinds of goals, i.e., moving to the sink and from the
sink, are trained together and tested separately. For training
each model, we divide the data with 9-to-1 training/validation
split to evaluate training performance and an additional 50
test problems for each task to evaluate the improvement of
planning performance. During training, we augment the im-
ages with random crops, rotations, shifts, warps, color jittering,
blurring, and grayscale transformations. We used a pre-trained
CLIP model [3] for image and text embedding. The dataset of
problems and solutions will be released upon acceptance of
the paper, along with the code for generating kitchen layout.

VII. EXPERIMENTS

We carried out experiments to answer the following three
questions: (1) Efficiency: Can PIGINet improve planning
speed without sacrificing planner success rate? (2) General-
ization: Can a trained model make accurate predictions in
problems with unseen objects? (3) Ablation: If we take away
parts of the input, can PIGINet still make accurate predictions?

A. Planner performance

First, we investigate the effectiveness of PIGINet for speed-
ing up planning. We compared the planning time of three
different planner ablations of Algorithm [T} 1) Baseline is
a learning-free planner that always returns f(7,G,Z) = 1,
attempting to refine every skeleton in the order of ascending
plan length. 2) PIGI sorts the plans with the probability
generated by our PIGINet. 3) Oracle refines only those task
plans that have been logged to be feasible offline, serving as
an upper bound on possible performance.

We test each planner on 30-50 unseen problems for each
problem set and record the runtime breakdown as well as the
number of infeasible task plans the planner spent on refining
before producing a solution. We set a 3-60 second timeout for
producing diverse task plans using a modified FastDownward
planner, depending on the average time it takes to generate
a feasible task plan among the batch. We set a 30-60 second
timeout on refining each task plan depending on the difficulty
of the problem set. We set no total timeout so that all problems
are solved by all planners eventually. We set no timeout on
batch-producing feasibility scores as they take relatively little
time, limited only by the GPU memory available for loading
up a trained PIGINet and the number of candidate task plans.
As the number of objects and problem horizon increases
among problem sets, the number of plans grows exponentially.



(a) Example scenes in the Fridges problem set.
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(b) Example kitchen layouts in the Kitchens problem set.

Fig. 5: Example procedurally generated environment for complex rearrangement problems. To create TAMP problems used
for training and testing, we 1) sample a scene, 2) sample a goal, 3) create the initial literals, 4) run a TAMP planner to find
a solution, 5) label the task plan associated with the solution as a feasible plan and record the previous task plans that failed
due to timeout during refinement as infeasible plans. 6) render seemented RGB images in simulation.
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Fig. 6: Example sources of obstruction in our problem sets. Fridges may have one to three doors that are partially or fully
closed. Sinks may be cluttered so object(s) need to be moved away to pick up object from it or place into it. Cooking pots
may be occluded by a lid or an object inside, which need to be moved away if there aren’t enough space to fit the goal object.

So does the size of PIGINet, since there are more images from
different camera poses and more initial literals to encode.

Figure[7(a) shows that PIGINet is able to cut down planning
time across all seven problem sets. It reduced runtime by
80% on the Fridges dataset and refinement time by 50% on
Kitchens problems. Given 50 or 100 task plans, PIGINet
usually cuts down the number of infeasible task plans to 1 - 4
and finds a solution after sampling one or two false positive
plans, as shown in Figure [7(b). From PIGINet’s predictions
on individual test problems, we observe that it helps with
planning the most when there are multiple doors and two of
them need to be opened in order to place two objects inside.
In those cases, it cuts down dozens of infeasible task plans
and ones that the manipulate irrelevant doors. Note that the
improvement in the number of false positive plans is larger
than that in planning time. This disparity is because the shorter
plans prioritized by the Baseline planner impose fewer con-
straints and thus need less time to be proven infeasible during
refinement than those longer ones sometimes ranked highly
by PIGINet. We think PIGINet’s less decisively improved
performance on the Sink-to-storage is the result of only being
able to collect a limited number of training examples (150
problems for each), relative to the large network size required
to handle up to 9 movable and articulated objects.

B. Generalizing to novel objects

We show that PIGINet can generalize to problems with
unseen objects. For a chosen asset, we held out a test set
consisting of problems where the object appeared in the goal
condition and train a model with the remaining problems. We
compare the model’s prediction accuracy on the validation
set (with seen assets) and the held-out test set (with unseen
assets). We experimented with leaving out three food assets
and three fridge assets individually. Figure [§(a) shows that the
models have equally good accuracy on the unseen object assets
as the seen ones (scattered dots align around the diagonal
line). We also created a test set where the goal is to move
staplers from fridge to fridge. We used five stapler assets from
PartNet-Mobility dataset. We see similar improvements in
planning time, confirming that PIGINet models can generalize
to problems with different object categories and shapes. We
attribute this impressive generalization ability to 1) the use of
a large pre-trained network CLIP and 2) data augmentation
techniques used during training, which makes the model less
sensitive to colors and texture.

C. Ablation studies

Finally, we studied how the PIGINet’s prediction accuracy
is affected when we remove different components of the
multi-modal encoding. We compare the models’ prediction
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Fig. 7: Evaluation of the PIGINet’s ability to reduce planning time, after being trained on individual problem sets and evaluated
on 30-50 unseen test problems. Scatter plot points are data points. Bar heights are the mean values with whiskers indicating
standard deviation. Each subplot’s y-axis is scaled differently. Results show that using PIGINet for feasibility-based plan sorting
a) significantly reduces planning time and b) enables the planner to find a solution mostly within three refinement iterations.
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Fig. 8: Evaluation of PIGINet’s ability to generalization to
unseen objects. Left: Each dot indicates one held-out exper-
iment, with x and y values showing the model’s prediction
accuracy on problems with seen or unseen assets. Right: The
planning time reduction by PIGINet is similar when goal
objects changed from food to novel category staplers.

accuracy on the validation set for four problem sets after the
loss converged. The fridges model was trained with both
families of problems in the Fridges problem sets. Figure [9]
shows that PIGINet with all input modalities achieves the
best prediction accuracy. Models without continuous values

fridges counter-to-pot
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Fig. 9: Classification accuracy on the validation set across
ablations of our method when different input components are
removed. Overall, PIGINet taking full input performs the best.

perform almost as well. As for images and initial literals, it
seems that discarding initial literals doesn’t affect as much
when there are a lot of image inputs (due to the 5-6 camera
viewpoints used in Kifchens problems), compared to the
Fridges problems where only one image viewpoint is used
and objects are scaled differently in the images in order
to be sufficiently large. That image cropping process causes
PIGINet to lose information about the geometric relationships
between objects, which initial literals provide, with literals
like TsJointTo(doorl, fridge) and SupportedBy(Bottlel,
Do, Sink). These experiments confirmed our hypothesis that



images and initial literals contain redundant information as
representation of geometric state. This is also good news for
using PIGINet for real-robot settings where privileged initial
literals that assume full observability can be hard to obtain.

VIII. CONCLUSION

We developed a novel learning-enabled TAMP algorithm
that consists of 1) a multi-modal transformer for predicting
feasibility of a batch of candidate task plans given the initial
state and goal and 2) a TAMP planner that refines the task
plans in the order of predicted feasibility. Our method reduces
planning time on complex rearrangement problems with ar-
ticulated and movable obstacles, where uninformed planners
suffer from wasted refinement efforts. PIGINet also achieves
zero-shot generalization across unseen movable object cate-
gories thanks to its visual encoding of objects.
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APPENDIX
A. Planning problem sets

The Kitchens problem sets are as follows:

(1) table-to-fridge: the food is initially on the table.
Successful plans involve 1 pick-and-place and 0-2 pulls.
(ii) fridge-to-fridge: the food is in another fridge.
Successful plans involve 1 pick-and-place and 0-4 pulls.

The Kitchens problem sets are as follows.

(iii) counter—-to-storage: two instances of food or bot-
tles are to be stored in the fridge or an upper cabinet.
Successful plans involve 2 pick-and-place and 0-2 pulls.
counter—-to-pot: one food item is to be in the pot.
The placement path may be blocked by a lid on the pot
and/or an object that’s placed inside the pot. The object
inside doesn’t have to be removed if there is still enough
room to fit the target object in. Successful plans involve
1-3 pick-and-place and 0-2 pulls.

pot-to-storage: two food items are to be in the
fridge and one of them is initially inside the pot, which
may be covered by the lid. Successful plans involve 1-3
pick-and-place and 0-2 pulls.

sink: this is a union of two problem sets involving
two different types of goals: (a) counter-to-sink:
one food item is to be in the sink, which is occupied
by one or two obstacles inside; successful plans involve
1-3 pick-and-place. (b) sink—-to-storage: two food
items are to be in a storage unit, while at least one of
the food item is originally inside the sink with one or
two other obstacles; successful plans involve 2-3 pick-
and-place and 0-2 pulls. For both sets, the manipulable
objects include the target objects, obstacles in the sink,
and one extra movable object on the counters. There are
150 problems from each set for training. For evaluating
planning time, 30 problems from counter-to-sink
and 20 problems from sink-to-storage are used.

@iv)

)

(vi)

B. Model hyper-parameters

We used images from five camera poses for problem set
(iii, iv) and six camera poses for (v-vi) To efficiently train
the transformers, we used a max sequence length of 56 for
problem sets (v, vi) and 32 for the others.


https://arxiv.org/abs/1801.00680
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