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Abstract—The problem of path planning has been studied for
years. Classic planning pipelines, including perception, mapping,
and path searching, can result in latency and compounding errors
between modules. While recent studies have demonstrated the
effectiveness of end-to-end learning methods in achieving high
planning efficiency, these methods often struggle to match the
generalization abilities of classic approaches in handling different
environments. Moreover, end-to-end training of policies often
requires a large number of labeled data or training iterations to
reach convergence. In this paper, we present a novel Imperative
Learning (IL) approach. This approach leverages a differentiable
cost map to provide implicit supervision during policy training,
eliminating the need for demonstrations or labeled trajectories.
Furthermore, the policy training adopts a Bi-Level Optimization
(BLO) process, which combines network update and metric-based
trajectory optimization, to generate a smooth and collision-free
path toward the goal based on a single depth measurement. The
proposed method allows task-level costs of predicted trajectories
to be backpropagated through all components to update the
network through direct gradient descent. In our experiments, the
method demonstrates around 4× faster planning than the classic
approach and robustness against localization noise. Additionally,
the IL approach enables the planner to generalize to various un-
seen environments, resulting in an overall 26-87% improvement
in SPL performance compared to baseline learning methods.

I. INTRODUCTION

Path planning is one of the significant tasks in the field
of robotics. In structured environments, deploying a pre-built
high-quality (HQ) map has pushed the limit and enabled
robots to conduct daily tasks in environments shared with
humans, e.g., autonomous driving [2]. However, for environ-
ments without a pre-built map, the robots can only rely on their
onboard sensors for navigation. With limited sensor range,
scene occlusions, and dynamic changes, the robots must react
fast and re-plan efficiently to avoid collisions and navigate
safely to their destinations.

The classic planning pipeline is based on a modular frame-
work that includes perception, mapping, and path searching [5,
26]. This setup introduces latency as information is shared
between modules and results in slower system response times.
The planning performance is also limited by the information
processed and preserved by each module, such as post-filtering
and low-resolution perception. Maintaining a high-resolution
map, on the other hand, can be computationally intensive
and affect real-time performance. Additionally, if one module
has errors or inaccuracies, these issues can be amplified and
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Fig. 1. Experiment of planning through static and dynamic obstacles with a
legged robot, with A, B, and C representing three planning events. The goal is
set outside the door from the start. The green curve shows the robot’s trajectory
as it (A) avoids a static obstacle, (B) avoids a moving human, and (C) climbs
stairs to reach the goal. The blue curve represents human movement. The
bottom images illustrate the depth measurements and the predicted trajectories
from our method for these three events.

cause compounding effects by subsequent modules, potentially
leading to system failure.

Researchers have been exploring end-to-end learning meth-
ods [23, 27] that can directly map sensory observations into
trajectories or actions, as a way to improve the planning
pipeline. Shah et al. [23] trains the planning policies to mimic
reference trajectories using supervised learning. However, this
method relies on having diverse data to function well in
various scenarios, which is a common limitation of explicit
supervised training. On the other hand, non-supervised ap-
proaches like reinforcement learning (RL) [27], which allows
for random exploration, can lead to better generalizability.
But, it struggles with low sampling efficiency and slow con-
vergence, particularly in planning tasks with sparse task-level
rewards. To address these issues, Pfeiffer et al. [21] combined
supervised learning and RL, using prior demonstrations to
improve training efficiency through better weight initialization
using prior demonstrations. Recent studies [30, 32] have
utilized auxiliary tasks to boost RL’s training efficiency with
external supervised signals. However, this approach still faces
the risk of overfitting to the training data due to the use
of explicit training labels. Additionally, the auxiliary losses,
which may not align with the main navigation objective, can
steer the policy toward suboptimal solutions.

To address this challenge, we introduce “imperative learn-



ing” (IL), a non-supervised approach aimed at improving the
training efficiency and generalization of the policy. The policy
includes network prediction and metric-based optimization,
forming a BLO process during training. The IL approach
trains the policy end-to-end without needing demonstrations
or labeled references. Fig. 2 illustrates the overall process of
the IL-based training for the planning policy. The core of IL
lies in using differentiable metric-based optimization to direct
network updates, resulting in an unsupervised “imperative”
loss function. During training, a pre-built differentiable cost
map provides traversability cost to guide the policy’s behavior.
When deployed, the policy decodes the traversability infor-
mation directly from the input ego-centric observation and
plans on top of it. Due to end-to-end training, the observa-
tion features extracted during deployment can be optimized
specifically for the planning objective. Overall, the proposed
IL approach can offer advantages over both end-to-end RL
and supervised learning methods. In comparison to the end-
to-end RL, instead of stochastically sampling the policy, the
pre-computed cost map can guide the optimization process
through direct gradient descent, improving training efficiency.
In contrast to supervised learning, the IL approach utilizes
task-level loss without any explicit labels or demonstrations,
resulting in increased exploration of the action space, leading
to better generalization. This paper presents the IL approach
as a novel solution to overcome the limitations of previous
methods for training a perceptive planning policy. Its main
contributions are summarized as follows:

• A new non-supervised learning approach to train a per-
ceptive planning policy with “imperative” supervision
through direct gradient descent.

• An end-to-end training pipeline to map the single depth
measurement to the trajectory by leveraging a BLO
process with network update and metric-based trajectory
optimization.

• Benchmarking the planning performance of learning-
based methods with the classic approach in handling
different types of unseen environments.

The iPlanner will be open-sourced1 to promote research for
learning navigation autonomy.

II. RELATED WORK

Nowadays, classic planning frameworks, such as those done
by Cao et al. [5], Wellhausen and Hutter [26], Yang et al.
[29], have demonstrated effective and reliable performance in
autonomous navigation in unseen terrains. For example, the
navigation system, done by Cao et al. [5], incorporating map-
ping, terrain analysis, and motion-primitive path search[31],
is deployed successfully during the DARPA Subterranean
Challenge. The work of Wellhausen and Hutter [26] employs
a pipeline with a learned terrain estimator and executes a lazy-
PRM [12] path search, similar to the approach of Yang et al.
[29] who uses a learned terrain cost and performs PRM* [11]
with additional path optimization. Recently, there has been
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a shift towards end-to-end policies that directly map sensory
inputs to planning paths or control actions [4, 8, 10, 14, 18, 20,
22, 23, 24, 27, 28, 30, 32]. This is due to the challenges posed
by modularized systems, such as increased overall latency [18]
and lack of robustness against noise or errors in real-world
missions. However, the generalizability and reliability of these
learning methods may still lag behind classic approaches,
especially in scenarios that have not been encountered during
training.

Supervised Learning: A common method for training an
end-to-end policy is to copy expert or “ground truth” trajecto-
ries, such as works done by Bojarski et al. [4], Loquercio et al.
[18], Pfeiffer et al. [20], Sadat et al. [22], Shah et al. [23], Xiao
et al. [28]. The policy is trained to associate input sensory
data with ground truth labels, which are obtained either by
demonstrations from experts or statistical sampling. However,
the explicitly supervised policy may not generalize well to
diverse environments because of limited data diversity and
richness. Shah et al. [23] uses 60 hours of navigation data
from multiple robots and environments to improve generaliza-
tion, but its performance is still limited by scene coverage.
Moreover, relying on expert trajectories [22] or explicitly
labeled references may limit the performance of the planner,
leading it to converge towards sub-optimal solutions due to the
limitations of the optimalities of the expert paths. Loquercio
et al. [18] used simulated environments to train a planning
policy for fast-flying drones. The simulated depth is estimated
using stereo matching to reduce the gap between simulation
and reality, allowing the network to be exposed to more
training data with less effort in real-world data collection.
Nevertheless, the use of a sampling-based planning algorithm
to generate reference paths may limit the performance of the
network by the optimality of the sampling-planning results.

Reinforcement Learning: Recently, deep reinforcement
learning has gained popularity for training planning policies,
as demonstrated in studies by Hoeller et al. [8], Kahn et al.
[10], Kim et al. [14], Shi et al. [24], Wijmans et al. [27], Ye
et al. [30], Zhu et al. [32]. As mentioned above, RL can utilize
task-level loss. With simulated environments, using RL can
save the effort of collecting and labeling data and generate
various scenarios to improve the generalization of the policy.
Moreover, the unsupervised nature of RL does not depend on
the optimalities of expert labels and allows the network to
explore the action space for better solutions. However, there
are challenges in training with RL. One issue is the difficulty in
creating a perfect simulator. To overcome the sim-to-real gap,
researchers may need to collect data in the real world [10]
or pre-process the simulated inputs based on heuristics [8].
Additionally, RL’s low sample efficiency makes it challenging
to train large policies end-to-end from dense inputs such as
images or depth measurements. Training may take several days
even with multiple GPUs [27]. To reduce the complexity of
training, researchers have adopted strategies such as separating
perception training from policy training [8] or using auxiliary
tasks with heuristics-based loss functions [30, 32]. However,
the success of these methods is contingent upon the accuracy
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Fig. 2. An overview of training the planning policy using IL. The pipeline consists of two parts, forming a BLO process with upper-level network update and
lower-level trajectory optimization. During inference, the perception and planning network first encodes the depth measurement and goal position to predict a
key-point path toward the goal with an associated collision probability. During training, the trajectory cost and task-level ”fear” loss are propagated back to
provide direct gradients for updating both the perception and planning networks simultaneously.

and optimality of the heuristics employed.
This paper explores a novel non-supervised IL approach

to train a planning policy from depth measurements end-
to-end. This IL method uses task-level loss, eliminating the
need for explicit labeling during training. By utilizing a
differentiable cost map, the IL loss function can guide the
network update through direct gradient descent to improve the
training efficiency.

III. METHODOLOGY

Problem Definition: Define Q ⊂ R3 as the workspace for
the robot to navigate. Let the subset Qobs ⊂ Q represent the
obstacles in the space that the robot cannot traverse through.
Given a depth observation Dt ∈ RH×W from the current time
stamp t and a goal pG

t ∈ R3 in the robot frame, a trajectory τ t

can be generated to guide the robot from the current position
pR
t ∈ R3 towards to the goal pG

t while avoiding obstacles
Qobs. Here, we also denote a cost function C of a given
trajectory τ , and an overall task-level loss function F , such
that F = C+L, where L is an arbitrary non-negative function.

System Overview: The process of planning and imperative
learning is illustrated in Figure 2. The pipeline consists of
three modules. Firstly, a convolutional neural network (CNN)
based [16] perception front-end transforms the depth input
into an observation embedding. This embedding, combined
with the goal waypoint feature, is then input into a planning
network that predicts a key-point path, Kt, towards the goal,
which consists of n key points. Afterward, a metric-based
trajectory optimizer further optimizes and interpolates the
key-point path based on the cost C on the cost map H to
generate the trajectory τ t. The optimized cost C, with other
task loss L, is then backpropagated through the network to
update its parameters θ. Together, the network update and
trajectory optimization form a nested BLO process. The aim
of the pipeline is to enforce a trajectory optimization-based
supervision (unsupervised optimization) on the perception and
planning network f parameterized by θ. We hereby formulate
the BLO model as follows:

min
θ
F(fθ, τ ∗)

s.t. τ ∗ = argmin
τ∈T

C(fθ, τ ),
(1)

where τ ∗ is the optimized trajectory under a constraint set T,
based on the objective C. We next discuss the intuition of (1)
in detail.

A. Perception and Planning Network
Perception Network: At each time stamp t, the robot re-

ceives a depth measurement Dt sampled from the space Q.
The front-head perception network encodes the observation
Dt from the time t into a perception embedding Ot ∈ RC×M ,
preserving spatial and geometric information for the planning.
Our method utilizes the backbone of the ResNet, proposed
by He et al. [7], a classic and popular CNN architecture
that is widely used as a feature extractor for image data. We
adopt the efficient architecture: ResNet-18, to extract a feature
representation for path planning from the perception input Dt.

Planning Network: The planning network takes the percep-
tion embedding Ot ∈ RC×M , derived from the depth measure-
ment Dt, and the goal position pG

t ∈ R3 to find an collision-
free to the goal. Here, C denotes the channel dimension of
the embedding Ot, and M represents the dimension of the
feature space. The goal position, with a dimension of 3, is
first mapped into a higher dimensional feature embedding
Pt ∈ RC∗×M , where C∗ ≥ 3 using a linear layer. The
perception embedding Ot and the expanded goal feature Pt

are concatenated to form Ôt ∈ R(C+C∗)×M as the observation
input. The planning network uses a combination of CNN and
MLP with ReLU activation to process Ôt and predict a key-
point path Kt ∈ Rn×3 containing n key points. The path Kt is
then interpolated and optimized by a metric-based trajectory
optimizer.

B. Trajectory Optimization (TO)
To enforce the safety and smoothness of the trajectory

generated by the planner, the key-point path K predicted by
the planning network, is optimized by a trajectory optimizer.
The objective is to minimize the trajectory cost C on a pre-
defined cost map H, which will be discussed in more detail
later. The optimization takes the predicted key-point path K as
the initial input and output the trajectory τ ∗ under a constraint
set T, formulated as follow:

τ ∗ = argmin
τ∈T
C(K, τ ), where K ← fθ (2)



(a) Environment Point Cloud (b) ESDF Cost Map

Fig. 3. An illustration of a training environment and its ESDF cost map
generated from the Matterport3D [6] dataset. (a) depicts the point cloud
reconstructed from collected depth images within a Matterport3D room. (b)
shows the smoothed ESDF cost map produced from the point cloud with
Gaussian filtering.

Fig. 4. The mathematically BLO pipeline of the imperative training for the
planning policy. The network function fθ predicts a path as the input for
the TO process. The TO minimizes the cost C with the optimized trajectory
τ∗. The trajectory cost C, combined with additional loss terms, forms the
total training loss F , and F is then backpropagated to update the network
parameter θ.

Notice that the pre-built cost map is utilized only during
training. During deployment, the TO interpolates and smooths
the key-point path to generate a dynamically feasible tra-
jectory τ t under a system constraint. Specifically, here, we
use Cubic-Spline [19] to construct a third-order polynomial
to pass through key points as a constraint. It interpolates m
intermediate points in between every two key points in Kt and
generates a dynamically feasible trajectory τ t ∈ R(mn+1)×3

that passes through all the key points, with zero second
derivatives on the start and endpoints, as per the natural
boundary conditions. This optimization problem can be solved
as a symmetric tridiagonal system with a linear solution [3].
Here, we create the cubic-spline function as a differentiable
layer using PyPose [25] library to record the gradients of the
output trajectory τ t to the input constraints Kt predicted by
the network.

C. Optimization Objective and Training Loss

1) Trajectory Cost: The trajectory cost includes three dif-
ferentiable terms that assess the quality of the output trajectory
τ t. The first term, obstacle cost CO, checks if the trajectory
collides or is too close to obstacles. To this end, before
training, we reconstruct the environment offline based on the
collected depth images, and their associated camera poses, as
shown in Fig. 3(a). Then, based on the reconstructed environ-
ment, we build a Euclidean Signed Distance Field (ESDF) to
label the distance to the nearest free (non-obstacle) space for
each position in the environment. The ESDF is then smoothed
with a Gaussian filter to make it locally differentiable and
create a cost map H with non-negative cost values, shown in
Fig. 3(b). To generate the cost CO, each coordinate pi on the
trajectory τ t will be projected on this cost map H to get a

cost value. The formulation of the obstacle cost CO is shown
as follows:

CO(τ t) =
∑
i

H(pi) pi ∈ τ t, |i=m×n, (3)

where H(pi) represents the value of position pi on the cost
map H. Secondly, we use the Euclidean distance from the
final position of the trajectory τ t to the goal pG

t as the
second cost term CG . It encourages the trajectory to be close
to the destination and punishes the one that deviated away.
The destination cost CG is hereby denoted as follow:

CG(τ t) = E(pi,p
G
t ) pi ∈ τ t |i=m×n, (4)

where function E calculates the Euclidean distance between
two given positions. Finally, the cost term CM is used to
evaluate the motion smoothness of the trajectory. We assume
that the same amount of time is taken to travel between two
key points pK

i ,pK
i+1|i=0...n−1 on the key-point path Kt and

perform equal-time interpolation during the TO process. The
objective of minimizing the cost CM is to reduce the difference
in length of trajectory intervals on τ t, thereby minimizing
overall acceleration. The Euclidean distance from the current
robot position pR

t to the goal pG
t is used to regulate the overall

trajectory length and rewards a shorter motion. The motion
cost CM is formulated as follow:

CM(τ t,p
R
t ,p

G
t ) =

n−2∑
i=0

| E(pR
t ,p

G
t )

n− 1
− Eτ t

(pK
i ,pK

i+1) |,

(5)
where function Eτ t returns the length of a path interval
between two given positions on the trajectory τ t. The tra-
jectory cost C, as the objective of TO, is then formulated as a
combination of CO ∈ R+

0 , CG ∈ R+, and CM ∈ R+:

C(τ t) =α CO(τ t) + β CG(τ t) + γ CM(τ t,p
R
t ,p

G
t ), (6)

where α, β, and γ ∈ R+ are hyperparameters used to balance
the cost between different terms.

2) Fear Loss: In addition to the trajectory cost, the planning
network predicts a collision probability µt for each trajectory
to assess its risk of collision with obstacles. This is referred
to as “fear loss”. In some scenarios, the local planning policy
can be trapped in a local minimum. Instead of setting large
obstacle costs that could result in an over-conservative policy,
having this task-level loss in addition to the trajectory cost
provides the planner with the flexibility to escape from those
scenarios and ensures safety. When deploying, the planner will
only execute the trajectory with associated collision probability
µt < 0.5. The fear loss L(τ t) is calculated using binary cross
entropy (BCE):

L(τ t) =

{
BCELoss(µt, 1.0 ) τ t collides w.Qobs

BCELoss(µt, 0.0 ) otherwise.
(7)

The final training loss F is then formulated as the general
summation of trajectory cost C and task-level fear loss L:

F = C(τ t) + L(τ t). (8)



(a) (b)

Fig. 5. Illustration of depth observation from simulation and the real world.
(a) A depth image generated from the Gazebo simulation in the Matterport3D
environment. (b) A depth observation obtained from Intel RealSense D435
during real-world experiments.
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Fig. 6. Example of training and validation loss throughout the training
process. The SPL (Success Weighted by Path Length) is evaluated in the
garage simulation environment after specific epochs of training.

D. Training and Bi-Level Optimization (BLO)

As described above, the pipeline of the IL forms a nested
BLO process, where the TO, as the lower-level task, takes
the output of the network to generate the trajectory τ . Then,
given the output τ , the upper-level process of BLO finds the
network parameter θ to minimize the final training loss F .
Fig. 4 shows the pipeline in a mathematical formulation. To
solve the BLO problem, we adopt the concept of Proxy-Based
Explicit Gradient for Best-Response (EGBR) [17] by using
approximated BR mapping. Specifically, instead of explicitly
solving the optimization of the lower-level task TO, which can
be computationally expensive, we approximate a sub-optimal
solution τ sub by directly using the output of the cubic-spline
interpolation and its projection cost on map H as the trajectory
cost Csub:

τ sub ∼ argmin
τ∈T
C(fθ, τ ) (9)

where τ sub is an approximation to the optimal solution τ ∗.
With the trajectory τ sub, the corresponding cost Csub of the TO
objective, together with the task-level loss Lsub, are propagated
back to optimize the network parameter θ using gradient
decent and solves the BLO problem iteratively:

θi+1 ← θi − ω∇θiF(fθi , τ sub
i ), (10)

where ω is a hyperparameter of the learning rate. The gradient
of the training loss F to the network parameter θ is denoted

TABLE I
PLANNING PERFORMANCE ACROSS FOUR TYPES OF ENVIRONMENTS

SPL % - Success weighted by Path Length
Forest Garage Indoor Matterport Overall

MP [31] (LiDAR) 95.09 89.42 85.82 74.18 86.13
SL [18] 65.58 46.70 50.03 28.87 47.80
RL [8] (Tilt) 95.08 69.43 61.10 59.24 71.21
Ours (Tilt) 95.66 73.49 68.87 76.67 78.67
Ours 96.37 88.85 90.36 82.51 89.52

TABLE II
PLANNING LATENCY IN [MS] FOR DIFFERENT METHODS

SL [18] RL [8] MP [31] Ours Ours (Jetson)
13.5 (±1.8) 3.6 (±0.3) 24.9 (±4.2) 5.9 (±0.4) 11.4 (±0.6)

as follows:

∇θF =

(
∂F
∂f

+
∂C
∂f

)
∂f

∂θ
+

∂C
∂τ

∂τ

∂θ
. (11)

IV. EXPERIMENTS

We assess our method through both simulated and real-
world evaluations, comparing it to classic and learning-based
baselines. The simulations are run on a 2.6GHz i9 laptop with
an NVIDIA RTX 3080 GPU. Our real-world tests are carried
out using the ANYmal legged robot [9] equipped with an
NVIDIA Jetson Orin for the execution of our planning method.

The classic motion primitives (MP) planner, as proposed by
Zhang et al. [31], integrates with a modularized pipeline [5]
and uses a 360◦ view LiDAR. It is considered the state-
of-the-art (SOTA) non-learning method in terms of success
rate and efficiency, serving as a performance reference for
learning methods. As learning-based approaches, the super-
vised learning (SL) method by Loquercio et al. [18] and the
reinforcement learning (RL) method by Hoeller et al. [8] serve
as baselines. Both our method and the learning baselines use
a front-facing stereo-depth camera with a frame rate of 15Hz.
The RL method requires a downward-tilted camera view of
30◦, while the SL method requires a forward-looking camera.
Our method is tested with both camera settings using the same
policy weights.

Our method is trained using a combination of data collected
in both simulated and real-world environments. We gather ap-
proximately 20k depth images from various camera positions
in the Matterport3D [6] environment as well as in simulated
campus and tunnel [5] environments using Gazebo [15]. Addi-
tionally, we collect 10k images in real-world environments to
adjust the policy for real-world perception noise. An example
of depth observation in a simulated environment versus a real-
world environment can be seen in Fig. 5. The training takes
about 20 hours (100 epochs) using 30k images and a single
NVIDIA 3090 Ti GPU, without pre-trained ResNet weights.
After just 20 epochs (4 hours), the policy can demonstrate a
high success rate in navigating through the unseen simulated
environment, as shown in Fig. 6.



A B C

A

B

C

(a) Indoor

A B C

A
B

C

(b) Garage

B
A

C

CBA

(c) Forest

CBA

A

B
C

(d) Matterport
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Fig. 8. An illustration of a local minimum scenario. The point cloud, in
white, depicts the surrounding environment. The robot is trapped in a corner
where no collision-free path to the goal (purple) exists within the FOV. The
network predicts a path (red) with a high collision probability, which triggers
the protective behavior to stop the robot.

A. Simulation Experiments

The simulated experiments are conducted in four different
types of environments: indoor, garage, forest, and a Matter-
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Fig. 9. Experiment against localization errors. (a) illustrates the compounding
effect of the classic MP method with the modularized pipeline. The point
cloud in red depicts the obstacles detected by the terrain analysis module. (b)
shows the planning result of our method. In the same conditions, a feasible
path (green) to the goal is planned based on the current depth observation
displayed in the camera view image.

port3D room, as shown in Fig. 7, using the Autonomous
Exploration Development Environment [5]. The testing envi-
ronments are not seen by the learning-based planning policies
during training. In each environment, 30 pairs of start and goal
positions are selected in traversable areas and given to the
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Fig. 10. Real-world experiment with the legged robot, with the red curve indicating the robot’s trajectory starting from right to left. The robot begins inside
a building and navigates to the outside. Green boxes A-F mark different planning events during the route. The robot follows a series of waypoints (shown in
blue) and plans in between to: (A) pass through doorways, (B, D, E) circumvent static/dynamic obstacles, and (B, F) ascend and descend stairs.

robot. The robot uses onboard sensing to search for collision-
free paths and navigate to reach the goal.

Table. I presents the results of experiments. The perfor-
mance of the planning methods is evaluated using SPL [1]
(Success weighted by Path Length). In the experiments, the SL
method is found to be inferior in generalizing to the four un-
seen testing environments. On the other hand, the RL method
performs well in the forest but struggles in the other three
environments. This is due to its overfitted perception header
trained with a downward-tilted camera, resulting in limited
field-of-view (FOV) for planning effectively in complex envi-
ronments. Furthermore, the perception header of the RL policy
is trained using a self-supervised approach, not specifically
optimized for planning. In contrast, our method demonstrates
consistent and high performance across all different types
of unseen environments and outperforms even the classic
method with a 360◦ degree FOV LiDAR. Furthermore, our
policy is capable of directly generalizing to different camera
settings. Even with the same downward-tilted camera as the
RL method, our policy can still achieve the best performance
among all learning-based methods, shown in Table I. On
the other hand, the robot’s performance can be impacted by
local minimal scenarios when its FOV is limited. For those
cases, our network predicts “fear” values to detect trajectory
collisions and stop the robot before crashing, as demonstrated
in Fig. 8. In summary, our proposed planner has the capability
to achieve, on average, 87% better performance than the SL
method and 26% better performance than the RL method in
terms of SPL to reach destinations.

The MP approach models the environment using a metric-
based method and offers superior performance and generaliza-
tion compared to learning-based baselines [8, 18] as shown in
Table I. However, its modularized pipeline can result in high

latency and sensitivity to noise, e.g., localization errors. To
assess this, we add random localization noise with a standard
deviation of 5cm to the system. This causes false-positive
obstacle detections on the ground due to compounding effects
between the mapping and terrain analysis modules, as shown
in Fig 9. With these false detections, the MP planner cannot
find a “collision-free” path to the goal. Our proposed method
demonstrates high robustness, even in the presence of random
localization noise, through its end-to-end pipeline that takes
instantaneous sensor input for planning. Despite not using
a panoramic sensor like LiDAR, our method offers similar
generalization and even better performance than the classic MP
method. Table II shows our method’s computational efficiency
and small planning latency, which is more than 4 times faster
than the MP method but slightly slower than the RL approach.

B. Real-World Experiment with Legged Robot

Our experiment evaluates the effectiveness of our method
in real-world scenarios using the legged robot ANYmal [9].
The robot is equipped with an Intel Realsense D435 front
depth camera for depth measurement. The experimental setup
involves both dynamic and static obstacles, with the robot
navigating from indoor to outdoor environments following
sequential waypoint commands from a human operator, as
shown in Fig. 10. The planner navigates the robot through
doorways, around both dynamic and static obstacles, and up
and down stairs. The indoor and outdoor environments have
different lighting conditions, which results in varying levels of
noise in the depth measurements. Here, our planner relies on
a localization method [13] to translate the goal into the robot
frame for the planning network.

We also conducted experiments in various environmental
settings to assess the generalization and efficiency of our
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Fig. 11. Planning method testing in different unseen environments, indoor
and outdoor, with various obstacle setups and lighting conditions.

planning policy, as illustrated in Fig. 11. In human-made
mazes, the goal may be hidden from the start, requiring the
robot to navigate around obstacles. Outdoors, the robot must
traverse various terrains, such as snow, grass, and plants, to
reach its destinations. In the underground environment, the
robot encounters different lighting conditions and unfamiliar
obstacle shapes. Despite these challenges, our method guides
the robot successfully to its destinations while maintaining
a low average latency of 11.4ms on the Nvidia Jetson Orin
onboard computer. Furthermore, our method, which relies
solely on a single depth frame, can operate independently of
the localization module if the goal is set in the robot frame.
We use a joystick command to set the goal in the robot frame
as directional guidance, and the method then calculates safe
paths in the local frame for the robot to follow.

V. CONCLUSION

In this paper, we present an end-to-end planning framework
based on a novel imperative learning (IL) approach. The
method involves a bi-level optimization (BLO) process that
combines network update and metric-based trajectory opti-
mization during training to produce smooth and collision-free
trajectories using only a single depth measurement. The IL
is able to utilize task-level loss and optimize through direct
gradient descent. This allows the method to be trained in
an efficient unsupervised manner, eliminating the need for
explicit trajectory labels. In the experiment, we benchmark
the performance of our planner with the SOTA classic non-
learning method [31] and learning baselines [8, 18]. Our
experiments demonstrate that the resulting policy has the
capability to achieve efficient planning and generalize to var-
ious unseen environments compared to previous approaches.
Further, we evaluate our method in various real-world settings,
including dynamic environments and different camera settings.
The results indicate the effectiveness of our method in real-
world deployment, generalizing to novel environments and

camera configurations, and being robust against perception and
localization errors.

VI. DISCUSSION

This paper presents a novel framework for training a percep-
tive planning policy that relies solely on depth measurement as
input. While RGB images can offer supplementary information
beneficial for planning, images collected from simulation may
result in a significant difference between real environments.
Thus, further research is required. Additionally, we realize that
adding memory structure to the perception network could have
improved the performance of the planning in the static envi-
ronment. However, utilizing the current pipeline, the memory
structure may compromise the safety of the planning to avoid
dynamic obstacles. To address this issue, it may be necessary
to incorporate a time-variable cost map in formulating the
training loss. Overall, this work aims to demonstrate the
innovative concept of using the imperative learning approach,
and the result can be considered preliminary.
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