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Abstract—Simultaneous localization and mapping (SLAM) in
slowly varying scenes is important for long-term robot task com-
pletion. Failing to detect scene changes may lead to inaccurate
maps and, ultimately, lost robots. Classical SLAM algorithms as-
sume static scenes, and recent works take dynamics into account,
but require scene changes to be observed in consecutive frames.
Semi-static scenes, wherein objects appear, disappear, or move
slowly over time, are often overlooked, yet are critical for long-
term operation. We propose an object-aware, factor-graph SLAM
framework that tracks and reconstructs semi-static object-level
changes. Our novel variational expectation-maximization strategy
is used to optimize factor graphs involving a Gaussian-Uniform
bimodal measurement likelihood for potentially-changing objects.
We evaluate our approach alongside the state-of-the-art SLAM
solutions in simulation and on our novel real-world SLAM
dataset captured in a warehouse over four months. Our method
improves the robustness of localization in the presence of semi-
static changes, providing object-level reasoning about the scene.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) estimates
a robot’s pose within its environment, while at the same
time creating a map of its surroundings. SLAM allows for
autonomous navigation in GPS-denied situations, such as
underground mines, office spaces, and warehouses. Many such
tasks require robots to reliably repeat their trajectories over
an extended period. However, most existing SLAM methods
adopt the static world assumption [1, 2, 3, 4] which typically
does not hold in the real world, as scenes are subject to change
from human or robot activity. For example, a scene may
contain dynamic objects (e.g., forklift driving within a factory)
and semi-static objects that change position over time (e.g.,
pallets, boxes). Lacking the ability to properly handle such
changes might result in catastrophic failures such as corrupted
maps, divergent pose estimations, and obstacle collisions. Such
potential failures emphasize the importance of robust SLAM
solutions in the presence of scene dynamics in order to achieve
efficient and robust long-term robotic operation.
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Fig. 1: A qualitative comparison of the trajectory and scene re-
construction of a semi-static synthetic scene, BoxSim, where the
boxes shift when not in the camera’s field of view (indicated by
the red arrows). Here we compare POV-SLAM to a state-of-the-art
SLAM solution, ORB-SLAM3 [5]. As ORB-SLAM3 is a feature-
based method, we feed its pose estimates into a semi-static mapping
method, POCD [6], to generate the map. ORB-SLAM3 assumes a
static world, suffering from localization drift (orange boxes, left)
when changed objects are encountered, which leads to artifacts and
incorrect map updates (blue boxes, right). Our approach explicitly
infers object-level scene changes and provides more robust long-
term localization and dense reconstruction. The reference desired
reconstruction is shown in the top row of Figure 8.

Recent works have attempted to handle dynamic environ-
ments in one of two ways. The first strategy leverages semantic
and geometric information to mask out all potentially dynamic
objects, treating them as outliers [7, 8, 9, 10, 11, 12]. Hence,
the system only tracks against the static background, though
it often covers a small portion of the sensor’s field-of-view
(FOV) in cluttered environments. The second strategy builds
a model for each detected object. The system then either tracks
the camera against the static background and refines the object
models in a two-step pipeline, or performs camera and object
tracking in a joint optimization problem [13, 14, 15, 16].
However, the second strategy requires motion to be detected
over consecutive frames, and long-term, semi-static changes
where objects shift, disappear, or appear in the scene, have not
been thoroughly studied in SLAM. Recent attempts to handle
semi-static changes during map maintenance extend object-
centric mapping methods to explicitly consider semi-static
changes by estimating a consistency score for each object
from a known robot pose [6, 17, 18, 19]. Critically, when
the robot pose is unknown, object consistency is difficult to
calculate. The aforementioned consistency estimation methods
can lead to multiple ambiguous and sub-optimal solutions.
This limitation highlights the need for a statistically consistent
method to infer both the robot pose and object consistency.

https://github.com/Viky397/TorWICDataset


We tackle the challenge of simultaneous localization and
object-level change detection in large semi-static scenes. We
follow an object-aware strategy, as most mobile robots op-
erate in environments consist of rigid objects that move
continuously or change location between visits. In addition
to pose estimation, an up-to-date, object-level dense recon-
struction is desired to provide rich geometric information
for downstream tasks (e.g., perception-aware planning and
control). We introduce a novel framework, POV-SLAM, which
leverages recent works on object-level Bayesian consistency
estimation for semi-static scenes [6], to tackle the challenge
in a joint optimization problem. We derive a variational for-
mulation to approximate the Gaussian-Uniform measurement
model of potentially-changing objects, and use expectation-
maximization (EM) to guarantee improvement of the evidence
lower bound (ELBO) of a factor graph SLAM problem. At
every EM iteration, the object consistencies and the robot
poses are refined using geometric and semantic measurements.

Additionally, there is a lack of SLAM datasets for long-term
localization and mapping in large, semi-static environments.
In collaboration with Clearpath Robotics, we present a real-
world semi-static SLAM dataset in a warehouse with dynamic
and semi-static changes that occur over four months. To
facilitate easier performance evaluation, we provide high-
quality 3D scans of the entire warehouse and the ground truth
robot trajectories, obtained from a Leica MultiStation and an
onboard Ouster 128-beam LiDAR.

Our proposed method is evaluated on: a 2D simulation
to demonstrate the probabilistic framework in action and
justify design choices, a synthetic semi-static dataset, and our
real-world warehouse dataset. We analyze the reconstruction
quality relative to a state-of-the-art (SOTA) dense semi-static
mapping method [6] and compare the localization accuracy
against a SOTA feature-based SLAM method [5] as well as
a semi-static object-level SLAM [17] approach. We show that
our framework is robust to semi-static changes in the scene.
The main contributions of our paper are:

‚ We derive a variational formulation for the Gaussian-
Uniform bimodal measurement likelihood of potentially-
changing objects. It exploits the Bayesian object con-
sistency update rule introduced in [6] and provides an
evidence lower bound (ELBO) for efficient inference.

‚ We introduce an expectation-maximization (EM) algo-
rithm to optimize factor graphs involving the variational
measurement model for potentially-changing objects.

‚ We design POV-SLAM, an object-aware, factor graph
SLAM pipeline that tracks and reconstructs semi-static
object-level changes. POV-SLAM builds on top of the
SOTA SLAM [5] and semi-static mapping [6] methods,
and uses our variational EM (VEM) strategy. The system
is demonstrated both in simulation and in the real world.

‚ We release a new SLAM dataset captured in a warehouse
over four months. The environment contains static, semi-
static, and dynamic objects as seen by RGB-D cameras
and a 3D LiDAR. We also release a high-quality 3D scan
of the warehouse and ground truth robot trajectories.

In Section II, we review the SLAM methods for changing
scenes. In Section III, we present the key modules of the POV-
SLAM pipeline. In Section IV, we derive the variational mea-
surement model and discuss the details of our VEM algorithm.
Finally, we evaluate POV-SLAM in both simulated and real-
world experiments in Section V. To the best of our knowledge,
our method is the first to achieve joint localization and object-
level change detection for large, semi-static environments.

II. RELATED WORKS

A. Visual SLAM

Visual SLAM is a well-established type of SLAM, mainly
achieved via either feature-based methods [1, 20, 21, 22] or
dense methods [23, 4]. Sparse methods match feature points of
images, having lighter computational requirements, focusing
on localization, whereas dense methods seek to construct ac-
curate and more complete representations of the environment,
useful for navigation and collision avoidance.

In recent years, feature-based SLAM methods have gained
traction for use with mobile robots in large environments,
as they exhibit a high level of accuracy and efficiency. The
seminal works of Mur-Artal et al. in ORB-SLAM [1] introduce
a monocular, feature-based SLAM system with real-time cam-
era relocalization. ORB-SLAM2 [24] and ORB-SLAM3 [5]
extend [1] with stereo and RGB-D information. ORB-SLAM
remains a state-of-the-art feature-based method [25, 26] and is
extended to aid with our localization and map update strategy.

However, most current visual SLAM methods focus on
static scenes, simply rejecting inconsistent landmarks from
dynamic objects as outliers. As well, object-level scene infor-
mation is ignored, resulting in inconsistent map updates when
items move between robot passes. Our framework aims to use
object-level understanding to track scene changes and aid with
accurate localization in evolving scenes.

B. Dynamic SLAM

Dynamics and object-level reasoning in SLAM have been
recently studied, and there exist two common strategies to
handle changes. The first is to identify dynamics from input
data, which can be extracted with a semantic segmentation
network such as Mask R-CNN [27], discarding it completely
[7, 8, 9, 10, 11, 12, 28]. Though this method is effective in the
presence of a few dynamic objects, in cluttered environments,
the static background is often only a small part of the sensor’s
FOV and ignoring all dynamic objects could lead to an
insufficient number of visual features for localization.

The second strategy is to track the dynamic objects ex-
plicitly, which can be achieved using multi-object tracking
(MOT) [13, 14, 15, 29, 30]. DetectFusion [14] uses semantic
segmentation and motion consistency to extract both known
and unknown objects. The work of Barsan et al. [29] uses
instance-aware semantic segmentation and sparse scene flow
to classify objects based on their activity. MID-Fusion [15]
and EM-Fusion [30] obtain object masks and construct a
signed distance function (SDF) model for objects from depth
information. Object poses are obtained by directly aligning



depth measurements to their corresponding SDF models.
VDO-SLAM [31] and ClusterSLAM [32] group landmarks
to form objects and exploit rigid body motion to construct a
factor graph, jointly solving for robot and object poses. The
aforementioned methods require scene changes to be observed
in consecutive frames, rendering this strategy ineffective under
changes that occur over a long time horizon.

C. Semi-Static SLAM

SLAM in semi-static scenes is a difficult yet overlooked
problem, that is crucial for long-term operation. One challenge
in the presence of semi-static objects is ambiguity in the
system state, caused by potential symmetry in the scene
changes and the lack of continuously observed motion.

Recent works on map maintenance involving semi-static
objects all aim to estimate a consistency score, based on
given robot poses, to determine which part of the map needs
to be updated. Fehr et al. [18] update an SDF map by
calculating voxel-level differences between signed distance
functions of the stored map and incoming depth measurements.
Schmid et al. [19] maintain a set of object-level SDF sub-
maps, propagating a stationarity score for each sub-map by
calculating the overlap between their depth measurements
and the existing map. Though intuitive, these overlap-based
estimation methods are prone to localization errors. Gomez
et al. [33] model objects as cuboid bounding volumes and
construct an object factor graph to estimate the object poses
and their moveability scores in offline batch optimization. To
obtain a more accurate and consistent object-level consistency
score at runtime, Qian et al. propose [6], a Bayesian update
rule to iteratively propagate a probabilistic object state model
using both geometric and semantic measurements, which was
shown to be more robust against localization noise. However,
the aforementioned incremental mapping solutions all assume
reliable robot poses are given.

Walcott et al. propose a 2D LiDAR SLAM solution [34]
that maintains a set of sub-maps for each region. The active
sub-map is replaced with new measurements if there are
inconsistencies and then stacked to form the final map. Rosen
et al. incorporate a recursive Bayesian persistence filter [35]
into classic feature-based SLAM systems to estimate the
consistency of each point feature. In a more recent work,
Ren et al. [17] attempt to integrate object-level consistency
estimation and 3D visual SLAM in the presence of semi-static
and dynamic objects. The authors first perform dense visual
SLAM using the static background to estimate the camera
pose. They calculate the image-plane overlap between new
object measurements and their previously mapped objects,
reconstructing the object if the inconsistency is large. The
visual features of unobserved mapped objects and new object
observations are compared to perform association and relo-
calization. However, a known static background is required
to track the camera motion, making this method a two-step
process and rendering it unstable in the presence of a large
number of potentially changing objects.

Rogers et al. [36] and Xiang et al. [37] use an EM approach
to handle semi-static point landmarks. The authors integrate
the traditional landmark measurement model with a latent
confidence score to weight its contribution in the cost function.
The EM scheme is used to iteratively update the robot pose,
landmark positions, and confidence scores. However, since
the optimization process runs over the entire trajectory and
rejection decisions are made based on a predefined threshold at
the end of the process, these two methods are limited to offline
settings. In our sliding window setup, landmark rejection
decisions are revised probabilistically at every EM iteration
during run-time, leading to more robust, fast, and accurate
convergence. EM-based algorithms have been applied to other
components of SLAM systems, such as data association [38].

III. SYSTEM DESCRIPTION

A. Overview and Assumptions

This work focuses on long-term SLAM in the presence
of semi-static objects. We aim to simultaneously localize
the robot, and propagate a consistency estimate for each
object. The robot localizes itself against objects with high
measurement likelihoods, with changed objects being recon-
structed once sufficient observations have been made. Finally,
a truncated signed distance function (TSDF) map is produced
to reflect the current scene configuration.

The POV-SLAM system builds upon a recent semi-static
map maintenance framework, POCD [6], and the SOTA
feature-based RGB-D SLAM system, ORB-SLAM3 [5]. A
flow diagram of our novel POV-SLAM system is shown in
Figure 2, which consists of five main stages. The following
subsections provide an overview of each of the major compo-
nents in the POV-SLAM pipeline.

We make the following assumptions in this work:
1) The robot operates in a bounded indoor environment

(e.g., warehouse or mall) where rigid objects are present.
2) High-level prior knowledge of the objects is available,

such as their semantic class, dimension, and likelihood
of change.

3) Objects can be added, removed, or shifted between robot
traversals, though part of the environment should remain
unchanged and observed by the robot.

4) The robot starts its trajectory from a known pose.

B. SLAM Pipeline and Object Representation

The POV-SLAM pipeline takes in a sequence of color and
depth frames, F “ tFtut“1...T , from a RGB-D camera, C, as
inputs at timestamps t P t1 . . . T u. The pipeline outputs the
6-DoF world-to-camera transformations, T CW “ tTCW

t “

tpCW
t ,qCW

t uut“1...T , with 3D position, pCW
t , and orienta-

tion, qCW
t , at each timestep t, along with a library of mapped

objects, O “ tOiui“1...I . Each object, Oi, consists of:
‚ a 4-DoF global pose, TOW

i “ tpOW
i , ϕOW

i u,
‚ a point cloud from accumulated depth data, Pi, and the

resulting TSDF reconstruction, Mi,
‚ a bounding box, Bi, aligned with the major and minor

axes of the object reconstruction,
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Fig. 2: Our object-aware simultaneous localization and mapping framework (Section III) for semi-static environments. The system inputs
are semantically annotated RGB-D frames (Section III-B). Object point clouds are first extracted and TSDFs are generated. Current object
TSDFs are then associated with those stored in the object library (Section III-C). An object-level probabilistic consistency update and an
evidence lower bound (ELBO) maximization (Section III-D) are performed iteratively to estimate the state of each object and localize the
robot (Section III-E). Upon convergence, the outputs are: unreliable objects, which are discarded, reliable objects, and the final robot pose,
which are used to generate and update the dense scene map (Section III-F). The framework can be extended to additionally handle dynamic
objects (dotted lines) by following MOT-based approaches [14, 31].

‚ a semantic class, ci,
‚ a state probability distribution, ppli, viq, to model the

object-level geometric change, li P R, and the consis-
tency, vi P r0, 1s.

‚ a set of associated 3D landmark points in the world frame,
LW
i “ tlWi,l P R3ul“1...L,

‚ the relative positions of the landmark points with respect
to the object pose, TOW

i , LO
i “ tlOi,l P R3ul“1...L,

As we consider indoor mobile robot applications, objects
are restricted to only rotate around the z-axis, resulting in
a 4-DoF pose, although extending to 6-DoF is trivial. The
SLAM system is initialized with an empty object library,
O “ ∅. Along with the camera pose and object models, the
system also maintains a dense TSDF map which can be used
for downstream tasks such as perception-based planning and
control [39, 40].

C. 3D Observation Extraction and Data Association

When a new RGB-D frame, Ft, is received by the system,
a set of 3D observations, Yt “ tYt,juj“1...J , is extracted
and associated to the mapped objects by following the POCD
semantic-geometric clustering and association strategy [6].
Additionally, each observation, Yt,j , contains the unprojected
3D keypoints, DC

t,j “ tdC
t,j,d P R3ud“1...D, detected from the

masked color image. For each associated object-observation
pair, tOi,Yt,ju, we also match the unprojected keypoints,
DC

t,j , to the object landmark points, LC
i .

D. Object Consistency-Augmented Factor Graph

In POCD [6] the authors introduced a Bayesian update
rule to propagate an object-level state model, ppl, vq. This
model consists of a Gaussian distribution which captures the

magnitude of the object-level geometric change, l, and a Beta
distribution which estimates the consistency between the in-
coming measurement and the previously mapped object, v. In
this work, we exploit the Beta parametrization of consistency
ppvq :“ Betapv | α, βq, to estimate the reliability of the object
observations in a factor graph optimization framework.

We first consider a simple sparse SLAM problem in a
semi-static scene, where previously mapped objects are either
moved or unchanged when the robot revisits the region. Our
goal is to estimate the robot trajectory, T CW , and determine
which of the objects have changed. Existing methods such
as ORB-SLAM3 [5] wrap landmark measurement residuals
with a robust kernel (e.g., Cauchy loss function) and run
optimization multiple times to reject outlier measurements.
However, such approaches are not robust to large changes in
the scene. Instead, similar to [36, 37], we augment the joint
likelihood of our sliding window estimation problem with the
object-level Beta-parametrized consistencies, tppviqui“1...I , to
explicitly model the reliability of each observed landmark:

log ppO, tTCW
t ut“T´m...T , tYtut“T´m...T q (1a)

9
ÿ

t

log ppepose
t q (1b)

`
ÿ

i

ÿ

l

log pperigid
i,l q (1c)

`
ÿ

i

ÿ

l

log ppeprior
i,l q (1d)

`
ÿ

t

ÿ

j

ÿ

d

log ppekey-pt
t,j,d ,α,βq (1e)

The factor in Equation (1b) is the transition model. We
use the ORB-SLAM3 RGB-D front-end to obtain a visual



odometry (VO) measurement in the body frame, TC
t´1,t, which

is used as a prior to initialize the augmented factor graph:

ppepose
t q “ N pepose

t | 0, σ2
poseIq

epose
t “ pTCW

t´1 T
CW´1
t q´1TC

t´1,t

(2)

This factor minimizes the deviation between the estimated
relative pose in the body frame and the VO measurement.
In practice, we find that this factor improves the stability of
the nonlinear optimization.

The factor in Equation (1c) constrains the relative positions
of associated object landmarks with respect to the object frame
to penalize the deformation of the object geometry:

pperigid
i,l q “ N perigid

i,l | 0, σ2
rigidIq

erigid
i,l “ TOW

i lWi,l ´ lOi,l
(3)

The factor in Equation (1d) encourages landmark points to
remain at their original positions during optimization. This is
important, as objects that have changed but not been rejected
can lead to localization errors and a corrupted map, especially
at early stages of the optimization process:

ppeprior
i,l q “ N peprior

i,l | 0, σ2
priorIq

eprior
i,l “ lWi,l ´ lWi,l,prev

(4)

Note that, for simplicity, we use Gaussian measure-
ment likelihoods and isotropic covariance with magnitude
σ2

pose, σ
2
rigid, σ

2
prior for these three factors.

The factor in Equation (1e), the landmark measurement
model between an object landmark point, lWi,l and its observa-
tion, dC

t,j,d, is more complicated, as a Gaussian likelihood is
not sufficient to model possible changes in a semi-static scene.
An intuitive approximation is to adopt the same Gaussian-
Uniform mixture, weighted by the expectation of the Beta
consistency model, Ervs, as in [6]:

ppekey-pt
t,j,d q “ ErvsN pekey-pt

t,j,d | 0, σ2
key-ptIq

` p1 ´ ErvsqUp∥ekey-pt
t,j,d ∥2 | 0, emaxq

ekey-pt
t,j,d “ TCW´1

t dC
t,j,d ´ lWi,l

(5)

This mixture model consists of two parts: 1) a zero-mean
Gaussian component with an isotropic measurement covari-
ance, σ2

key-pt, for the unchanged scenario, and 2) a uniform
component with a predefined maximum association distance,
emax, for the changed scenario in which the object could be
anywhere. However, using the single point estimator, Ervs,
could lead to an inaccurate estimation as it does not capture
the full Beta consistency distribution. We present a variational
formulation to derive an ELBO for the landmark measurement
model in Section IV-A, which is efficient to implement, and
shown to provide better convergence behavior than the single
point approximation in Equation (5). Figure 3 illustrates the
complete factor graph.

Optionally, our framework can be extended to handle dy-
namic objects in the scene. We follow the strategy in [31],
where the poses and associated landmarks of moving objects

 

Fig. 3: A factor graph representation of our probabilistic, object-
aware SLAM method, solved in the M-step of each EM iteration
(Section IV-C), with blue semi-static and red optional dynamic
objects. Black squares: robot poses at each time step, black circle:
robot prior factor, green circles: odometry factors, white circles:
ELBO of object landmark measurement factors (Section IV-A), pink
and purple: landmarks associated with static and dynamic objects,
respectively, orange circles: object rigidity priors, grey circle: op-
tional dynamic object velocity factor.

are modeled at each timestamp in the window, temporally
constrained by the estimated velocity. This strategy is tested
in simulation, as discussed in the Supplementary Material.

E. Iterative Object Consistency Update and Pose Estimation

The augmented optimization problem in Equation (1) con-
sists of both unknown parameters, which are the robot tra-
jectory and the object poses with their associated landmark
positions, and a set of unobserved latent variables, which are
the object consistencies. Although the problem is complex
to solve directly, a favoured approach to solving such esti-
mation problems involving latent variables is iteratively via
expectation-maximization (EM). We introduce an EM-based
method in Section IV, which leverages our variational land-
mark measurement model to solve the factor graph iteratively
at every frame, Ft.

F. Object and TSDF Map Update

Once optimization is complete, we extract the new robot and
object pose information, and update the map and object library.
All new object observations not associated to the previous
map are integrated into the TSDF map and added to the
object library, O. A large pseudo-change is used to penalize
the consistency of objects currently in the camera frustum,
but not associated with any observations. Objects accepted
by the VEM optimization, as discussed in Section IV-C, are
considered consistent with the map, and their observations are
integrated into the object’s TSDF model, Mi. Their object state
models are then propagated by one step based on the new robot
pose estimate. The states of objects not accepted by the VEM



optimization are also propagated by one step, though their
observations are not integrated, as they are no longer consistent
with their previous models. If an object’s consistency expec-
tation, Ervis, falls below a pre-defined threshold, θconsist, the
object is removed from the library, and all associated voxels
in the TSDF model are reinitialized. Note that the rejected
objects are not discarded immediately after optimization to
ensure robustness against potential measurement noise and
pose estimation error in the current frame. When dynamic
objects are considered, we can update their motion models
with their new pose estimates using a Kalman filter.

IV. METHODOLOGY

In this section, we discuss the details of our VEM method:
1) In the E-step we compute the ELBO for the expectation of
the landmark measurement likelihood for potentially changing
objects, and 2) in the M-step we optimize the approximated
factor graph to update the robot and object states. Algorithm
1 in the Supplementary Material outlines how our pipeline
processes one frame to update the robot and object states.

A. E-Step: ELBO of Measurement Likelihood for Potentially
Semi-Static Objects

In Section III-D, the cost function for the augmented factor
graph SLAM problem is introduced, where each object and
its associated landmark points share a Beta-parametrized con-
sistency estimate. Such a problem is challenging to optimize,
even with the EM algorithm. Moreover, as discussed earlier, a
single point approximation using the consistency expectation,
Ervs (Equation (5)), does not capture the full Beta consistency
model. In this section, we focus on the E-Step of the VEM
algorithm and derive the ELBO for the expectation of each
object landmark’s measurement likelihood in Equation (1),
based on the robot trajectory, object landmark position, and
object consistency estimated in the previous EM iteration.

Consider a single landmark from an object. At frame T
and EM iteration n, we obtain a Beta consistency posterior,
Betapα, βq, for the object by following the Bayesian method
introduced in [6], with respect to the current frame measure-
ment, dC

T , the previous iteration’s landmark position estimate,
lW , and robot pose estimate, TCW . Note that these variables
are treated as constants in the E-Step. The timestamps and
indices in the notation are dropped for clarity. The object’s
true consistency, π P t0, 1u, can be considered as a sample
from a Bernoulli distribution parametrized by v, with π “ 1
indicating the object has not changed. We can then write a
generative process, ppπ, vq “ ppπ | vqppv | α, βq, where:

v „ Betapα, βq

π „ Bernoullipvq
(6)

Unchanged objects will follow a zero-mean, isotropic Gaus-
sian measurement model and moved objects can be anywhere
in the scene. The measurement residual, eT , is defined to be
the 3D point-wise distance:

eT “ TCW´1dC
T ´ lW (7)

We can then rewrite the Gaussian-Uniform measurement
model weighted by the sampled object consistency, π, as:

ppeT q :“ ppeT | TCW , lW , πq

“ N peT | 0, σ2IqπUp∥eT ∥2 | 0, emaxq1´π
(8)

Since π is sampled from the generative process shown in
Equation (6), Equation (8) involving dependent latent vari-
ables, ω “ tπ, vu, is challenging to maximize. Fortunately, we
can apply the mean field approximation [41] by assuming the
two latent variables are fully independent, ppπ, vq » qpπqqpvq.
This would allow us to write a variational lower bound, L, for
the evidence, log ppeT | TCW , lW , α, βq:

Lpω,TCW , lW q “ Eqpωq

„

log
ppeT ,ω | TCW , lW , α, βq

qpωq

ȷ

(9)
where the joint likelihood is

log ppeT ,ω | TCW , lW , α, βq

“ log ppeT | TCW , lW , πq ` log ppπ | vq ` log ppv | α, βq

“ πrlog v ` logN peT | 0, σ2Iqs

` p1 ´ πqrlogp1 ´ vq ` logUp∥eT ∥2 | 0, emaxqs

` logBetapv | α, βq

(10)
Following the mean field approximation, the optimal qpπq

and qpvq that maximize the lower bound (9) are:

log qpπq “π
“

Erlog vs ` logN peT | 0, σ2Iq
‰

` p1 ´ πq
“

Erlogp1 ´ vqs

` logUp∥eT ∥2 | 0, emaxq
‰

` const

log qpvq “Erπs log v ` Er1 ´ πs logp1 ´ vq

` logBetapv | α, βq ` const

(11)

Now, the expectation of the probability that the object did
not change, Erπs, can be computed based on the current
measurement and estimates:

Erπs “ qpπ “ 1q

“ η exptErlog vs ` logN peT | 0, σ2Iqu

Er1 ´ πs “ qpπ “ 0q

“ η exptErlogp1 ´ vqs ` logUp∥eT ∥2 | 0, emaxqu

(12)

Here, η is a normalizing factor, and Erlog vs and Erlogp1´vqs

can be computed from the property of the Beta distribution:

Erlog vs “ ψpαq ´ ψpα ` βq

Erlogp1 ´ vqs “ ψpβq ´ ψpα ` βq
(13)

where ψp¨q is the digamma function. Finally, we can compute
the lower bound:

Lpv, π,TCW , lW q

“ Erπs logN peT | 0, σ2Iq

` Er1 ´ πs logUp∥eT ∥2 | 0, emaxq ` const

(14)



Comparing to the naive approximation in Equation (5), the
ELBO is a mixture between a log-Gaussian mode and a log-
Uniform mode. However, the new weights, Erπs and Er1´πs,
incorporate the full Beta consistency model as well as the
likelihood of the two modes. This provides a more statistically
consistent measurement model for potentially changing ob-
jects. We refer the reader to the Supplementary Material for a
more detailed derivation, as well as a performance comparison
against the single point approximation in Equation (5).

B. ELBO Tightness and Assumptions

We repeat the ELBO estimation (Equation (14)) presented
in Section IV-A for all observed objects and their landmarks
in the scene, which we substitute into the joint likelihood,
discussed in Section III-D, to construct a lower bound to
the original optimization cost (Equation (1)) for our sliding
window SLAM problem. The new factor graph can be solved
efficiently using an available SLAM solver, such as g2o [42].

Unfortunately, sub-optimal or diverged solutions are likely
to occur. The mean field approximation used in the measure-
ment ELBO tends to be overconfident [41], especially when
the Beta consistency estimate is uncertain. On the other hand,
the ELBO tightens when the Beta distribution approaches a
unit impulse, i.e., when α " β or α ! β. This implies that
when object consistency estimates are uncertain, the lower
bound can be improved but there is no guarantee to improve
the true joint likelihood, as some moved objects can be
misclassified as unchanged. Nonetheless, with additional iter-
ations the ELBO tightens, improving the true likelihood. This
convergence behavior requires that: 1) a good prior robot pose
is available, and 2) some distinguishable, unchanged objects
are observed by the robot. We believe these are reasonable
assumptions to make in the semi-static SLAM problem. Most
robots deployed in industrial settings depart from and return
to pre-determined charging stations. Visual place recognition
techniques can also be used to initialize the system. Moreover,
if the robot only observes changed objects, then it is not
possible to determine the global pose of the robot just using
vision data. Without inertia or off-board anchor sensors (e.g.,
IMUs and UWBs), the system will converge to a minimum-
cost state but there is no guarantee to the correctness. We
provide simulation results in the Supplementary Material to
illustrate the system’s behavior under advertorial scenarios.

C. M-Step: Factor Graph Optimization

In order to exploit the aforementioned assumptions and en-
courage the optimizer to make use of static objects with higher
certainty to perform system updates, a max-mixture [43] ap-
proach is adopted to guide the optimization process. At every
gradient descent step, for every object landmark, a weighted
log measurement likelihood is computed for the unchanged
and moved scenarios, and a decision is made on whether the
measurement should be accepted in computing the gradient:

m “ argmaxt logErvsN peT | 0, σ2Iq,

logp1 ´ ErvsqUp∥eT ∥2 | 0, emaxqu
(15)

L̃pv, π,TCW , lW q

:“

#

Erπs logN peT | 0, σ2Iq, if m “ 0

Er1 ´ πs logUp∥eT ∥2 | 0, emaxq, if m “ 1

(16)

This approximation excludes objects with lower measurement
likelihood from contributing to the overall cost, achieving
faster and more accurate convergence when the ELBOs are not
tight. Rejected objects are not deleted immediately, but revised
at every gradient step. Note that we choose Ervs instead of
Erπs to weight the measurement likelihoods when making the
rejection decisions. Empirical results show that Erπs, despite
being a more accurate estimate, could be highly noisy due
to the overconfidence in the mean field approximation. On
the other hand, Ervs comes from the Bayesian update rule,
thus providing smoother gradients to achieve more stable
convergence. More details and ablation studies are provided
in the Supplementary Material.

Substituting the approximated ELBO (Equation (16)) into
Equation (1), and maximizing the new factor graph, we obtain
the updated robot and object states for the next EM iteration:

O, T CW “

argmax
O,T CW

log ppO, T CW , tYtutq

9
ÿ

t

log ppepose
t q

`
ÿ

i

ÿ

l

log pperigid
i,l q

`
ÿ

i

ÿ

l

log ppeprior
i,l q

`
ÿ

t

ÿ

i

ÿ

l

L̃pvi, πi,T
CW
t , lWl q

(17)

Our VEM formulation ensures a monotonically increasing
ELBO until a zero-gradient solution but does not guarantee
convergence to an optimum. Global optimality is inherently
challenging, but our descent method mostly provides high-
quality solutions when assumptions in Section IV-B are met.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We verify the performance of our framework qualitatively
and quantitatively by comparing both the map reconstruction
and robot trajectory error of POV-SLAM to:

‚ ORB-SLAM3 [5]: A SOTA sparse visual SLAM solution,
which assumes the world is static.

‚ VI-MID [17]: A recent object-level SLAM method for
small (5mˆ5m) semi-static scenes. The method performs
dense RGB-D tracking on certainly-static regions based
on semantics for camera localization, before updating the
object states. As the code was unavailable, we modify
ORB-SLAM3 to exclude features from potentially chang-
ing objects during pose estimation, and use POCD [6]
for object change detection and mapping. Our custom
implementation is referred to as “Ours-MID”.
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Fig. 4: A sample RGBD, semantically labelled, and 3D LiDAR frame captured by the sensors before (top) and after (bottom) the scene
changes. The forklift in the top frame, captured June 15, 2022, is no longer present in the bottom frame, captured Oct. 23, 2022.

In essence, ORB-SLAM3 uses all features, Ours-MID em-
ploys certainly-static features, and POV-SLAM probabilis-
tically selects features from likely-unchanged objects. In a
static scene, POV-SLAM should revert to regular batch SLAM
where only the Gaussian mode of the measurement model
is active. To demonstrate the capabilities of POV-SLAM, we
evaluate in three scenarios: 1) a 2D simulation (Section V-C),
2) a 3D synthetic semi-static dataset (Section V-D), and 3)
our real-world, semi-static warehouse dataset (Section V-E).
The lack of large, real-world SLAM datasets with multiple
passes through environments that include both dynamic and
semi-static objects prompted us to create one (Section V-B).
We implement our method on top of ORB-SLAM3 [5] and
POCD [6]. The parameters used to evaluate against all meth-
ods can be found in the Supplementary Material.

To benchmark 3D reconstruction accuracy under scene
changes, we generate the ground truth meshes by using POCD
with the ground truth robot trajectory. As POCD has shown
to outperform several mapping methods (Kimera [3], Fehr et
al. [18], and Panoptic Multi-TSDFs [19]), the mesh obtained
is representative of the best possible reconstruction.

Note that in this work, we use RGB-D information to
address scene changes directly, thus inertial and odometry data
are excluded. While IMUs can supplement all methods, our
method yields RGB-D pose estimates that align better with
IMU data, removing errors at their source.

B. Real-World Semi-Static Warehouse Dataset

We release an extension to the TorWIC change detection
dataset [6]. The original TorWIC dataset features a small
10mˆ10m hallway setup using boxes and fences with limited
real-world objects and changes. Its ground-truth trajectory,
acquired via 2D LiDAR SLAM, suffers from jumps and
drifts and thus not suitable for evaluating SLAM algorithms.
Conversely, the new extension, as the first long-term real-world
warehouse dataset, originates from an active 100mˆ80m
Clearpath Robotics plant showcasing various objects and
changes (e.g., forklifts, robots, people).

The dataset is collected on a mobile base equipped with
two Microsoft Azure RGB-D cameras, an Ouster 128-beam
LiDAR, and two IMUs. We repeat three scenarios over the
course of four months, presenting changed object locations
over time, with a total of 20 trajectories. The robot setup,
sensor specifications and the scenario breakdown can be found
in the Supplementary Material. Figure 4 shows the scenario
changes for a sample route.

To facilitate SLAM and reconstruction evaluation, we also
release the ground truth scan of the warehouse and ground
truth trajectories. A Leica MS60 multistation was used to ob-
tain a centimetre-level accurate point cloud of the warehouse.
Iterative closest point (ICP) was performed between the 128-
beam LiDAR scan and the ground truth scan to obtain highly
accurate ground truth trajectories for the robot. The robot starts
and ends at the pre-defined map origin, so users can easily
stitch trajectories to create long routes with change.

C. 2D Semi-Static Simulation
In this section, we introduce the first of three experiments

performed. A 2D simulation was constructed to demonstrate
our probabilistic framework in action, and to justify the design
choices made. The setup can be seen in Figure 5, consisting
of four unchanged objects and six moved objects. The robot
is spawned around its ground truth pose, with noise in both
position and orientation, and drives in the scene. The robot
measures the four vertices of the rectangular objects, all
corrupted by Gaussian noise. As seen in Figure 5, the system
is able to correctly identify the six moved boxes, recovering
their true poses. In the Supplementary Material, the evolution
of the state estimates of the system over the first four frames
are shown, as the robot navigates the scene.

Figure 6 shows the evolution of the object consistency
expectation, Ervs, and the robot pose error over the EM
iterations at the first frame. The consistency expectations
converge to their true values at the end of the optimization
and the robot pose converges to its ground truth after six EM
iterations. There is a drop in the consistency of all objects
during the first iterations due to the initial error in the robot
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Fig. 5: The setup of our 2D semi-static simulation with six moved
objects and four unchanged objects over the first and third frames of
optimization. Rectangle: object, triangle: robot, green: ground truth,
yellow: estimation, blue: reconstructed objects. All object states are
initialized with a Ervs “ 0.5 consistency estimate. All moved boxes
are identified and relocalized after three frames.

pose estimate. However, as the robot pose becomes more
accurate, the true states are recovered. This experiment shows
the robustness of our method, as the system is able to recover
the true state even when the number of moved objects in the
scene exceeds the number of unchanged objects.

We shall note that the iterative optimization process finds
the most likely underlying scene configuration based on the
measurements. Therefore, if there exists a different hypothesis
that exhibits a higher measurement likelihood, the optimizer
would converge to that solution. For example, if the six moved
objects had all shifted in the same direction by the same
magnitude, our system would mark them as stationary and
relocalize the unchanged objects instead. However, since such
scenarios cannot be distinguished from a probabilistic point
of view, they are not of concern. This adversarial scenario is
shown in the Supplementary Material.

Further ablation studies showcasing the advantage of using
the ELBO instead of the single point estimate (Section III-D),
the use of max-mixture approximation (Section IV-C), the
choice of weights (Ervs vs Erπs) to use when choosing the
mode of max-mixture (Section IV-C), and an adversarial fully
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Fig. 6: The object-level consistency expectation (top) and robot pose
error (bottom) over VEM iterations at the first frame for the simulated
scenario. For the object consistencies, plots with markers belong
to moved objects. Although the consistencies converge after 100
iterations, in practice we can stop much earlier.
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Fig. 7: The setup for the 3D simulation (left). Green: robot trajectory,
red: direction of box motion. The RGB (top) and depth (bottom)
camera views can be seen on the right.

dynamic scenario, are available in the Supplementary Material.

D. 3D Semi-Static Simulation

In this section, we introduce a 3D simulated semi-static
scene, henceforth referred to as “BoxSim”. The setup can
be seen in Figure 7. The robot moves among 17 boxes,
six of which shift between robot traversals. The scenario is
very challenging as there is no static background available,
requiring all methods to localize against the 17 boxes.

Figure 1 visually compares the robot trajectories estimated
by ORB-SLAM3 and POV-SLAM against the ground truth.
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Fig. 8: A bird’s-eye-view qualitative analysis of 3D reconstruction results of the top row: BoxSim synthetic dataset compared against that of
ORB-SLAM3 and Ours-MID, and bottom row: our real-world warehouse dataset, compared against that of ORB-SLAM3. The green, yellow,
and red sections represent true positives (correct prediction), false negatives (incorrect negative prediction), and false positives (incorrect
prediction), respectively. The first image is the ground truth map of the routes’ final scenario after scene change. For BoxSim a grid of 0.2
and for the real-world trajectory a grid size of 0.4 were used to voxelize the reconstruction.

As discussed, ORB-SLAM3 assumes a static environment.
Although it utilizes robust kernels and iterative pruning to
reject outlier landmarks, it is still sensitive to large scene
change. As seen in the figure, its estimated trajectory diverges
from the ground truth when changed objects are encountered.
On the other hand, POV-SLAM optimizes a lower bound to a
Gaussian-Uniform likelihood to explicitly infer if any of the
mapped objects have changed, resulting in much smoother and
accurate pose estimates.

As discussed in the literature review, a common method for
dynamic object handling is to ignore all potentially moving
objects. In VI-MID [17] the authors mask out all potentially-
changing objects based on semantic information, performing
dense tracking on the static background alone. However,
this relies on the assumption that the changing parts of the
environment are known, which is not feasible in the real world.
We evaluate our adaptation, Ours-MID, on two scenarios: 1)
the optimal case, where the system knows which objects will
shift and 2) the random case, where objects are randomly

TABLE I: Absolute Trajectory Error (ATE) and Maximum Position
Error (MPE) on the BoxSim Dataset.

BoxSim ATE [m] MPE [m]
ORB-SLAM3 0.14 0.47

Ours-MID (optimal) 0.41 0.82
Ours-MID (random) 0.49 0.90
POV-SLAM (ours) 0.10 0.26

POV-SLAM Improvement 0.04 (29%) 0.21 (45%)

TABLE II: Quantitative mapping results on the BoxSim Dataset.

BoxSim Precision Ò Recall (TPR) Ò FPR Ó

ORB-SLAM3 52.1 72.4 3.8
Ours-MID (optimal) 45.2 56.7 4.1
Ours-MID (random) 39.0 50.5 4.6
POV-SLAM (ours) 68.5 78.7 2.2

POV-SLAM Improvement 16.4 (31%) 6.3 (8.7%) -1.6 (42%)

chosen to represent the static background.

The average trajectory error (ATE) and maximum position
error (MPE) can be seen in Table I. POV-SLAM significantly
outperforms ORB-SLAM3 and Ours-MID. For Ours-MID,
in the optimal case, by ignoring all potentially changing
objects the system might not observe enough features when the
robot visits locations where moving objects dominate, causing
poor estimates. In the random case, its performance further
degrades when objects are incorrectly classified.

We further compare the dense reconstructions of POV-
SLAM against ORB-SLAM3 and Ours-MID. The top row of
Figure 8 shows the qualitative comparisons, where we overlay
and voxelize both the reconstructions and the ground truth
mesh and colorize the overlapping (inlier) and inconsistent
(outlier) voxels. We then compute the precision, recall, and
false positive rate (FPR) by counting the voxels for a quan-
titative evaluation, and Table II lists the quantitative results.
ORB-SLAM3 and Ours-MID both generated distorted maps
with failed object updates due to localization drift, which
led to incorrect data association in object consistency update.
On the other hand, POV-SLAM generates the most visually
correct map where all moved boxes, except the one at the
top left, are relocalized to the new locations. Quantitatively,
POV-SLAM exhibits the highest precision (coverage of true
objects), and the lowest FPR (map update quality after scene
change) due to its superior localization performance.

As all methods use the same POCD [6] framework and
parameters to perform map update at every frame, this experi-
ment highlights that 1) explicit reasoning of object consistency
is required for localization in semi-static environments, and 2)
joint estimation of object consistency and robot localization
brings significant advantage in cluttered scenes.
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Fig. 9: The output trajectories of ORB-SLAM3 and POV-
SLAM through the real-world warehouse aisle scenario.

E. Real-World Experiment in a Semi-Static Scene

In this section, we evaluate POV-SLAM’s effectiveness in
a warehouse scenario, available through our novel real-world
semi-static dataset. We stitch two trajectories captured along
the same route four months apart to introduce scene changes as
the robot traverses the warehouse. Figure 9 shows the routes
overlaid on the factory’s schematic floor plan and Figure 4
shows a sample pair of frames with scene changes. Due to
the limited effective range of the Azure RGB-D cameras, we
rely on the Ouster Lidar to provide feature depth information
when traversing in open areas.

We qualitatively and quantitatively compare the trajectory
estimation and scene reconstruction results against ORB-
SLAM3. Ours-MID is not included in the comparison as
the route is cluttered with pallets and boxes, leaving very
limited static background information for Ours-MID to lo-
calize against. The output trajectories along with the ground
truth are visualized in Figure 9. ORB-SLAM3 successfully
completes the first traversal with high accuracy. However,
changes along the aisle in the second traversal cause incorrect
data association and lead to a shortened trajectory. POV-
SLAM performs slightly worse than ORB-SLAM3 in the first
traversal. However, in the second traversal, POV-SLAM is
able to reject the false positive matches and track with higher
accuracy. The ATEs and MPEs from the two traversals can be
seen in Table III and Table IV.

The bottom row of Figure 8 visualizes the 3D reconstruc-
tion results. Again, we voxelize the reconstructed meshes
and count for overlapping and inconsistent voxels to obtain
the quantitative evaluations, which are listed in Table V.
POV-SLAM outperforms ORB-SLAM3 in both localization
accuracy and scene reconstruction on this route when scene
changes are encountered as it does not suffer from incorrect
loop closures.

TABLE III: Absolute Trajectory Error (ATE) and Maximum Position
Error (MPE) in Traversal 1 of the Real-World Aisle Scenario.

Real-World-T1 ATE-T1 [m] MPE-T1 [m]
ORB-SLAM3 0.14 0.31

POV-SLAM (ours) 0.26 0.48
POV-SLAM Improvement -0.12 (-86%) -0.17 (-55%)

TABLE IV: Absolute Trajectory Error (ATE) and Maximum Position
Error (MPE) in Traversal 2 of the Real-World Aisle Scenario.

Real-World-T2 ATE-T2 [m] MPE-T2 [m]
ORB-SLAM3 0.89 1.55

POV-SLAM (ours) 0.46 0.98
POV-SLAM Improvement 0.43 (48%) 0.57 (37%)

TABLE V: Quantitative mapping results on the Real World Dataset.

Real World Precision Ò Recall (TPR) Ò FPR Ó

ORB-SLAM3 76.2 56.9 1.9
POV-SLAM (ours) 79.7 53.7 1.5

POV-SLAM Improvement 3.5 (4.6%) -3.2 (-6.0%) -0.4 (21%)

F. Run-time Performance

With a max of 4,000 ORB features in each frame, a window
size of 8, and 30 EM iterations per frame, POV-SLAM runs at
approximately 1Hz on a Linux desktop with an AMD Ryzen
R9-5900X CPU at 3.7Hz. To achieve a more realistic run-time,
we only execute the VEM optimization every seven frames
on the real-world dataset, while relying on ORB-SLAM3 in
between. We use a large number of ORB features because
the dataset is challenging due to varying lighting conditions,
causing even the original ORB-SLAM3 to fail at times with
the default 1250 features. As well, our object-aware method
requires each object to have sufficient features for tracking
and association. We currently use a uniform feature detection
approach, so small yet key objects may not get enough features
under a lower quota. In practice, POV-SLAM is amenable to
online operation in large environments, as change detection
and localization correction is not required at every frame.
A semantic-aware feature extraction approach could further
improve the performance in the future.

VI. CONCLUSION

In this paper we present POV-SLAM, a novel online,
probabilistic object-aware framework to simultaneously esti-
mate the robot pose, and track and update object-level scene
changes in a joint optimization-based framework. The POV-
SLAM pipeline uses our derived variational expectation max-
imization strategy to optimize factor graphs accounting for
potentially-changing objects. We experimentally verify the ro-
bustness of POV-SLAM against state-of-the-art SLAM meth-
ods on two datasets, including our novel, real-world, semi-
static warehouse dataset that we release with this work. Our
system explicitly reasons about object-level stationarity to im-
prove the robustness of localization in slowly varying scenes.
Our method outperforms ORB-SLAM3 on average trajectory
error by 48% on the real-world dataset and 29% on the 3D
synthetic semi-static dataset. As well, POV-SLAM shows a
4.6% improvement on dense reconstruction precision in the
large real-world scene and 31% in the smaller synthetic scene.
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