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Fig. 1: Physics-informed neural motion planning of a 6-DOF robot manipulator in a real-world narrow passage environment.
The images from left to right show the robot’s motion sequence from its start to the desired goal configuration. In this case,
the proposed approach took 0.05 seconds, whereas LazyPRM* took 2.79 seconds to find a path, making our method at least
50× faster than a traditional approach.

Abstract—Motion planning (MP) is one of the core robotics
problems requiring fast methods for finding a collision-free
robot motion path connecting the given start and goal states.
Neural motion planners (NMPs) demonstrate fast computational
speed in finding path solutions but require a huge amount of
expert trajectories for learning, thus adding a significant training
computational load. In contrast, recent advancements have also
led to a physics-informed NMP approach that directly solves the
Eikonal equation for motion planning and does not require expert
demonstrations for learning. However, experiments show that the
physics-informed NMP approach performs poorly in complex
environments and lacks scalability in multiple scenarios and high-
dimensional real robot settings. To overcome these limitations,
this paper presents a novel and tractable Eikonal equation
formulation and introduces a new progressive learning strategy to
train neural networks without expert data in complex, cluttered,
multiple high-dimensional robot motion planning scenarios. The
results demonstrate that our method outperforms state-of-the-art
traditional MP, data-driven NMP, and physics-informed NMP
methods by a significant margin in terms of computational
planning speed, path quality, and success rates. We also show
that our approach scales to multiple complex, cluttered scenarios
and the real robot set up in a narrow passage environment. The
proposed method’s videos and code implementations are available
at https://github.com/ruiqini/P-NTFields.

I. INTRODUCTION

Robots moving in their surrounding environment must find
their feasible motion trajectory coordinating their actuators
to move from their start configuration to goal configura-
tion while satisfying all the constraints, such as collision
avoidance. Various approaches exist, from classical methods

[12, 18, 6, 11] to learning-based neural motion planners
(NMPs) [26, 28, 10, 25, 17, 3], that solve motion planning
problems. However, the classical techniques suffer from the
curse of dimensionality, i.e., they exhibit high computational
times in finding a solution [7, 6, 27]. In contrast, the NMPs
demonstrate fast computational speeds at test time but require
massive training data containing robot motion trajectories in
the given environments [23].

Inspired by physics-informed deep learning models [30, 34],
recent development has led to a physics-informed NMP called
Neural Time Fields (NTFields) [23] that require no expert
training trajectories and instead directly learn to solve the
Eikonal equation for motion planning. Once trained, NTFields
output the speed and time fields in the given environment for
the desired start and goal configuration. Time fields’ gradients
are then followed to retrieve the feasible path solution for
the underlying MP problem. Although NTFields find path
solutions extremely fast and require no expert data, they
struggle in complex environments and do not scale well to
multiple scenarios and high-dimensional planning problems.
These limitations are mainly due to the following two reasons.
First, the Eikonal equation formulation has an extremely
sharp feature solution around low-speed obstacles, making it
difficult for the underlying deep-learning model to converge
and perform well in complex scenarios. Second, training deep
neural models to solve PDEs is inherently challenging and
requires advanced learning strategies and an expressive PDE
formulation with a smooth loss landscape.

https://github.com/ruiqini/P-NTFields


Therefore, this paper addresses the limitations of NTFields
and proposes a new progressive learning method, which also
requires no training trajectories and scales very well to com-
plex scenarios, including high-dimensional, real-world robot
manipulator planning problems. The main contributions of the
paper are summarized as follows:

• We highlight that the Eikonal equation formulation for
motion planning in NTFields can converge to incorrect
local minimums during training, resulting in relatively
low performance and incapability to scale to multiple,
complex environments.

• We introduce a novel progressive speed scheduling strat-
egy that iteratively guides neural model training from a
constant high speed to a very low speed around obstacles
in the environment, preventing incorrect local minimums
when training physics-informed NMPs in complex, clut-
tered environments.

• We propose using the viscosity term [4] based on the
Laplacian operator in the Eikonal equation formulation to
transform its ill-posed, non-linear behavior into a semi-
linear elliptic representation with a unique smooth solu-
tion around low-speed obstacles. Our novel formulation
leads to physics-informed NMPs that are scalable to
complex scenarios.

• We compare our approach with a wide range of ex-
isting classical and learning-based methods. Our results
show our proposed method leads to significantly better
performance than prior methods, requires no training
trajectories, and scales to multiple scenarios for motion
planning.

• We also demonstrate our framework performance using
a 6 degree-of-freedom (DOF) UR5e robot in solving
real-world narrow passage motion planning problems, as
shown in Fig. 1.

II. RELATED WORK

The pursuit for fast, efficient, and scalable motion plan-
ning methods began with complete [22] and resolution-
complete [14] techniques, which struggled in high-dimensional
problems. A new class of sampling-based motion planning
methods (SMPs) [13, 2, 16] emerged in early 2000, followed
by their optimal variants [12], and have remained an industry-
standard tool for almost over a decade. SMPs sample the
robot configurations to build a graph in an obstacle-free C-
space and then use Dijkstra-like algorithms [5] to retrieve
paths connecting the given start and goal pairs. However,
these methods also exhibit very low-computational speeds for
finding path solutions. Therefore, several adaptive sampling
approaches [27, 36, 6] have been proposed to bias the sam-
ples to the space containing the path solution to speed up
the planning times. Although adaptive sampling methods are
better than standard SMPs, they also struggle with the curse
of dimensionality.

Recently, a new class of methods called Neural Motion
Planners (NMPs) [26, 28, 10, 25, 17, 3] surfaced that find
a path extremely fast at test time than traditional approaches

and scale to high-dimensional problems with multi-DOF robot
systems. However, the bottleneck to these methods is their
need for many expert trajectories to train neural networks
for motion planning. These expert trajectories often come
from traditional planners such as SMPs, adding significant
data generation computational load. In a similar vein, [9, 19]
perform supervised learning using data from conventional
planners to learn the neural network-based cost-to-go (c2g)
function or implicit environment functions (IEF). At test time,
the gradients of the c2g function or IEF are followed to do
the path planning. Another class of methods utilized Deep
Reinforcement Learning to learn value functions for path
planning [37]. Those methods require many interactions with
the environment for data generation and learning. Therefore,
they are mostly demonstrated in toy problems, not real high-
DOF robot settings.

The most relevant work to our approach that solves the
Eikonal equation and generates time fields for motion planning
includes Fast Marching Method (FMM) [33, 40, 39], and
NTFields [23]. FMM is a classical approach that discretizes
the robot C-space and uses wave propagation to find a solution
to the Eikonal equation. Since FMM relies on discretization,
it is computationally intractable in high-dimensional robot C-
space. In contrast, the NTFields method is the first and most
recent NMP that directly solves the Eikonal equation, does
not require expert trajectories for training, and finds paths
relatively faster than prior methods during testing.

Although NTFields are shown to scale to high-DOF prob-
lems to some extent, they inherit limitations caused by the
ill-posed nature of the Eikonal equation and the difficulty of
training neural networks with physics equations. Therefore,
NTFields could not scale to multiple environments and real-
world settings and exhibited relatively lower success rates. We
discuss these limitations in detail in the following sections
and propose our new method that solves the Eikonal equation,
requires no expert data, and finds solutions with very high
success rates and low computation times. We also demonstrate
the generalization of our approach to multiple environments
and high-DOF real-world robot MP problems.

Aside from MP methods, it is also important to discuss par-
allel advances in PINNs and their relevance to our approach.
PINNs [30] provide a way for solving PDE by minimizing
the PDE residual loss. Specifically, EikoNet [34] solves the
Eikonal equation by PINN. However, their Eikonal equation
formulation is not suitable for the MP tasks, as highlighted
in [23]. Furthermore, progressively changing the reference
signal has also been studied as the numerical continuation [1]
in numerical methods. In PINNs, such phenomena are often
coined as curriculum learning [15]. However, the curriculum
learning for PINN focuses more on 1-dimensional PDE with
simple boundary conditions, whereas we focus on real-world
motion planning applications. Finally, the viscosity term has
also been employed recently for signed distance fields (SDF)
reconstruction [20, 24]. However, the shortest distance solution
of SDF is always a straight line, while MP requires a curved
path to go around low-speed obstacles and induce complex



collision avoidance constraints.

III. BACKGROUND

This section formally presents the background to robot
motion planning problems and their solutions through physics-
informed NMPs.

A. Robot Motion Planning

Let the robot’s configuration and environment space be
denoted as Q ⊂ Rd and X ⊂ Rm, where {m, d} ∈ N
represents their dimensionality. The obstacles in the environ-
ment, denoted as Xobs ⊂ X , form a formidable robot con-
figuration space (c-space) defined as Qobs ⊂ Q. Finally, the
feasible space in the environment and c-space is represented
as Xfree = X\Xobs and Qfree = Q\Qobs, respectively.
The objective of robot motion planning algorithms is to find
a trajectory τ ⊂ Qfree that connects the given robot start
qs ∈ Qfree and goal qg ∈ Qfree configurations. Furthermore,
additional constraints are sometimes imposed on the trajectory
connecting the start and goal, such as having the shortest
Euclidean distance or minimum travel time. The latter is often
preferred as it allows imposing speed constraints near obstacles
for robot and environment safety. However, planning under
speed constraints is computationally expensive, and existing
methods rely on path-smoothing techniques when safety is
desired.

B. Physics-informed Motion Planning Framework

Recent development led to a physics-informed motion plan-
ning framework called Neural Time Fields (NTFields) [23],
which provide a computationally-efficient and demonstration-
free deep learning method for motion planning problems. It
views motion planning problems as the solution to a PDE,
specifically focusing on solving the Eikonal equation. The
Eikonal equation, a first-order non-linear PDE, allows finding
the shortest trajectory between start (qs) and goal (qg) under
speed constraints by relating a predefined speed model S(q)
at configuration qg to the arrival time T (qs, qg) from qs to qg
as follows:

1

S(qg)
= ∥∇qgT (qs, qg)∥ (1)

The ∇qgT (qs, qg) is the partial derivative of the arrival time
T (qs, qg) function with respect to qg . Therefore, finding a
trajectory connecting the given start and goal requires solving
the PDE under a predefined speed model and arrival time
function. The arrival time function in NTFields is factorized
as follows:

T (qs, qg) =
∥qs − qg∥
τ(qs, qg)

(2)

The τ(qs, qg) is the factorized time field which is the output
of NTFields’ deep neural network for the given qs and qg .
Given the arrival time function in Eq. 2, the Eikonal equation

in Eq 1 expands to the following using the chain rule:

S(qg) =
τ2(qs, qg)√

τ2(qs, qg)− 2τ(qs, qg)(qg − qs) · ∇qgτ(qs, qg)

+ ∥qs − qg∥2∥∇qgτ(qs, qg)∥2
(3)

Since the neural network in NTfields outputs the factorized
time field τ , the corresponding predicted speed is computed
using the above equation. Furthermore, the NTField frame-
work determines the ground truth speed using a predefined
speed function:

S∗(q) =
sconst

dmax
× clip(d(p(q),Xobs), dmin, dmax) (4)

where d(·, ·) is the minimal distance between robot surface
points p(q) at configuration q and the environment obstacles
Xobs. The dmin, and dmax are minimum and maximum dis-
tance thresholds, and the sconst is a predefined speed constant;
we normalize sconst = 1 to represent the maximum speed in
the free space, and smin = sconst×dmin/dmax represents the
minimum speed in the obstacle space. Finally, the NTFields
neural framework is trained end-to-end using the isotropic loss
function 5 between predicted S and ground truth S∗ speeds,
i.e.,

|1−
√
S∗(qs)/S(qs)|+ |1−

√
S(qs)/S∗(qs)|+

|1−
√
S∗(qg)/S(qg)|+ |1−

√
S(qg)/S∗(qg)|

(5)

IV. PROPOSED METHOD

Although NTFields demonstrate the ability for efficient
motion planning without expert training data, it exhibits rel-
atively low success rates in complex, cluttered environments,
including high-dimensional problems, and does not scale to
multiple scenarios. We observed that these limitations are
mainly because of the ill-posed nature of the Eikonal equa-
tion and that the physics-informed loss landscapes are hard
to optimize in general. To overcome these limitations, we
introduce a new progressive learning algorithm comprising
a novel viscosity-based Eikonal equation formulation and a
progressive speed update strategy to train physics-informed
NMPs in multiple, complex, high-dimensional scenarios.

A. Viscosity-based Eikonal Equation

The Eikonal equation’s exact solution has several problems
that lead to neural network fitting issues. First, the solution
is not differentiable at every point in space, which means a
neural network cannot approximate the solution very well,
especially for the sharp feature in low-speed environments.
Second, the gradient ∇qgT (qs, qg) is not unique at these non-
smooth points, which will also cause the neural network fitting
issue because training is based on the supervision of the
gradient ∇qgT (qs, qg).

To fix these problems, we propose to use a viscosity term
that can provide a differentiable and unique approximation
of the Eikonal equation’s solution. The viscosity term comes
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Fig. 2: Effect of viscosity coefficient, ϵ, on the correctness of
time field results. It can be seen a large value of ϵ deviates
from the solution given by the expert. The expert is FMM
which finds a solution to the Eikonal equation. The colorbar
shows the speed fields range from 0 to 1.

from the vanishing viscosity method [4]. It adds the Laplacian
∆qgT (qs, qg) to the Eikonal equation, i.e.,

1

S(qg)
= ∥∇qgT (qs, qg)∥+ ϵ∆qgT (qs, qg), (6)

where ϵ ∈ R is a scaling coefficient. The resulting system in
Eq. 6 is a semi-linear elliptic PDE with a smooth and unique
solution. The expansion of Eq. 6 using the chain rule and the
T described in Eq. 7 becomes:

S(qg) =
1

ϵ∆qgτ(qs, qg) +

√√√√√√[τ2(qs, qg)− 2τ(qs, qg)(qg − qs)

·∇qgτ(qs, qg) + ∥qs − qg∥2

×∥∇qgτ(qs, qg)∥2]/τ4(qs, qg)
(7)

Note that in the above equation, we use ∆qgτ(qs, qg) instead
of ∆qgT (qs, qg) for computational simplification, which also
keeps the similar second-order derivative term. Furthermore,
the value of ϵ affects the smoothness of the predicted time
fields. In Fig 2, we compare fields with different values of ϵ
to the ground truth field generated with the FMM approach.
It can be seen that by varying the ϵ, the correctness of results
varies compared to the ground truth. In practice, when the
coefficient ϵ → 0, the smooth and unique solution of Eq. 6
will approach the exact solution of the Eikonal equation Eq. 1.

The above formulation resolves the ill-posed issue of the
Eikonal equation. However, computing the Laplacian operator
is computationally expensive as the existing deep learning
libraries determine the hessian matrix of τ(qs, qg) and its trace
to extract Laplacian. To mitigate the computational load, we
employ the following two strategies. First, we only use the
viscosity term during the training by setting ϵ to a constant
value, and at planning time, we only compute ∇qgT (qs, qg)
and ∇qsT (qs, qg). Second, we directly compute the diagonal
of the hessian matrix using auto-differentiation following the
strategy described in [31], resulting in similar complexity
as standard gradient forward propagation, which is faster
than complete hessian computation in standard deep learning
libraries.

B. Progressive speed scheduling

This section introduces our progressive speed scheduling ap-
proach to train physics-informed motion planners in complex

0.0 0.2 0.4 0.6 0.8 1.0

α = 0.0 α = 1/3 α = 2/3 α = 1.0−→ −→ −→

Fig. 3: Progressively decreasing the speed around obstacles
using parameter α leads to continuous interpolation of speed
and time fields in the given environment. The colorbar shows
the speed fields range from 0 to 1.

environments. The physics-based loss functions are generally
challenging to optimize as they depend on the gradient of
the underlying neural network. In physics-informed motion
planners, the optimization becomes more difficult due to low-
speed conditions near obstacles, often leading to an incorrect
local minimum, i.e., despite small training loss, the neural
model behaves as if low-speed obstacles do not exist in the
environment. To circumvent the incorrect local minimums,
we observe and leverage the following two properties of
the Eikonal equation to progressively guide the NN training
process and capture the low-speed obstacle space for collision
avoidance.

First, we notice the solution of the Eikonal equation (Eq.
1), T (qs, qg), in a constant max speed scene (S(q) = 1)
will become the distance between the given start and goal,
which leads to trivial solution τ(qs, qg) = 1. Second, we find
that the interpolation from the constant max-speed to the low
speed around obstacles is continuous, and the solutions of the
Eikonal equation along those interpolations are also continu-
ous. Based on these observations, we propose a progressive
speed alteration strategy that gradually scales down the speed
from a constant max value to a low value around obstacles
using a parameter α(t) ∈ [0, 1], i.e.,

S∗
α(t)(q) = (1− α(t)) + α(t)S∗(q), (8)

where t ∈ N represent the training epochs. Therefore, when
α(t) = 0, the scene will have a constant max speed, and the
Eikonal equation solution will be trivial. Furthermore, when
α(t) = 1, the scene will have low speed around obstacles. We
can also make α(t) > 1, such that the scene’s minimal speed
will become even lower than smin. Fig 3 shows the gradual
progression of speed and time fields as α linearly scales from 0
to 1. It can be seen that the speed and time fields are changing
continuously with α changing linearly.

To train the physics-informed motion planner, we start with
a low value of α(t) and let NN fit a constant speed trivial
solution. Next, we progressively interpolate the field from
constant max speed to low speed by gradually increasing
the α(t) over the training epochs. The NN can easily fit the
trivial solution. Then progressively decreasing obstacle speed
S∗(q) guides the network to learn the interpolating lower-
speed fields. Furthermore, we also observe that the speed fields
change linearly with α(t), but the resulting time fields change



more aggressively. Thus, we also reduce the rate of change of
α(t) as the training epochs increases.

Lastly, since we gradually decrease the ground truth speed
while training, the network parameters can change drastically
and forget the previous learning. Several approaches exist to
prevent such drastic changes, such as trust region optimization
[35, 32]. However, those approaches are often computationally
expensive. We propose an alternative approach that bounds
the ratio of loss L at epoch t and t − 1 within a threshold
η, i.e., (Lt/Lt−1) < η. Whenever the loss ratio exceeds
the imposed bound, we shuffle the training data so that
the difficult samples causing high loss values are distributed
across different training batches. That way, we observe the
average loss does not diverge from the previous loss value
and stays within our threshold. We also notice that without
such a strategy, the physics-informed NN fails to converge
and recover the underlying time field.

C. Neural Architecture

This section describes our neural framework, as shown in
Fig. 4, for generating the speed and time fields for solving the
robot motion planning problems. Our framework comprises
the following modules.

1) Fourier-based C-space Encoding: Given the robot’s
initial (qs) and target (qg) configurations, and the random
environment latent code b ∈ Rd×h, we compute the random
Fourier feature γ [38, 29] for obtaining high-frequency robot
configuration embeddings, i.e.,

γ(qs) = [cos(2πbT qs), sin(2πb
T qs)]

γ(qg) = [cos(2πbT qg), sin(2πb
T qg)]

(9)

The latent code b is of dimension d × h ∈ N ×N (h is the
hidden unit number) and represents the given environment.
Although the latent code can be obtained in numerous ways,
such as using auto-encoders to embed environment point
clouds, we assign a fixed, unique random matrix to each
environment for their representation. These features are further
processed into a latent embedding by a C-space encoder f(·),
which is a ResNet-style multi-layer perception [8].

2) Non-linear Symmetric Operator: To combine
features f(γ(qs)) and f(γ(qg)), we use the non-linear
symmetric operator

⊗
from NTFields method [23].

The operator
⊗

concatenates the max and min of two
given features together, i.e., f(γ(qs))

⊗
f(γ(qg)) =

[max(f(γ(qs)), f(γ(qg))),min(f(γ(qs)), f(γ(qg)))]. It is
shown in [23] that the

⊗
operator is inspired by the Eikonal

equation properties and leads to improved performance in
predicting the speed and time fields.

3) Time Field Generator: Our time field generator network
g is a ResNet-style multi-layer perceptron which takes the
encoding f(γ(qs))

⊗
f(γ(qg)) and outputs the factorized time

field τ , i.e.,

τ(qs, qg) = g(f(γ(qs))
⊗

f(γ(qg))) (10)

1/S = ∥∇T∥+ ϵ∆T
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Fig. 4: The neural architecture comprises the Fourier-based C-
space Encoder, symmetric operator, and time-field generator.
Three images on the top left show we progressively decrease
the speed around a bunny-shaped obstacle to guide the neural
network training. The image on the top right shows the final
time field from start to goal generated by the trained model.

Given the τ(qs, qg), we compute its gradient, ∇qgτ(qs, qg),
and Laplacian, ∆qgτ(qs, qg), using auto-differentiation to de-
termine the S(qs) and S(qg), as described in Eq. 7.

D. Objective function

The NTFields method uses L1-norm (Eq. 5) to compute
their isotropic loss function. The L1-norm is not smooth
and imposes challenges converging to the optimal solution.
Therefore, we propose a new, isotropic objective function, i.e.,

L(S∗
α(q), S(q)) =S∗

α(qs)/S(qs) + S(qs)/S
∗
α(qs)+

S∗
α(qg)/S(qg) + S(qg)/S

∗
α(qg)− 4

(11)

Similar to the loss in [23], our new loss is non-negative and
has a minimum value of 0. However, unlike loss in [23], the
new loss is smooth and can easily reach the minimum value
when α is small.

E. Training pipeline

Algorithm 1 outlines our training pipeline. The inputs to
our procedure are described in Line 1, ranging from robot
configurations dataset D to neural architecture definition. As
the training epoch, denoted by i, increases, the value of α is
increased using predefined step sizes (Line 3). Consequently,
the ground truth speed model is progressively modified at
each training epoch using the parameter α (Line 4). Given the
inputs and the ground truth S∗

α, we begin the batch training
by forming batches from dataset D. The dataset D contains
the valid robot start (qs) and goal (qg) configurations. For
each start and goal pair in batch Bj , we predict the factorized
time τ(qs, qg) and associated speeds, S(qs) and S(qg), using
Equation 7 (Line 8-9). Next, we compute the loss between
predicted and ground truth speeds (Line 10) and aggregate the
resulting average batch losses to compute the total dataset loss
(Line 12). To prevent neural parameters θ from diverging, we
reshuffle the samples between batches whenever Li/Li−1 > η,
where η is a predefined threshold. The reshuffling is performed
to distribute the difficult samples and prevent large gradient-
based parameter updates at line 11.



Algorithm 1 Progressive Learning
1: Inputs:

D ▷ Robot configurations dataset
S∗(q) ▷ Groud truth speed model
τθ(·) ▷ Neural network model
θ ▷ Model parameters
α, step ▷ Progressive learning parameters

2: for i = 1, · · · do ▷ Training epoches
3: α = α+ step
4: S∗

α(q) = (1− α) + αS∗(q) ▷ Compute progressive speed
5: Li = 0 ▷ Begin batch training
6: for batches j = 0, · · · do ▷ Batch Bj from D
7: ∀(qs, qs) ∈ Bj ▷ Training data in one batch
8: τθ(qs, qg) ▷ Predict factorized time
9: Sθ(qs), Sθ(qs) ▷ Predict speed by Eq. 7

10: lj = L(S∗
α(q), Sθ(q)) ▷ Compute loss by Eq. 11

11: θ = θ −∇θlj ▷ Update model parameters
12: Li = Li + lj
13: if Li/Li−1 > η then ▷ Check loss threshold
14: Reload i-th epoch model parameters θ
15: Reshuffle samples among batches
16: Repeat batch training steps 5-12

F. Planning pipeline

Once trained, we use the execution pipeline similar to the
NTFields method. First, we predict τ(qs, qg) for the given start
qs, goal qg , and latent environment code b, as described in
Eq. 9. Next, the factorized time, τ , parameterizes Eq. 2 and
3 for computing time T (qs, qg) and speed fields S(qs), S(qg),
respectively. Note that, we use Eq. 3 instead of Eq. 7 for
efficient speed computations, i.e., without Laplacian (ϵ→ 0).
Finally, the path solution is determined in a bidirectional
manner by iteratively updating the start and goal configurations
as follows,

qs ← qs − βS2(qs)∇qsT (qs, qg)

qg ← qg − βS2(qg)∇qgT (qs, qg)
(12)

The parameter β ∈ R is a predefined step size. Furthermore,
at each planning iteration, the start and goal configurations
are updated using gradients to march toward each other until
∥qs − qg∥ < dg , where dg ∈ R.

G. Implementation Details:

This section provides the implementation details including
the data generation process and hyperparameters.

1) Data generation:: Our data generation process is the
same as NTFields, i.e., we only need the valid start and goal
configuration pairs across different environments for training.
We present three training and testing scenarios: eight cluttered
3D (C3D) environments, two Gibson environments, and two
narrow passage 6-DOF robot manipulator environments. For
C3D and Gibson, we use 8×0.5M and 2×1M configuration
pairs, respectively; for the manipulator, we use 2×1M pairs.
Furthermore, like NTFields, our data generation process is
swift and takes less than two minutes to gather.

2) Hyperparameters: Our method hyperparameters include
the following. For training, we set α = 0.5 for the first
1000 epochs, then increase α with step = 1/4000 for each
epoch; when the epoch is greater than 4000, we reduce
step = 1/8000, until α >= 1.05 to get the final result.
We set η = 1.5 and use AdamW [21] as the optimizer with
the learning rate as 10−3 and the weight decay as 0.1. For
testing, we set β = 0.03 and dg = 0.06 for 3D environments,
β = 0.02 and dg = 0.04 for 6-DOF manipulator. Regarding
neural network parameters, our method can make a smaller
neural network to solve the Eikonal equation well: we reduce
the hidden unit number of NTFields from 256 to 128. We also
reduce the network ResNet-style block number of NTFields
from 10 to 5. Finally, our network size is reduced from
NTFields 50MB to 7MB. In that way, our method performs
more efficiently in planning.

V. EVALUATION

In this section, we evaluate our method through the fol-
lowing experiments. First, we perform the ablation analysis
demonstrating the effectiveness of our new Eikonal formula-
tion and the progressive speed scheduling strategy. Second, we
perform a comparative analysis to evaluate the performance
of our method against a variety of state-of-the-art baselines.
For this analysis, we consider three environment setups: (1)
cluttered 3D (C3D) environment contains eight scenarios, each
with 10 obstacles randomly placed in the 3D space. (2) Gibson
environment in which we picked two scenarios from the
Gibson dataset. (3) 6-DOF UR5e robot manipulator planning
in two complex cabinet environments with narrow passages.
For these scenarios, we present evaluations in both simulation
and real-world. We perform all experiments on a computing
system with 3090 RTX GPU, Core i7 CPU, and 128GB
RAM. The baseline methods and the evaluation metrics for
the comparative analysis are summarized as follows:

Baselines:
• FMM: A wave propagation method [33] that discretizes

the given C-space and solves the Eikonal equation to
compute the arrival time for path planning.

• RRT*: A single-query SMP that constructs optimal trees
and returns a path connecting the given start and goal. We
set the 10 seconds time limit in which if RRT* retrieves
a path, it is considered successful.

• RRT-Connect: A bidirectional trees method that grows
two trees from the start and the goal until they meet. We
further process the generated paths via smoothing to get
shorter path lengths in the same homotopy class. Similar
to RRT*, we set the 10 seconds time limit in which if
RRT-Connect retrieves a path, it is considered successful.

• Lazy-PRM*: A multi-query SMP that randomly samples
a given environment and constructs a connected graph.
Then for any new start and goal pair, the graph is queried
through the nearest neighbor search to extract the path
solution. The theme of lazy methods is to minimize
the number of collision checks, thus resulting in shorter
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Fig. 5: We compare our method with and without progressive
speed scheduling or the viscosity term against FMM on a
Gibson environment for time field generation. Our method
recovers the correct result. The color bar shows the speed fields
range from 0 to 1.

planning times. Like RRT*, we also set the 10 seconds
time limit for this planner to find a path solution.

• IEF3D: We use the modified IEF3D shown in NTFields
paper. It learns implicit environment functions for path
planning using an encoder-decoder structure. The encoder
is a PointNet module that takes the environment point
cloud and outputs its latent embedding. The decoder is a
ResNet-style MLP that takes the environment embedding,
the start and goal configuration, and outputs the time field.
IEF3D is trained via supervised learning and requires
expert demonstration data. We randomly sampled start
and goal pairs in C-space space and used FMM to find
their Eikonal equation solution. The resulting data is
used to train IEF3D via supervised learning. Furthermore,
IEF3D can scale to different environments.

• NTFields: As described earlier, it directly solves the
Eikonal equation and does not require expert training
data. However, since NTFields do not scale to multiple
environments, we train individual NTField models for
each presented scenario. For instance, in the C3D en-
vironment, we have eight scenarios, so we had to train
eight NTField models for testing.

Evaluation Metrics:
• Time: The planning time shows the computational time

in seconds for the planner to find a valid collision-free
path connecting the given start and goal.

• Length: The path length indicates the sum of Euclidean
distance between path waypoints.

• Safe margin: The safety margin indicates the closest
distance to obstacles along the path.

• SR: Finally, the success rate (SR) shows the percentage
of collision-free paths found by a planner in a given test
dataset.

A. Abalation Analysis

In this section, we analyze our progressive learning frame-
work by evaluating the role of progressive speed scheduling
and the viscosity term in recovering time fields. Fig. 5 shows
the speed and time fields of our method and its ablations in
comparison to FMM. The speed field is shown in the color
scale, where color changing from yellow to blue indicates
speed changing from maximum to minimum, respectively. The
contours represent the time field from a start point. From Fig.

C3D time (sec) length safe margin sr(%)
Ours 0.02± 0.00 15.20± 15.62 1.94± 1.07 99.8

NTFields 0.05± 0.00 15.47± 15.74 2.09± 1.06 99.9
IEF3D 0.06± 0.00 15.21± 15.59 1.89± 1.11 99.5
FMM 0.62± 0.01 15.03± 14.08 1.96± 1.00 100
RRT* 2.08± 0.00 14.49± 13.90 1.31± 1.63 99.8

LazyPRM* 1.38± 8.16 14.35± 11.60 1.20± 1.83 99.5
RRT-Connect 0.11± 0.02 14.67± 13.81 1.22± 1.82 100

Fig. 6: Comparison in C3D environments. The figures show
six paths generated by our method (orange), NTFields (red),
IEF3D (cyan), FMM (green), RRT* (brown), LazyPRM*
(pink), and RRT-Connect (yellow). The boxes are the obsta-
cles. The statistical results on 8×1000 different starts and goals
for eight C3D environments.

5 contours, it can be seen that our approach gets a similar
result as FMM, whereas without progressive speed scheduling
or viscosity term, the same neural model cannot recover the
correct result. Quantitatively, the loss of our method is very
small, i.e., 0.015 units, whereas without speed scheduling,
it increases to 0.03 units, and without viscosity, it further
increases to 0.15 units. We also observed that NTFields could
recover similar fields as our method but require a larger neural
network size (50MB) than ours (7MB) and do not scale
to multiple scenarios. Hence, the ablation analysis validates
that our progressive learning aids in efficiently recovering
and learning near-optimal time and speed fields in complex
environments.

B. Comparison Analysis

This section presents a comparative analysis of our method
and other baselines on C3D, Gibson, and 6-DOF manipulator
environments. Note that our method and IEF3D generalize to
multiple environments, whereas for NTFields, we trained a
separate neural model for each scenario.

C3D: Our C3D environments (Fig. 6) contain randomly
placed ten boxes with different sizes in each of the eight
scenarios. Furthermore, we randomly sample 1000 start and
goal pairs for motion planning in each scenario to create a
test dataset. Finally, we compare our method’s performance
with all baselines. Fig. 6 shows the paths in two example
cases where our method, NTFields, IEF3D, FMM, RRT*,
LazyPRM*, and RRT-Connect path solutions are illustrated
in orange, red, cyan, green, brown, pink, and yellow colors,
respectively. It can be seen that our method, NTFields, IEF3D,
and FMM paths are smoother than RRT* and Lazy PRM*
because of the obstacle margin. The obstacle margin allows
safe maneuvering around the obstacles. The table in Fig.



6 presents the statistical comparison of all methods. The
computational time of our method is about 2 times faster than
NTFields, IEF3D, and RRT-Connect and over 30 times faster
than FMM, RRT*, and LazyPRM*. Although RRT-Connect
is fast for sparsely distributed obstacles, it is still slower than
neural motion planners. Furthermore, all methods have near
100% high success rate. Note that IEF3D requires expert data
for training, whereas NTFields requires the training of eight
separate neural models for the eight C3D scenarios. Hence
NTFields add a significant computational load at training
times. In contrast, our approach generalizes to eight C3D
scenarios through one-time training of a single neural model
and requires no expert data.

Gibson: Our Gibson environments (Fig. 7) demonstrate
home-like complex scenarios. We randomly sample 500 start
and goal pairs for motion planning in each environment. We
compare our method’s performance with NTFields, IEF3D,
FMM, RRT*, LazyPRM*, and RRT-Connect. Fig. 7 shows the
paths where our method, NTFields, IEF3D, FMM, LazyPRM*,
and RRT-Connect path solutions are illustrated in orange, red,
cyan, green, pink, and yellow colors, respectively. We exclude
RRT* for the cases presented in the figure as it could not find a
valid within 10 seconds limit. Our method, NTFields, IEF3D,
and FMM results show similar smooth paths because of the
obstacle safety margin, whereas, RRT-Connect and LazyPRM*
have shorter path lengths due to a smaller safety margin. The
table in Fig. 7 presents the statistical results. Our method’s
computational time is about 2 times faster than NTFields and
IEF3D and over 30 times faster than FMM, RRT*, LazyPRM*,
and RRT-Connect. Furthermore, our method and FMM achieve
about 98% high success rate, while NTFields, IEF3D, RRT*,
and LazyPRM* achieve about 92% success rate. Although

Gibson time (sec) length safe margin sr(%)
Ours 0.01± 0.00 11.68± 29.69 0.88± 0.16 98.3

NTFields 0.03± 0.00 11.31± 54.23 0.94± 0.16 91.6
IEF3D 0.05± 0.00 11.47± 27.69 0.87± 0.18 92.5
FMM 0.69± 0.00 11.21± 24.79 0.93± 0.13 97.4
RRT* 3.17± 0.00 10.36± 26.28 0.57± 0.29 89.8

LazyPRM* 2.63± 25.09 9.94± 16.27 0.53± 0.35 92.9
RRT-Connect 0.44± 0.28 11.95± 32.88 0.56± 0.34 100

Fig. 7: Comparison in two Gibson environments. The figures
show six paths generated by our method (orange), NTFields
(red), IEF3D (cyan), FMM (green), LazyPRM* (pink), and
RRT-Connect (yellow). The statistical results on 2×500 dif-
ferent starts and goals for two Gibson environments.

RRT-Connect exhibits the highest success rate, it is still 40
times slower than our method. Finally, our results validate that
our progressive learning approach enables physics-informed
NMPs to achieve higher performance without needing any
demonstration trajectories for learning and outperform prior
methods.

6-DOF Manipulator
This section shows our method for 6-DOF UR5e robots in

simulated and real-world environments. We chose a cabinet
with narrow passages for the environment. In the simulation,
we directly load a cabinet mesh, whereas, for real setup, we
use Dot3D with RealSense camera to scan and create a point
cloud of an actual cabinet. To form our test set, we randomly
sampled 2×100 start and goal configuration pairs for simulated
and real-world environments.

The table in Fig. 9 compares our method, NTField, RRT*,
Lazy-PRM*, and RRT-Connect in both scenarios. We exclude
IEF3D due to large data generation and training times. In the
table, it can be seen that our method achieves the highest
success rate with the shortest execution time, demonstrating
the effectiveness of our progressive learning approach in
complex, narrow passage environments.

Fig. 9 shows the execution of our method (left) and RRT-
Connect (right) in a challenging case in the simulated environ-
ment and the table underneath presents the overall statistical
comparison of the indicated methods on the testing dataset.
In the presented scenario, the UR5e robot’s end effector starts
from the middle shelf of the cabinet and crosses two relatively
thin obstacles to the bottom shelf of the cabinet without
collision. In this particular situation, NTField could not find a
solution whereas our method took 0.07 seconds to get a 0.83
length path with a safe margin of 0.03, and RRT-Connect took
20.13 seconds to get a 0.90 length path with a safe margin
of 0.02. For real-world experiments, in Fig. 1, we show a
challenging path that the robot went from the initial pose
to make its end effect go deep into the cabinet. Finally, we
demonstrate additional real-world experiments in Fig. 8, which
depicts two cases: the first shows the manipulator crossing an
obstacle at the top level, and the second shows the manipulator
avoiding the cabinet’s door to reach the given target.

C. Data Generation and Training Time Analysis

The following table presents the data generation and training
times of our method, NTFields, and IEF3D. It can be seen
that our data generation time is significantly low, similar to

Generation Time C3D Gibson Manipulator
Ours 1s 2s 56s

NTFields 1s 2s 56s
IEF3D 21h 5h -

Training Time C3D Gibson Manipulator
Ours 25h 26h 26h

NTFields 57h 32h 16h
IEF3D 11h 7h -

TABLE I: Data generation and training times of our
approach, NTFields, and IEF3D in different scenarios.
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Fig. 8: Two different real-world manipulator cases: the first case shows the manipulator crossing an obstacle at the top level
to reach deeper into the narrow passage, and the second case shows the manipulator avoiding the cabinet’s door to reach the
given target.

Manipulator time (sec) length safe margin sr(%)
Ours 0.03± 0.00 0.43± 0.10 0.04± 0.00 92.0

NTFields 0.05± 0.00 0.38± 0.06 0.04± 0.00 84.5
RRT* 5.16± 0.01 0.52± 0.36 0.04± 0.00 67.0

LazyPRM* 2.79± 0.48 0.76± 0.80 0.04± 0.00 86.0
RRT-Connect 1.08± 0.69 1.14± 0.23 0.02± 0.00 87.5

Fig. 9: Our method (left) and RRT-Connect (right) in a chal-
lenging case in the simulated environment: the manipulator
crosses two relatively thin obstacles to move from the middle
(start) to the bottom (goal) shelf. The table shows statistical
results on 2×100 different starts and goals for simulated and
real-world manipulator environments.

NTFields, as we only need to compute robot obstacle distance.
In contrast, IEF3D takes several hours in data generation as
it requires expert trajectories from a classical planner, FMM,
for supervised learning. Furthermore, since IEF3D cannot
generalize to high DOF scenarios, we exclude it in the 6-DOF
manipulator environment. Regarding training times, NTFields
take the longest time as it requires training a separate model for
each environment, i.e., eight models for C3D, two for Gibson,
and one for the manipulator. Our method training times are
much lower than NTFields as our one model can generalize

to multiple environments. However, our model’s training times
are slower than IEF3D, primarily because our method has to
compute the Laplacian during training.

VI. DISCUSSIONS, CONCLUSIONS, AND FUTURE WORK

We propose a novel progressive learning framework to
train physics-informed NMPs by solving the Eikonal equation
without expert demonstration. Our method deals with the PDE-
solving challenges in physics-informed NMPs such as NT-
Fields [23]. First, we propose a progressive speed scheduling
strategy that begins with finding a simple PDE solution at
constant high speed and then gradually decreases the speed
near the obstacle for finding a new solution. Second, we
propose to use the viscosity term for the Eikonal equation
and convert a nonlinear PDE to a semi-linear PDE, which is
easy for a neural network to solve. Thus our method solves the
Eikonal equation more precisely and efficiently and increases
the overall performance in solving motion planning problems
than prior methods. Additionally, our method requires fewer
neural network parameters due to our progressive learning
strategy than NTFields, leading to computationally efficient
physics-informed NMPs’ training and planning. Furthermore,
we also demonstrate that our method scales to multiple envi-
ronments and complex scenarios, such as real-world narrow-
passage planning with a 6-DOF UR5e manipulator.

Although our method can scale to multiple environments
and real-world setups and outperform prior methods with
expert demonstration data, a few limitations, highlighted in
the following, will still be the focus of our future research
directions. First, our method cannot generalize to unseen
environments and only scales to given multiple scenarios.
Therefore, one of our future directions will be to explore novel
environment encoding strategies to make physics-informed
NMP generalize to the novel, never-before-seen environments.
Second, the success rate of our approach in the 6-DOF



manipulator is around 92%, which is better than previous
approaches such as NTFields, but there is still a need for
improvement to make it close to 100% performance. Hence,
another direction of our future work will be to investigate
the Eikonal equation properties further to discover ways to
overcome the challenges in solving high-dimensional robot
manipulation problems. Lastly, aside from addressing a few
limitations, we also aim to explore novel PDE formulations to
train physics-informed NMPs to solve motion planning under
dynamic and manifold constraints.
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