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Abstract— A map of the environment is an essential compo-
nent for robotic navigation. In the majority of cases, a map of
the static part of the world is the basis for localization, planning,
and navigation. However, dynamic objects that are presented
in the scenes during mapping leave undesirable traces in the
map, which can impede mobile robots from achieving successful
robotic navigation. To remove the artifacts caused by dynamic
objects in the map, we propose a novel instance-aware map
building method. Our approach rejects dynamic points at an
instance-level while preserving most static points by exploiting
instance segmentation estimates. Furthermore, we propose
effective ways to consider the erroneous estimates of instance
segmentation, enabling our proposed method to be robust even
under imprecise instance segmentation. As demonstrated in
our experimental evaluation, our approach shows substantial
performance increases in terms of both, the preservation of
static points and rejection of dynamic points. Our code is
available at https://github.com/url-kaist/ERASOR2.

I. INTRODUCTION

A static map is an essential component for many mobile
robot platforms to achieve robot navigation [28], [46], [47],
[49]. Static landmarks provide geometrical features that are
repeatably observed, thus a robot can utilize a map of
the static world to localize itself reliably. These maps can
be represented in various forms, such as occupancy grid
maps [21], feature maps [43], topological maps [8], or
structural-variance-robust place representations [24]. In this
paper, we focus on 3D point cloud maps [23], [28], which
are an output of the accumulation of laser scans from a 3D
LiDAR sensor. Thus, we aim for the mapping of the static
3D points.

Laser scanner data captured in urban environments often
include dynamic objects. If integrated into a map, this
information can degrade the performance of localization and
navigation of a mobile robot [28]. Dynamic instances such as
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Fig. 1. Performance comparison of (a) ERASOR [28] and (b) our proposed
method, called ERASOR2, on Seq. 02 of SemanticKITTI dataset [3]. By
exploiting instance segmentation estimates, our proposed method can reject
dynamic points at an instance-level with less loss of static points compared
with ERASOR [28]. For this reason, dynamic points from a motorcyclist are
successfully rejected. In this paper, the green, red, blue, and gray colors indi-
cate successfully rejected dynamic points (true positives), wrongly rejected
static points (false positives), remaining dynamic points (false negatives),
and remaining static points (true negatives) in the map, respectively (best
viewed in color).

buses, cars, and pedestrians, take up space only temporarily.
This causes misrecognitions about space occupancy in the
map [11], [12], [26]. Therefore, static map building, which
rejects dynamic points caused by moving objects, is the key
and necessary to reduce these negative effects.

To tackle the problem of mapping in dynamic environ-
ments, numerous researchers have proposed static map build-
ing methods exploiting geometrical discrepancies between
each scan and a map cloud [2], [17], [23], [36], [44], [56].
In practice, three limitations still exist in most systems.
First, once the poses from scan registration or pose graph
optimization become imprecise, the geometric correlation
between the current scan and map cloud also becomes
inaccurate, resulting in the loss of many static points (red
points in Fig. 1). Second, existing methods often do not
consider any instance-level information, so some points from
moving objects could remain in the map cloud (blue points
in Fig. 1(a)). Third, some methods use the segmentation
information, but the way to deal with noisy or erroneous
instance segmentation is still less examined.

In sum, the aim is to bring the number of false positive
and false negative dynamic points toward zero even though
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realistic and thus imprecise poses and instance segmentation
estimates are provided. Several researchers have proposed
learning-based moving object segmentation (MOS) meth-
ods [11], [12], [32], which segment dynamic and static
points for each scan. Although these methods show precise
segmentation, the performance can decrease when used in
environments that differ significantly from the ones used
for training or when using different sensor setups. For these
reasons, we believe map-centric management is still required
for achieving high-quality maps.

The main contribution of this paper is a novel instance-
aware static map building approach, called ERASOR2. It
shares some of the philosophy of ERASOR [28], a technique
that rejects dynamic points in a region-wise manner using
so-called pseudo occupancy. Our new approach overcomes
the shortcomings of existing static map building methods
by leveraging instance-level information reducing both, false
positives and false negatives, as illustrated in Fig. 1(b). In
particular, our new method is not limited to specific instance
segmentation algorithms, such that the pipeline easily works
with other instance segmentation methods and in various
environments. Furthermore, we propose some effective ways
to deal with the noise of instance segmentation estimates, i.e.
under- and over-segmentation [35], and unlabeled points,
enabling our proposed method to be robust against imprecise
instance segmentation.

In sum, we make the following three key claims. Our
approach (i) precisely rejects dynamic points at an instance-
level while preserving static points compared with the
state-of-the-art methods, (ii) is robust against the imprecise
instance segmentation estimates, and (iii) shows superior
performance even in highly crowded environments, demon-
strating the robustness of our proposed method and neces-
sity of map-level management by comparing our proposed
method to a recent state-of-the-art egocentric learning-based
approach. These claims are backed up by the following
sections and our experimental evaluation.

II. RELATED WORK

In general, there are three ways of building a map of
the static environment depending on the purpose of dy-
namic point removal. The first one is to reduce wrong data
association within the simultaneous localization and map-
ping (SLAM) process, so dynamic points are simultaneously
rejected when poses are estimated [20], [38], [39], [41],
[45], [50]. The second one is to segment moving objects in
the surroundings for each scan, which focuses more on an
egocentric perception [11]–[14], [25], [32], [56]. The last one
is to build a static map as a post-processing of SLAM before
the localization or navigation step [16], [22], [23], [28], [40],
[42]. In this study, we place more emphasis on the last case.
This last group of approaches can be further classified into
three subgroups: a) ray tracing-based, b) visibility-based, and
c) traversability-based methods.

Occupancy grids [14], [19], OctoMap [5], [21], and TSDF-
based methods [27], [33], [51], [52] are typical methods
that use ray tracing, which updates the state of some space,

such as grid cells or voxels, by checking whether a ray
runs through that some space or not. By utilizing the ray
tracing concept, Schauer and Nüchter [44] proposed remov-
ing dynamic points by traversing a voxel occupancy grid
and Pagad et al. [36] suggested a combination of object
detection and OctoMap. However, these methods are often
affected by the quality of estimated poses. If imprecise poses
are provided, many static points are removed because the
decision on whether the points are static or dynamic becomes
challenging (see Section IV.B). In addition, ray tracing-based
methods are computationally expensive because large parts
of the scene are taken into account for each traced ray.

To increase computational efficiency, visibility-based
methods [23], [37], [40] have been proposed, which usually
detect dynamic points by using the geometrical discrepancies
between a query range image and a map range image. That
is, if the range value of the pixel on a query image is larger
than that on the map image, these visibility-based methods
estimate that occlusion occurs at that location corresponding
to the pixel of a map range image. Thus, the points projected
onto those pixels are considered as dynamic points.

However, owing to the uneven distribution of the 3D
point cloud captured by a mechanically spinning LiDAR
sensor, the incidence angle, which is an angle between a
ray and the normal direction of the ground, becomes more
ambiguous [29]. Thus, neighboring ground points far from
the sensor frame are projected to the same pixels, resulting
in many false positives. To tackle the limitation of the range
image, Pomerleau et al. [40] exploited the normal vector as
another cue to resolve the incidence angle ambiguity. Kim
and Kim [23] proposed a window-based pixel comparison
and multi-resolution methods. However, from the pixel-wise
removal, dynamic points remained scattered in the map,
which led to the introduction of traversability-based methods.

Recently, traversability-based methods have been proposed
to reject dynamic points based on the fact that dynamic ob-
jects in urban environments usually move on the ground [1],
[2], [17], [28]. Lim et al. [28] proposed an efficient con-
cept to estimate temporarily occupied regions by comparing
the min-max height of a query and map, called pseudo
occupancy. Fu et al. [17] proposed robust drivable region
proposals to extract ground points. Arora et al. [2] suggested
offline ground segmentation on the image plane, and then
dynamic and static points are discerned. Despite substantial
progress being made, two potential limitations still exist.
First, the aforementioned works firmly consider the estimated
ground points as static points. Yet, the researchers did not
propose methods to deal with cases where dynamic points
are misclassified as ground points. Second, the proposed
methods do not consider instance information, potentially
leading to partial false positives, as presented in Fig. 1(a).

Meanwhile, deep learning-based MOS approaches have
led to significant improvement [11], [25], [32], [48]. One
might think that a static map can be simply built by accumu-
lating the estimated static points by MOS methods. However,
these methods still rely on the supervised labels and it is
empirically demonstrated that a static map by the estimates
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Fig. 2. Overview of our proposed method, which mainly consists of four
steps. (a) First, sharing the philosophy of ERASOR [28] that checks the
regions where some dynamic objects temporarily occupy by using pseudo
occupancy, the pseudo occupancy grid map is updated. (b) Using some
grid cells that are highly likely to be temporarily occupied, or region
proposal, R (white regions), instances located in R are considered as
moving instances for each scan. (c) Then, under-segmentation check (USC)
is applied to reject a portion of points from a moving object but segmented
with a large static instance. (d) Finally, using estimated dynamic points for
each scan, the estimated static points adjacent to these dynamic points are
rejected in a spatio-temporal manner via volumetric outlier removal (VOR).

of MOS methods has many undesirable false negatives (see
Section IV.D). Therefore, map-centric dynamic points man-
agement is still necessary to leverage temporal information.

In this paper, we propose a novel instance-aware approach
to mapping the static world. Unlike previous static map
building approaches that only exploit geometrical discrepan-
cies, our proposed method blends the best of the philosophy
of traversability-based methods and instance-aware dynamic
point removal, resulting in cleaner static maps with less false
positive and false negative points.

III. OUR APPROACH TO INSTANCE-AWARE
MAPPING OF THE STATIC WORLD

The schematic diagram of our instance-aware static map
building method is presented in Fig. 2. It mainly consists
of four parts: pseudo occupancy grid map update, dynamic
instance proposal, under-segmentation check, and volumetric
outlier removal. Our proposed method aims for dynamic
points removal at an instance-level.

Unlabeled points, S0Estimated ground points, G

Fig. 3. Example of instance segmentation estimate for Seq. 05 around frame
2,630 on the SemanticKITTI dataset [3]. Owing to the erroneous instance
segmentation estimates, the points from a bus are under-segmented and even
unlabeled; thus, the unlabeled points, S0, potentially contain some dynamic
points (magenta rectangles). Different colors indicate that the cloud points
are clustered as different instances (best viewed in color).

A. Notations and Problem Definition

We begin by explaining the notations of inputs. Let us
define a 3D point cloud as P = {p1,p2, · · · ,pN} where N
denotes the size of point cloud and each point, p, consists
of an x, y, and z value, i.e., p = [x, y, z]ᵀ, in Cartesian
coordinates. In this study, we divide P into two categories:
ground points and non-ground points. Those will be further
classified into multiple instance segments by the following
procedure.

First, P is taken as an input of a ground segmentation
approach [29], so it is divided into ground points, G, and non-
ground points, P ′, which satisfy G ∩ P ′ = ∅ and G ∪ P ′ =
P . Next, a clustering method is utilized to separate P ′ into
unlabeled points, S0, and K instances, I+ = {S1, · · · ,SK},
such that I = {S0} ∪ I+, each of which follows Sa ∩ Sb =
∅ if a 6= b. Unlabeled points S0 are a set of unclustered
points, which is an output of most instance segmentation
methods due to the failure of clustering caused by the sparse
distribution of the cloud points.

Note that G and I are estimates, so segments could be
partially under- or over-segmented. In particular, the actual
dynamic points are sometimes classified into S0, as shown
in Fig. 3. Thus, it is necessary to consider the potential
failure of instance segmentation. Therefore, we propose
robust dynamic points rejection methods to account for the
noises and errors of instance segmentation (see Section III.D
and Section III.E).

In general, static map building methods assume that cor-
rected poses are given [23]. Let Tw

t be the transformation
matrix of the t-th body frame with respect to world frame w,
the map cloud M can be defined as:

M = ν

( ⋃
t∈〈T 〉

ν
({

Tw
t p | p ∈ Pt

}))
, (1)

where ν(·) denotes a voxelization; T is the total time step;
〈T 〉 is equal to {1, 2, . . . , T}; Pt denotes the point cloud
whose origin is the t-th body frame; Tw

t p means that a point
expressed in the t-th body frame is transformed into world
frame w. Consequently,M is an accumulated map, so it still
contains all measured dynamic points.

Following Lim et al. [28], the problem definition can be
expressed as follows:



M̂ =M−
⋃
t∈〈T 〉

M̂dyn
t , (2)

where M̂ denotes the estimated static map cloud and M̂dyn
t

denotes the dynamic points to be rejected from M at time
step t.

There are two challenges in (2): a) once the direct subtrac-
tion of M̂dyn

t from M wrongly rejects static points, there is
no way to revert these static points and b) M̂dyn

t is decided
without any instance-level information, so points of moving
objects could remain in M̂ while only a portion of the objects
would be rejected.

To tackle these two problems, we redefine the problem for
the work presented here as:

M̂ = ν

( ⋃
t∈〈T 〉

ν
({

Tw
t p | p ∈ Pt − Ût −

⋃
S∈Ît

S
}))

, (3)

where Ît denotes the estimated dynamic instances set, which
is a subset of the predictions from the instance segmentation
at t, It, i.e. Ît ⊂ It. S denotes the moving instance included
in Ît, and Ût denotes the additionally estimated dynamic
points to overcome the erroneous predictions of instance
segmentation (see Section III.E).

By doing so, (3) has advantages over (2) for the follow-
ing two reasons. First, the false positives of our proposed
method affect the quality of a map less directly. This is
because static instances are usually observed multiple times,
so false positives at t can be naturally compensated if the
corresponding static points are preserved in other viewpoints.
In contrast, once false positives occur, the direct subtraction
in (2) triggers some empty holes in the map by rejecting
static points, which Lim et al. [28] has an issue with. Second,
by rejecting dynamic points in an instance-aware manner,
the aforementioned partial removal issue can be resolved, as
shown in Fig. 1(b).

Thus, the following sections explain how to estimate Ît
and Ût in (3), overcoming the erroneous estimates of instance
segmentation.

B. Pseudo Occupancy Grid Map Update
It is not easy to distinguish moving objects by only using

a single scan captured at t. Thus, we utilize the temporal
information of all scans and fuse the information from the
map-centric perspective, as shown in Fig. 2(a). A map cloud
is the accumulation of all scans transformed into the refer-
ence frame, which includes traces of moving objects over
time. Whereas each scan is a snapshot of the surroundings,
and traversable regions may only be temporarily occupied
by moving objects. Accordingly, we check the geometrical
discrepancies due to the moving objects by comparing the
t-th point cloud transformed into the map frame and map
cloud. In doing so, we can estimate the regions that contain
the traces of dynamic objects in the map. Finally, we can
consider the non-ground points in those regions as moving
objects.

Based on these observations, we propose to build a pseudo
occupancy grid map. Unlike generic occupancy grid maps,

which model whether space is occupied or not, our proposed
grid map models whether the regions are likely to be
temporally occupied by dynamic objects in a probabilistic
manner [6], [7], [31]. By estimating the probabilities of
which cells could contain moving objects, non-ground points
in the grid cells with high probabilities are highly likely to
be from dynamic instances.

To this end, we update the probability of each grid cell
based on a binary Bayes filter to fuse all the predictions from
each scan. In this way, the information is aggregated from the
map-centric perspective and can be used to improve decision
making about static and dynamic 3D points. Formally, the
pseudo occupancy grid map is initialized with a prior proba-
bility, p0. Then, the pseudo occupancy grid map is updated,
whose joint distribution of the binary state, m, is expressed
as follows:

p (m | z1:t) =
∏
i

p (mi | z1:t) , (4)

where mi denotes the binary state of whether the i-th1 grid
cell could be temporarily occupied or not and z1:t denotes
the observed measurements during whole time steps, each of
which is the geometrical discrepancy between the t-th scan
and the map cloud, which will be explained in the following
paragraphs.

Then, by using Bayes’ rule and log-odds notation, l(x) =

logit(p(x)) = log p(x)
1−p(x) , (4) is paraphrased as follows:

l (mi | z1:t) = l (mi | z1:t−1) + l (mi | zt)− l (mi) , (5)

where l (mi | z1:t−1), l (mi | zt), and l (mi) represent a
recursive term, update term, and prior term, respectively;
l (mi) is equal to log-odds of prior probability, i.e. logit(p0).

Next, we model the geometrical discrepancy zt. There
are typically three possible occasions for each grid cell as
described below:
• Case A: an object occupies the grid cell of map cloud

while the corresponding region is free in that of the t-th
cloud (red bins in Fig. 4).

• Case B: an object occupies both grid cell of the map
and the t-th cloud (emerald bins in Fig. 4).

• Case C: neither an object occupies the cell of the map
nor the t-th cloud, i.e. both are unoccupied (white bins
in Fig. 4).

Therefore, our objective is to find some regions where case A
occurs and then increase the probabilities of these grid cells.

To this end, we use pseudo occupancy, which is introduced
by Lim et al. [28], to efficiently check the discrepancies
between the transformed t-th scan and map cloud for each
grid cell. The pseudo occupancy is described by the min-
max z difference ∆h. Then, if there is a large difference of
pseudo occupancy between the scan and map cloud, we can
determine that the corresponding cell is occupied at another

1Strictly speaking, the index i should be expressed as (u, v), where u
and v are the indices of the 2D grid map, yet (u, v) is simplified to i for
brevity.
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Fig. 4. Visual description of the difference in temporal information between
a map cloud and point cloud at time step t. For convenience, the 2D grid
is represented in 1D. Because a dynamic object moves over time (dashed
arrows in (a)), by comparing the geometrical discrepancies between the t-th
scan and map cloud, we can detect the traces from dynamic objects. The
red bins are grid cells of our interest to be cleaned (best viewed in color).
(a) Map cloud encoded with pseudo occupancy, where the length of the
bins indicates the min-max z value difference in each grid cell. (b) When
t = t1. Traces of the moving object at t2 and t3 can be detected. (c) When
t = t3. Traces of the moving object at t1 and t2 can be detected. Finally,
the probabilities of the grid cells that correspond to red bins increase, which
means that the cells are likely to contain dynamic points.

time step t′, where t′ 6= t, which is highlighted as red bins
in Fig. 4.

Formally, we first extract the physically significant space
where dynamic objects are likely to be located, called volume
of interest (VOI), Vt, for each t-th point cloud as:

Vt = {pl ∈ Pt | hmin < zl < hmax} , (6)

where hmin and hmax denote the minimum and maximum
heights of VOI, respectively. Then, the pseudo occupancy
of each cell is described using the VOI. By extracting
the VOI in advance, we can preserve the purpose of the
pseudo occupancy that we intended, i.e. description of being
occupied at an instance-level, even in some cases where a
roof exists.

Next, the local map, Mlocal, to be compared with the
transformed Vt is defined as:

Mlocal = ν

( ⋃
t∈〈T 〉

ν
({

Tw
t p | p ∈ Vt

}))
, (7)

where w is the coordinate frame of the local map. By using
the local coordinate, our method is available in cases where
some pitch angles or z-values of poses are large with respect
to the world frame.

Let VQt =
{
Tw
t p | p ∈ Vt

}
be the transformed cloud into

the w frame and VMt ⊂ Mlocal be the corresponding map
VOI, which is the overlapped region with VQt as illustrated
in Fig. 5(a). Finally, the pseudo occupancy for the i-th cell
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Fig. 5. Procedure of updating pseudo occupancy grid map. (a) By comparing
the volume of interest (VOI) of a map (rainbow-colored) and that of the
t-th point cloud (black), the unoccupied regions can be checked by the
geometrical discrepancies between these VOIs (orange rectangles). This is
because a moving object temporarily occupies some partial regions at the
moment (red circles). (b) Based on the geometrical discrepancy, the update
terms for grid cells are adaptively set. Indigo and light blue colors indicate
the regions updated by high probability and those by smaller probability,
respectively (see Eq. (9)). (c) The updated pseudo occupancy grid map. As
time goes by, the probabilities of grid cells corresponding to the regions
that are likely to be temporarily occupied by moving objects increase. The
whiter the regions are, the higher the probabilities are (best viewed in color).

expressed in the reference frame ∆hi,t is defined as:

∆hi,t = H
(
Vi,t
)

= max
{
Zi,t
}
− z̄lower

i,t , (8)

where Zi,t = {zl | pl = [xl, yl, zl]
ᵀ ∈ Vi,t} and Vi,t is the

subset of VOI corresponding to the region of i-th grid cell; let
the subsets of the map and transformed scan be VMi,t ⊂ VMt
and VQi,t ⊂ V

Q
t , respectively, then z̄lower

i,t = min (z̄Qi,t, z̄
M
i,t),

where z̄Qi,t and z̄Mi,t denote the mean z values of ground
points within VQi,t and VMi,t . Thus, by using (8), the pseudo
occupancies corresponding to VQi,t and VMi,t are set as ∆hQi,t =

H(VQi,t) and ∆hMi,t = H(VMi,t ), respectively.
∆hQi,t and ∆hMi,t are used to check the case of our interest,

i.e. case A. As illustrated in Fig. 4, large difference between
∆hQi,t and ∆hMi,t indicates that the i-th grid cell is occupied
at another time step t′ but is not occupied at t resulting in
∆hQi,t ' 0. To robustly check the difference, we use the
ratio test [30] as ∆hQi,t/∆h

M
i,t < τ∆h where τ∆h denotes

the ratio threshold. In addition, we check two conditions
to judge if sufficient points are observed and if the cell is
not in case C. To this end, first, we check if the number
of points in VQi,t and that in VMi,t are larger than Nmin,
where Nmin denotes the minimum number of points for
each grid cell. Second, we check if ∆hMi,t > ∆hmin, where
∆hmin denotes the minimum pseudo occupancy. If all three
conditions are satisfied, we consider that case A occurs,
which is highlighted as orange rectangles in Fig. 5(a).

However, even though any conditions are not satisfied, if
most points in VQi,t are ground points, which means that the
cell is currently free, then the i-th cell can be considered
as an area potentially occupied by a moving object. This is



because the ground regions can be potentially traversable by
moving objects. Therefore, the update term is adaptively set
based on these observations as follows:

l (mi | zt) =


κinc · logit(pinc), if case A occurs

logit(pinc), if
|GQ

i,t|
|VQ

i,t|
> τground

logit(p0), otherwise.

(9)

where κinc > 1 is the incremental gain, pinc > p0 is the
update probability, | · | denotes the cardinality of a set, GQi,t
denotes the ground points within VQi,t, and τground denotes the
ratio threshold that is close to 1. p0 is prior probability, which
makes l (mi | zt) = l(mi) in (5), so update does not happen,
i.e. l (mi | z1:t) = l (mi | z1:t−1), which is represented as
white regions in Fig. 5(b).

C. Dynamic Instance Proposal

After updating the pseudo occupancy grid map, we con-
sider the instances corresponding to the non-ground points
in the grid cells with high probabilities as initial dynamic
instances Î init

t . Formally, we define the indices set of grid
cells which correspond to the high probabilities as R:

R = {i | p(mi | z1:t) > prp} , (10)

where prp is a region proposal threshold. R is expressed as
white regions in Fig. 6(b).

Let f : p 7→ i be the function that returns an index of
the grid cell where a point, p, is located, Î init

t is defined as
follows:

Î init
t =

{
Sk,t ∈ I+

t | ∃f(p) ∈ R, p ∈ Sk,t
}
, (11)

where I+
t is a provided instance set at t, except by the

unlabeled points S0,t. Meanwhile, unlabeled points that are
located in the region proposals are handled separately as

Û init
t = {p ∈ S0,t | f(p) ∈ R} , (12)

where S0,t denotes all the unlabeled points at t. By doing so,
the noisy points, which are highlighted in Fig. 3, are filtered
out.

However, Î init
t also includes some undesirable static in-

stances, which should not be rejected, because a portion
of static instances is located in R, as shown in Fig. 6(c).
Therefore, to check whether most parts of the objects are
located on grid cells with high probabilities, we propose a
novel metric called dynamic instance score dyn(·), which is
defined as:

dyn(Sk,t) =
1

|Sk,t|
∑

p∈Sk,t

logit(g(p)), (13)

where g(·) denotes a function that adaptively returns a
probability of the grid cell corresponding to p depending
on whether the grid cell is updated or not as:

g (p) =

{
p(mi | z1:t), if p(mi | z1:t) > p0

pneg, otherwise
(14)

(a) (b)

(c) (d)

Î init
t Ît

R

Fig. 6. Procedure of dynamic instance proposal for Seq. 07 around frame
632 on the SemanticKITTI dataset. (a) Estimated instance segmentation
and the updated pseudo occupancy grid map. A truck (red circle) is a
moving object. (b) Region proposal, R (white cells). (c) Initial dynamic
instances, Î init

t , whose portions are in R. (d) Final dynamic instances, Ît,
which are filtered by our dynamic instance score. (best viewed in color).

where pneg < 0.5 is a constant parameter.
The objective of g(·) is to reduce dyn(Sk,t) if an instance

is static. The cells fully occupied by static instances do not
satisfy the aforementioned conditions in Section III.B. so
these cells are not updated, preserving p(mi | z1:t) as p0.
Thus, even if small portions of static objects are in R so
that these instances are wrongly considered as initial dynamic
instances, their dynamic instance scores are much lower than
those of the actual dynamic instances due to logit(pneg) < 0,
which makes dyn(Sk,t) be negative.

Therefore, the final dynamic instances, Ît, are selected as
follows:

Ît =
{
Sk,t ∈ Î init

t | logit−1(dyn(Sk,t)) > p(p̄k,t)
}
, (15)

where p(p̄k,t) is an adaptive probability threshold depending
on the distance between the origin of the body frame and the
centroid of the k-th segment, p̄k,t. That is, p(p̄k,t) returns
psoft to make the threshold less conservative if an instance
is located far from the body frame, and phard, otherwise,
where psoft < phard. By doing so, wrongly rejected static
instances are successfully reverted, as shown in Fig. 6(d).
This adaptive thresholding slightly increases undesirable
false positives, but substantially increases the rejection rate
of moving objects (see Section IV.C).

D. Under-Segmentation Check

The approach presented so far works well, but we oc-
casionally observe that under-segmentation, which means
that at least one static and one dynamic object are seg-
mented together, occasionally triggers false negatives. This
phenomenon is illustrated in Figs. 7(a) and 7(b). For in-
stance, once an actual static object with a large size and
an actual dynamic object are clustered together, the large
static instance makes dyn(Sk,t) smaller because the most
static points located in the non-updated cells return minus
values of log-odds in (13). Consequently, dyn(Sk,t) becomes



Under-segmented cluster Remaining dynamic points (↓)

(a) (b) (c)

Fig. 7. (a) Example of under-segmentation for Seq. 05 around frame
2,414 on the SemanticKITTI dataset, where different colors indicate dif-
ferent instances. A wall and the back part of a car are segmented as
one instance (brown color in red circle). (b)-(c) Before and after the
application of our under-segmentation check, where blue points denote the
false negatives (best viewed in color).

smaller than the adaptive threshold of (15), so the under-
segmented clusters with dynamic points are considered to
be static, resulting in false negatives.

To resolve this problem, we partially reject the points
in the grid cells with definitely high probabilities from the
abnormally large instances. Formally, if the following three
conditions are satisfied: a) the total area where a potential
static instance is occupied is larger than AUSC, b) the ratio of
the non-updated grids is larger than τUSC, where τUSC is the
ratio threshold, and c) other grid cells with definitely high
probabilities exist, we segment the partial points located in
the grids with high probabilities as a new dynamic instance.
By doing so, false negatives caused by under-segmentation
can be successfully rejected, as shown in Fig. 7(c). The
estimated dynamic points are added to Ît.

E. Volumetric Outlier Removal
Finally, VOR is proposed to reject partially remaining

dynamic points caused by the erroneous estimates of the
instance and ground segmentation, by leveraging spatio-
temporal information. As presented in Figs. 8(a) and 8(b),
even though most dynamic instances are rejected by the
dynamic instance proposal, some noisy points still remain
in the map. Even, some lower parts of dynamic instances
are misclassified as ground points in some cases. Therefore,
it is necessary to additionally reject dynamic points at the
final stage.

The basic idea of VOR is to reject points of the estimated
static points neighboring to the estimated dynamic points
because the adjacent volumes of dynamic instances are also
likely to be occupiable; thus, our VOR works like volumetric
erosion. To this end, first, let the estimated dynamic points be
Qt (green points in Fig. 8(a)) and the estimated static points
be Tt, which is the complement of Qt. Then, the neighboring
search, N (·), to obtain neighboring noisy points is defined
as:

N (Qt, Tt, r) = {p ∈ Tt | min ‖p− q‖ < r}, (16)

where q ∈ Qt and r denotes a search radius.
Qt is set by utilizing dynamic instances on adjacent frames

as well as those estimated at time t. For each time step,
there are two elements: a) the selected dynamic segments
PQt , which is expressed as:

Rejected dynamic points (↑) Remaining dynamic points (↓)

(a) (b) (c)
Fig. 8. (a)-(b) Successfully rejected points and partially remaining dynamic
points caused by erroneous instance segmentation estimates for Seq. 02
around frame 878 on the SemanticKITTI dataset. The green and blue colors
indicate the true positives and false negatives (best viewed in color). (c) After
the application of our volumetric outlier removal (best viewed in color).

PQt =
⋃

Sk,t∈Ît

Sk,t[logit−1(dyn(Sk,t)) > pv], (17)

where [·] denotes the Iverson bracket, which is an indicator
function returning 1 if the statement inside the bracket is
true, and 0, otherwise; psoft < pv < phard is a probability
threshold to select more reliable dynamic segments, and
b) the unlabeled points included in (12) and close to PQt ,
which is defined as UQt = N (PQt , Û init

t , rv), where rv is
defined as κv · ξ; κv > 1 denotes the volumetric gain and ξ
denotes the voxel size. Finally, let t′ ∈ W be the window
indices set, e.g. if |W | = 3, W = {t− 1, t, t+ 1}, then Qt
is set as:

Qt =
⋃
t′∈W

{
(Tw′

t )−1Tw′
t′ · p | p ∈ PQt′

⋃
UQt′
}
. (18)

Next, the estimated static points, Tt, is defined as:

Tt =
⋃

Sk,t∈(I+
t −Ît)

Sk,t + S0,t − Û init
t , (19)

which is the complement of the estimated dynamic points,
i.e. cloud points from Ît and Û init

t . Consequently, the rejected
points, P̂v

t , are defined as P̂v
t = N (Qt, Tt, rv).

Finally, Ût in (3) is set to Ût = P̂v
t

⋃
Û init
t . As a result,

some remaining dynamic points in the map are successfully
rejected, as shown in Fig. 8(c).

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a robust map building
approach for the static 3D points that rejects the dynamic
points at an instance-level while preserving static points,
overcoming the potentially erroneous estimates of instance
segmentation.

We present our experiments to show the capabilities of our
method. The results of our experiments also support our key
claims, which are: our approach (i) precisely rejects dynamic
points by using instance segmentation information, (ii) has
effective ways that suppress the effect of erroneous estimates
of instance segmentation, and (iii) shows superior robustness
in a more crowded environment compared to state-of-the-art
learning-based methods. Our experimental evaluation backs
up these claims.



TABLE I. Parameters of our proposed method.

Parameter Value Description

p0 0.5 Prior probability
Nmin 5 Minimum number of points for each grid cell
∆hmin 0.4 m Minimum pseudo occupancy
τ∆h 0.2 Ratio threshold of pseudo occupancy
τground 0.95 Percentage of ground points for a query scan

κinc 2.0 Incremental gain for update
pinc 0.5374 Update probability s.t. logit(pinc) = 0.15

prp 0.8 Region proposal threshold
phard 0.999999 Hard threshold of dynamic instance score
psoft 0.75 Soft threshold of dynamic instance score

AUSC 56 m2 Minimum area threshold of USC
τUSC 0.25 Ratio threshold of non-updated regions

pv 0.953 Probability threshold for query cloud of VOR
κv 1.732 Voxel gain of VOR
ξ 0.2 m Voxel size

A. Experimental Setup

To perform our analysis, we exploit static map building
benchmark, proposed by Lim et al. [28]. The benchmark
uses the SemanticKITTI dataset [3], [18], which provides
point-wise annotations of moving instances. This benchmark
consists of five sequences with a large number of dynamic
points as follows: Seq. 00 (4,390 - 4,530), Seq. 01 (150 -
250), Seq. 02 (860 - 950), Seq. 05 (2,350 - 2,670), and
Seq. 07 (630 - 820), where the numbers in parentheses
indicate the start and end frames. These subsequences are the
five sequences with the largest number of dynamic objects,
so the capability of static map building methods can be
effectively evaluated. Note that this benchmark uses the
estimated poses by SuMa [4], not ground truth poses, to
check the robustness using realistically uncertain poses [23].

The datasets that have point-wise labels [9] have only
a few dynamic points, so the phenomenon that different
dynamic objects occupy the same space does not frequently
occur. Therefore, we manually labeled Seq. 19 of the KITTI
object tracking dataset, which contains more moving objects
per scan. By doing so, we evaluate the performance of
baseline methods and our method in a crowded environment.

For all experiments, we use Preservation Rate (PR),
Rejection Rate (RR), and F1 score [28] defined as:
• PR: # of preserved static voxels

# of total static voxels on the naively accumulated map ,
• RR: 1− # of remaining dynamic voxels

# of total dynamic voxels on the naively accumulated map ,
• F1: 2PR · RR/(PR + RR).

See Lim et al. [28] for more details on these metrics. In
addition, we summarize the parameters of our approach
in Table I. Experiments on parameter tuning are provided
in the appendix.

B. Static Map Building Performance

The first experiment evaluates the performance of our
proposed method and baseline methods, supporting the claim
that our approach precisely rejects dynamic points while
preserving static points as many as possible by leveraging
instance segmentation information. For our comparison, we
used the following baseline methods: OctoMap [21] that em-
ploys a clamping technique [54] with voxel size 0.05 and 0.2;

TABLE II. Comparison with state-of-the-art methods on the static map
benchmark using the SemanticKITTI dataset, which is proposed in [28] (PR:
Preservation Rate, RR: Rejection Rate).

Seq. Method PR [%] RR [%] F1 score

00

OctoMap - 0.05 [21] 76.731 99.124 0.865
OctoMap - 0.2 [21] 34.568 99.979 0.514
Peopleremover [44] 37.523 89.116 0.528
Removert - RM3 [23] 85.502 99.354 0.919
Removert - RM3+RV1 [23] 86.829 90.617 0.887
DynamicFilter [15] 90.070 91.090 0.906
Auto-MOS [12] 86.164 94.329 0.901
ERASOR [28] 93.980 97.081 0.955
Park et al. [38] 94.050 97.190 0.956
ERASOR2 (Proposed) 98.788 98.582 0.987

01

OctoMap - 0.05 [21] 53.163 99.663 0.693
OctoMap - 0.2 [21] 20.777 99.863 0.344
Peopleremover [44] 36.349 93.116 0.523
Removert - RM3 [23] 94.221 93.608 0.939
Removert - RM3+RV1 [23] 95.815 57.077 0.715
DynamicFilter [15] 87.950 87.690 0.878
Auto-MOS [12] 89.597 90.130 0.899
ERASOR [28] 91.487 95.383 0.934
Park et al. [38] 91.815 94.096 0.929
ERASOR2 (Proposed) 96.879 94.629 0.957

02

OctoMap - 0.05 [21] 54.112 98.769 0.699
OctoMap - 0.2 [21] 23.746 99.792 0.384
Peopleremover [44] 29.037 94.527 0.444
Removert - RM3 [23] 76.319 96.799 0.853
Removert - RM3+RV1 [23] 83.293 88.371 0.858
DynamicFilter [15] 88.020 86.100 0.871
Auto-MOS [12] 88.539 93.352 0.909
ERASOR [28] 87.731 97.008 0.921
Park et al. [38] 91.208 95.510 0.933
ERASOR2 (Proposed) 98.523 99.709 0.991

05

OctoMap - 0.05 [21] 76.341 96.785 0.854
OctoMap - 0.2 [21] 33.904 99.882 0.506
Peopleremover [44] 38.495 90.631 0.540
Removert - RM3 [23] 86.900 87.880 0.874
Removert - RM3+RV1 [23] 88.170 79.981 0.839
DynamicFilter [15] 90.170 84.650 0.873
Auto-MOS [12] 87.931 72.333 0.794
ERASOR [28] 88.730 98.262 0.933
Park et al. [38] 93.820 95.740 0.947
ERASOR2 (Proposed) 97.582 98.992 0.983

07

OctoMap - 0.05 [21] 77.838 96.938 0.863
OctoMap - 0.2 [21] 38.183 99.565 0.552
Peopleremover [44] 34.772 91.983 0.505
Removert - RM3 [23] 80.689 98.822 0.888
Removert - RM3+RV1 [23] 82.038 95.504 0.883
DynamicFilter [15] 87.940 86.800 0.874
Auto-MOS [12] 86.641 91.785 0.891
ERASOR [28] 90.624 99.271 0.948
Park et al. [38] 91.146 97.284 0.941
ERASOR2 (Proposed) 98.977 98.459 0.987

Peopleremover [44], Removert [23], where RM3 denotes the
results after three Removal stages with resolutions of 0.4◦,
0.45◦, and 0.5◦ when projecting points into the range images.
RM3-RV1 refers to the result of RM3 followed by a Revert
stage with the resolution of 0.55◦; DynamicFilter [15], Auto-
MOS [12], ERASOR [28], and Park et al. [38]. We use the
results or default parameters provided by the authors.

The comparison of such baseline to our method is shown
in Table II and Fig. 9. The state-of-the-art methods provided
an accurate static map, filtering out over 90 % of dynamic
points. Our proposed method exhibits noticeable improve-
ments in both PR and RR, showing the highest F1 scores. In
particular, our proposed method even rejected the lower part
of the dynamic instances more clearly (the 2nd row, Fig. 9)
while losing fewer static points compared to ERASOR.
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Fig. 9. Comparison of static map generation results produced by state-of-the-art methods and our proposed method on Semantic KITTI dataset (T-B):
Seqs. 00, 01, 02, 05, and 07. The zoomed views are the actual remaining points, so true positives are omitted. Green, red, and blue points indicate true
positives, false positives and false negatives, respectively, and the fewer red and blue points there are, the better (best viewed in color).

OctoMap and Removert lost many static points while
leaving dynamic points on the top part of the bus (the 4th
row, Fig. 9). This is because, from the query coordinate,
behind the upper part of the large object is free space, so
there is no point to check hit or miss along the ray or range
discrepancy between the query and map cloud. In addition,
Auto-MOS, which is a tracking-based MOS method, also
failed because tracking algorithms are highly sensitive to
the parameters setting [53], [55], so tracking usually fails
to track when too large or too small moving objects were
detected. For these reasons, it was demonstrated that our
proposed method showed better performance compared with
ray tracing methods, visibility-based methods, and MOS-
based methods.

The cause of lower RR in Seq. 01 and Seq. 07 compared
with ERASOR is because the probability values of the

pseudo occupancy grid behind the median barriers and end
parts of a map were less observed, so these values were
not sufficiently updated. However, additional sensor mea-
surements from the opposite lanes would easily overcome
this limitation.

We conclude that our instance-aware dynamic object re-
moval is effective for accurate static map building compared
with existing methods.

C. Robustness Against Noise in Instance Segmentation

The second experiment evaluates the ability of our method
to deal with noisy instance segmentation. As shown in
Table III, the performance of our approach does not degrade
significantly even if noisy instance segmentation is used.
According to Nunes et al. [34], it was shown that the instance
segmentation of the approach [34] for known objects is



TABLE III. Performance comparison with different instance segmentation
methods.

Seq. Instance seg. method PR [%] RR [%] F1 score

00
HDBSCAN [10] 98.649 98.582 0.986
Nunes et al. [34] 98.788 98.582 0.987

01
HDBSCAN [10] 93.554 94.951 0.943
Nunes et al. [34] 96.879 94.629 0.957

02
HDBSCAN [10] 98.339 99.709 0.990
Nunes et al. [34] 98.523 99.709 0.991

05
HDBSCAN [10] 97.473 99.113 0.983
Nunes et al. [34] 97.582 98.992 0.983

07
HDBSCAN [10] 98.767 98.800 0.988
Nunes et al. [34] 98.973 98.459 0.987

substantially better than HDBSCAN [10]. Nevertheless, note
that no matter what instance segmentation method was used,
our proposed method showed similar performance.

From Seq. 01, we also notice how our instance-aware
approach helps not only on removing dynamic objects but
also on preserving static points. Because Seq. 01 is recorded
in a highway scene, lots of bushy vegetation are represented
as noisy points. When considering the more precise instance
predictions from Nunes et al. [34], the PR is increased
because more complete instance information is provided.
Therefore, the noisy points from static bushes can be cor-
rectly preserved.

To further support our claim and examine the effectiveness
of each module more closely, we conduct an ablation study,
as shown in Table IV. There was a trade-off between
PR and RR, yet our proposed modules showed a greater
improvement in the RR than a decrease in the PR. In
particular, our USC and VOR significantly increased RR for
the following reasons: USC enables rejection of a portion
of dynamic points clustered with large static instances and
VOR rejects some false negative points neighboring to the
estimated dynamic points, as presented in Figs. 7 and 8.

Therefore, these results support our claim that robust mod-
ules, USC and VOR, against erroneous instance segmentation
estimates allow the performance of our approach to be less
variant to the quality of instance segmentation.

D. Static Map Building Performance in Highly Crowded
Environments

This subsection backs up our third claim that the pro-
posed method is more robust than existing methods, also in
crowded environments. As shown in Table V and Fig. 10, our
proposed method showed promising performance compared
with other state-of-the-art methods. In particular, Removert
did not remove the traces of pedestrians successfully and
lost static points all over the region (Fig. 10(a)). ERASOR
showed better dynamic object removal performance, yet
ERASOR created some holes in the map, i.e., some ground
points and a portion of walls are also removed (Fig. 10(b)). In
contrast, our proposed method successfully rejected dynamic
points by fusing all the predictions about moving objects to
the pseudo occupancy grid map, while losing fewer static
points than Removert and ERASOR (Fig. 10(d)).

TABLE IV. Ablation study: performance according to the presence or
absence of each component of our proposed method on Seq. 05 of the
SemanticKITTI dataset (USC: Under-segmentation check, VOR: Volumetric
outlier removal).

Adaptive thresh.
(Section III.C)

USC
(Section III.D)

VOR
(Section III.E) PR [%] RR [%] F1

99.397 94.480 0.969
X 98.335 95.840 0.971
X X 98.326 96.686 0.975
X X X 97.582 98.992 0.983

TABLE V. Comparison with state-of-the-art methods on the KITTI tracking
19 dataset.

Method PR [%] RR [%] F1 score

4DMOS 99.602 78.209 0.876

Removert [23] 80.622 88.394 0.843
ERASOR [28] 75.411 89.782 0.820
ERASOR2 (Proposed) 94.316 93.162 0.937

TABLE VI. Runtime per iteration on Seq.01 of SemanticKITTI dataset on
Intel(R) Core(TM) i7-7700K CPU.

Method Runtime/# of iterations [s]

OctoMap [21] 1.077
Peopleremover [44] 1,000
Removert [23] 0.8307
ERASOR [28] 0.0732
ERASOR2 (Proposed) 0.2034

We also compare our proposed method with the state-of-
the-art learning-based MOS method, 4DMOS [32]. That is,
we generate the map by only using the estimated static points
by 4DMOS. One interesting thing is that the MOS methods
care more about precision, thus being too conservative and
leading to more false negatives. For this reason, 4DMOS
showed the highest PR, but its RR is substantially lower than
existing static map building methods, as shown in Table V. In
particular, naively accumulating the results of MOS cannot
cover some false negatives at t. Thus, these false negatives
directly degrade the quality of the estimated static map, as
shown in Fig. 10(c).

E. Runtime of Our Approach

Finally, we investigate the runtime of our approach. The
runtime per scan of the static map building methods was
analyzed in Seq. 01, which is the largest scale, so the speed
difference becomes more noticeable depending on how map
cloud is handled and geometrical discrepancies are estimated.

As presented in Table VI, our approach runs fast at around
0.2 s per scan. More specifically, pseudo occupancy grid map
update, dynamic instance proposal, and the other refinement
stages take 6.6 ms, 52.6 ms, and 144.2 ms, respectively. It
takes some time to perform VOR because we use a K-d tree
for searching neighboring points as in (16). Nevertheless,
static map building is often used as a post-processing before
the localization or navigation, which is an offline process,
so the runtime is not very important. Nevertheless, the
sufficiently fast speed implies that our proposed method
efficiently builds static maps.
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Fig. 10. Comparison of static map generation results produced by state-of-the-art methods and our proposed method on KITTI tracking 19 dataset. The
zoomed views are the actual remaining points, so true positives are omitted. Green, red, and blue points indicate true positives, false positives and false
negatives, respectively, and the fewer red and blue points there are, the better (best viewed in color).

V. CONCLUSION

In this paper, we proposed a novel instance-aware static
map building method, called ERASOR2. By exploiting in-
stance segmentation estimates, our proposed method can
precisely reject more dynamic points at an instance-level
while preserving most static points. In particular, we pro-
posed pseudo occupancy grid map update to estimate the
regions that contain the traces of moving objects in the
map. Furthermore, we present novel ways to deal with noisy
instance segmentation estimates, which allow us to provide
high performance, overcoming somewhat imprecise instance
segmentation. Consequently, our proposed method shows
promising performance compared with existing conventional
and deep learning-based methods. Finally, all claims made
in the paper have been experimentally supported.
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[44] J. Schauer and A. Nüchter. The Peopleremover—Removing dynamic
objects from 3D point cloud data by traversing a voxel occupancy
grid. IEEE Robotics and Automation Letters (RA-L), 3(3):1679–1686,
2018.

[45] S. Song, H. Lim, A.J. Lee, and H. Myung. DynaVINS: A visual-
inertial SLAM for dynamic environments. IEEE Robotics and Au-
tomation Letters (RA-L), 7(4):11523–11530, 2022.

[46] C. Stachniss. Robotic Mapping and Exploration, volume 55. 2009.
[47] C. Stachniss and W. Burgard. Mobile robot mapping and localization

in non-static environments. In Proc. of the National Conference on
Artificial Intelligence (AAAI), pages 1324–1329, 2005.



[48] J. Sun, Y. Dai, X. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen.
Efficient spatial-temporal information fusion for LiDAR-based 3D
moving object segmentation. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), pages 11456–11463, 2022.

[49] C. Sung, S. Jeon, H. Lim, and H. Myung. What if there was no
revisit? Large-scale graph-based SLAM with traffic sign detection
in an HD map using LiDAR inertial odometry. Intelligent Service
Robotics (ISR), 15(2):161–170, 2022.

[50] V. Vineet, O. Miksik, M. Lidegaard, M. Nießner, S. Golodetz, V.A.
Prisacariu, O. Kähler, D.W. Murray, S. Izadi, P. Pérez, et al. Incre-
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APPENDIX A
PERFORMANCE CHANGES

WITH DIFFERENT PARAMETERS

Among the parameters in Table I, we stress that κinc and
pinc should be set appropriately. As shown in Fig. A1, there
is a trade-off between PR and RR, so two parameters directly
affect the performance. For instance, if both parameters are
too large, too many region proposals occur, so false positives
increase, resulting in a lower preservation rate and a high
rejection rate. In contrast, if both parameters are too small,
i.e. when κinc = 1.0 and logit(pinc) = 0.05, the probabilities of
the grids are not allowed to be over prp, leading to more false
negatives. As a result, dynamic points are not successfully
filtered out, showing low rejection rate as 32.93 %. Except
in that case, our method successfully preserves static points
(> 98%) and rejects dynamic points (> 90%) even though
parameters are changed.

APPENDIX B
PERFORMANCE CHANGES

WITH DIFFERENT WINDOW SIZES

Next, we present performance changes with different
window sizes. If the window size W (see Section III.E)
becomes large, more points are likely to be wrongly rejected,
so the preservation rate slightly decreases and rejection rate
increases, and vice versa. In Seqs. 00, 02, 05, and 07,
dynamic points from moving objects are already successfully
rejected (> 98%), so the performance change with different
window sizes is insignificant. But in more crowded envi-
ronments, i.e. Seqs. 01 and 19, the performance change
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Fig. A1. Preservation and rejection rates for Seq. 07 on the SemanticKITTI
dataset depending on κinc and logit(pinc). If both parameters are too small,
dynamic points are not successfully filtered out, showing low rejection rate,
e.g. when κinc = 1.0 and logit(pinc) = 0.05, rejection rate is 32.93 % (best
viewed in color).

of rejection rate becomes significant because moving ob-
jects frequently re-occupy the spaces that were occupied by
another moving object just before. However, if W is set
to be too large, the performance of the preservation rate
becomes worse because the number of points to be preserved
is wrongly rejected. Based on these observations, we set
W = 3 as a moderate value.

Fig. A2. Preservation and rejection rates on the SemanticKITTI dataset
depending on window size W .
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