
POV-SLAM: Supplementary Material

Contents

1 Derivation of the Measurement ELBO (E-Step) 2

2 Algorithm Summary 4
2.1 Inputs to Algorithm . 4
2.2 Data Pre-processing . 4
2.3 Variational EM Execution . 4
2.4 Output Processing . 4

3 2D Simulation and Ablation Studies 6
3.1 System Evolution of Scenario in Main Paper . 6
3.2 Dynamic Object Handling . 8
3.3 Adversarial Scenario: Symmetric Scene Change . 9
3.4 Adversarial Scenario: Fully Dynamic Scene . 10
3.5 Abalation Study: Full ELBO versus Max-Mixture Approximation 11
3.6 Ablation Study: ELBO versus Single Point Measurement Model 12
3.7 Ablation Study: Mode Weight for Max-Mixture Approximation 14

4 List of Parameters 15

5 Dataset Information 16
5.1 Robot and Sensors . 16
5.2 Sensor Calibration and Synchronization . 16
5.3 Dataset Scenarios . 16
5.4 Ground Truth Information . 17

1

1 Derivation of the Measurement ELBO (E-Step)

In this section, we provide a more detailed derivation of the evidence lower bound (ELBO) for the
Gaussian-Uniform measurement likelihood of potentially-changing objects, presented in Section IV-A of
the main paper. Consider the following generative process for a landmark point, lW , from an object,
O. At frame T and EM iteration n, we obtain the object’s updated Beta consistency model, Betapα, βq,
according to the works of Qian et al., with respect to the previous (n ´ 1) EM iteration’s object pose
estimate, TOW , robot pose estimate, TCW , and the current frame point depth measurement, dC

T . This
Beta distribution characterizes the object’s confidence score distribution. The subscripts in the variables
are dropped for clarity. The object’s true binary consistency, π P t0, 1u, can be considered as a sample
from a Bernoulli distribution parametrized by the probability v, where v is sampled from the Beta
consistency model:

v „ Betapα, βq

π „ Bernoullipvq
(1)

Assuming that unchanged objects will follow a zero-mean, isotropic Gaussian measurement model
and moved objects can be anywhere, we define the measurement residual to be the point-wise difference:

eT “ TCW´1dC
T ´ lW , (2)

We can then write a Gaussian-Uniform measurement model weighted by the sampled object consistency,
π:

ppeT | TCW , lW , πq “ N peT | 0, σ2IqπUp∥eT ∥2 | 0, emaxq1´π (3)

The measurement model is now conditioned on two dependent latent variables, ω “ tπ, vu, and thus is
difficult to maximize directly. However, we can apply the Mean-field Approximation and assume the two
latent variables, ω, are fully independent, ppπ, vq » qpπ, vq “ qpπqqpvq. We can then write a factorized
lower bound, L, for the joint log likelihood, log ppeT | TCW , lW , α, βq:

Lpω,TCW , lW q “ Eqpωq

„

log
ppeT ,ω | TCW , lW , α, βq

qpωq

ȷ

“

ż

qpωq log
ppeT ,ω | TCW , lW , α, βq

qpωq
dω

“

ż

qpωjq log
exppxlog ppeT ,ω | TCW , lW , α, βqyk‰jq

qpωjq
dωj

´
ÿ

k‰j

ż

qpωjq log qpωjqdωj

“ ´KLpqpωjqq||p̃k‰jq ` Hpωk‰jq ` const

(4)

Here, x¨yk is the expectation over the latent variable, ωk. Since KL-divergence is non-negative, the ELBO
is maximized when the first term KLp¨||¨q “ 0. Thus, we want to find qpωjq “ 1

Z p̃k‰j “ 1
Z exppxppeT ,ω |

TCW , lW , α, βqyk‰jq for all j P t0, 1u. Note that the full log joint likelihood in Eq. 4 is:

log ppeT ,ω “ tπ, vu | TCW , lW , α, βq

“ log ppeT | TCW , lW , πq ` log ppπ | vq ` log ppv | α, βq

“ logN peT | 0, σ2IqπUp∥eT ∥2 | 0, emaxq1´π

` π log v ` p1 ´ πq logp1 ´ vq

` log Betapv | α, βq

“ πrlog v ` logN peT | 0, σ2Iqs

` p1 ´ πqrlogp1 ´ vq ` logUp∥eT ∥2 | 0, emaxqs

` log Betapv | α, βq

(5)

Under the Mean-field Approximation, the optimal distribution, qp¨q, which maximizes the ELBO is:

log qpωjq “ Eωk,k‰jrlog ppeT ,ω “ tπ, vu | TCW , lW , α, βqs (6)

2

Therefore, we can find qpπq and qpvq as follows:

log qpπq “Evrlog ppeT ,ω | TCW , lW , α, βqs

“π
“

Erlog vs ` logN peT | 0, σ2Iq
‰

` p1 ´ πq
“

Erlogp1 ´ vqs ` logUp∥eT ∥2 | 0, emaxq
‰

` Erlog Betapv | α, βqs
loooooooooooomoooooooooooon

const

(7)

log qpvq “Eπrlog ppeT ,ω | TCW , lW , α, βqs

“Erπs
“

log v ` logN peT | 0, σ2Iq
‰

` Er1 ´ πs
“

logp1 ´ vq ` logUp∥eT ∥2 | 0, emaxq
‰

` log Betapv | α, βq

“Erπs log v ` Er1 ´ πs logp1 ´ vq ` log Betapv | α, βq ` const

(8)

Note that we can compute the expectations for v using the property of Beta distributions:

Erlog vs “ ψpαq ´ ψpα ` βq

Erlogp1 ´ vqs “ ψpβq ´ ψpα ` βq
(9)

where ψp¨q is the digamma function. Moreover, we have:

Erπs “ qpπ “ 1q9 exptErlog vs ` logN peT | 0, σ2Iqu :“ ρin

Er1 ´ πs “ qpπ “ 0q9 exptErlogp1 ´ vqs ` logUp∥eT ∥2 | 0, emaxqu :“ ρout
(10)

Normalizing the expressions, we obtain the expectations for the binary object consistency, π:

η :“
1

ρin ` ρout

Erπs “ η exptErlog vs ` logN peT | 0, σ2Iqu

Er1 ´ πs “ η exptErlogp1 ´ vqs ` logUp∥eT ∥2 | 0, emaxqu

(11)

An interesting observation is that the approximation qpvq is also a Beta distribution:

log qpvq “ Erπs log v ` Er1 ´ πs logp1 ´ vq ` log Betapv | α, βq ` const

“ Erπs log v ` Er1 ´ πs logp1 ´ vq ` pα ´ 1q log v ` pβ ´ 1q logp1 ´ vq ` const

“ pα ` Erπs ´ 1q log v ` pβ ` Er1 ´ πs ´ 1q logp1 ´ vq ` const

“ log Betapv | α ` Erπs
looomooon

α̃

, β ` Er1 ´ πs
loooooomoooooon

β̃

q

(12)

We can now compute the ELBO for the joint likelihood:

Lpω,TCW , lW q “ EvEπ log
ppeT , v, π | TCW , lW , α, βq

qpv, πq

“ EvEπ log ppeT | TCW , lW , πqppπ | vqppv | α, βq ´ EvEπ log qpzqqpπq

“ Eπ log ppeT | TCW , lW , πq
loooooooooooooooomoooooooooooooooon

only care about this in M-step

`EvEπ log ppπ | vqppv | α, βq ` Hpqpvqq ` Hpqpπqq

“ Eπ log ppeT | TCW , lW , πq ` const

“ Eπ logN peT | 0, σ2IqπUp∥eT ∥2 | 0, emaxq1´π ` const

“ Erπs logN peT | 0, σ2Iq ` Er1 ´ πs logUp∥eT ∥2 | 0, emaxq ` const

(13)

As discussed in the main paper, this new cost has a similar log Gaussian-log Uniform mixture form
comparing to the single-value estimate (Equation 5 of main paper), but with different mixture weights,
Erπs and Er1 ´ πs from Eq. 11. The new weights incorporate both the full information of the Beta
consistency model and the likelihood of the current measurement under the two scenarios, as opposed to
just the expectation of the Beta object consistency model, Ervs.

3

2 Algorithm Summary

Algorithm (1) outlines how the proposed POV-SLAM pipeline processes a new frame, as discussed in
Section III and Section IV of the main paper. The algorithm consists of the following key steps:

2.1 Inputs to Algorithm

The input to the algorithm consists of a new RGB-D frame Ft with associated semantic segmentation,
the current active object libraryO, and the current estimated robot trajectory T CW over the optimization
window. We note that for each object Oi in O, a Gaussian-Beta state model ppli, viq is maintained to
store its current change and consistency estimates.

which is independent from its state model propagated over the EM iterations. The advantage of int

2.2 Data Pre-processing

The input semantic RGB-D frame Ft is first segmented into 3D clusters based on semantics and
geometry using the extractObservations() helper function. Then, the observations are associated to the
existing objects in O using a greedy Hungarian matching algorithm in the objectLevelAssociation() helper
function. More details of the object detection and association process are available in Qian et al. 2022.

Then, we leverage the original ORB-SLAM3’s RGB-D front-end to obtain a visual odometry mea-
surement TC

t´1,t, which is used as a prior to initialize the factor graph. In practice, we find that this
improves the stability of the optimization.

Finally, for each observed object in the current frame, we initialize a new Gaussian-Beta state model
pEM pl, vq to propagate (according to Qian et al. 2022) over the EM iterations. This is independent from
the object’s internal state model ppl, vq, which is only updated once at the end of the EM iterations
using the final robot pose. There are two advantages of maintaining two state models for each object.
First, the system can respond to changes faster when revisiting an old location as ppl, vq might have been
saturated from past frames. Second, the system will be more stable as inaccurate robot and object state
estimates will not lead to immediate divergence since ppl, vq is only propagated once per frame instead
of in every EM iteration.

2.3 Variational EM Execution

Using the processed input data, we run the Variational EM algorithm presented in the main paper. In
the E-step of each iteration, we first propagate the current frame state model pEM pl, vq for each observed
object based on the new robot pose estimate from the last iteration to obtain the new consistency model
Betapα, βq. Then we construct the factor graph according to Eq. 16 and Eq. 17 in the main paper. In
the M-step, we solve the factor graph to obtain the updated robot and object states.

2.4 Output Processing

Based on the result of the final EM iteration, we can categorize the observed objects as unchanged
(Gaussian mode active, m “ 1) or moved (uniform mode active, m “ 1). For the unchanged objects, their
internal states ppl, vq are propagated based on the final robot pose, and the new depth measurements are
fused into their TSDF models. For the moved objects, their states are propagated using a large penalty,
and their consistency scores Ervs are checked against a pruning a threshold. All objects fall below the
threshold are removed and possibly reconstructed in future frames.

Moreover, observed objects not associated to any existing objects are spawned as new objects, and
objects in the camera field of view but not observed are penalized. All reliable objects are used to
construct the up-to-date map.

4

Algorithm 1 Processing of One Frame in POV-SLAM

Require: New RGB-D frame Ft, current object library O, robot trajectory estimate T CW

Ź Extract 3D Detections
Yt Ð extractObservationspFtq

tpOi,Yt,jqu Ð objectLevelAssociationpYt,Oq

Ź Estimate a visual odometry measurement using ORB-SLAM3 RGB-D
TC

t´1,t Ð ORB-SLAM3pFtq

Ź Initialize for EM
for each pair in tpOi,Yt,jqu do

Initialize EM state model for Oi: pEM pli, viq Ð Gaussianp0, σIqBetap1, 1q

end for
Ź Run Variational EM
for n “ 1 to max iter do

for each pair in tpOi,Yt,jqu do
pEM pli, viq Ð propagateStatepYt,j ,Oi,T

CW q using work of Qian et al. 2022

Compute approx. ELBO: L̃pv, π,TCW , lWi q according to Equation (16) in main paper
end for
Construct factor graph and solve according to Equation (17) in main paper
O, T CW Ð argmax log ppO, T CW ,Ytq

end for
Ź Update observed objects
for each pair in tpOi,Yt,jqu do

if decision(Oi) == unchanged then
ppli, viq Ð propagateStatepYt,j ,Oi,T

CW q

Oi Ð integratepYt,jq

else if decision(Oi) == moved then
ppli, viq Ð propagateStateplarge error,Oiq

Discard Yt,j

if consistencyExpectation(Oi) ď θconsist then
O Ð prune(Oi)

end if
end if

end for
for Yt,j in Yt do

if notAssociated(Yt,j) then
O Ð newObject(Yt,j)

end if
end for
for Oi in O do

if expectedNotObserved(Oi) then
ppli, viq Ð propagateStateplarge error,Oiq

end if
end for
return O, T CW

5

3 2D Simulation and Ablation Studies

In this section, we examine more example scenarios using the 2D simulation. We start with the system
evolution of the scenario discussed in the main paper. We then show a scenario with dynamic objects,
as well as a typical failure case where the system converges to an incorrect but more likely configuration,
due to object symmetry. We also conduct ablation studies to illustrate the importance of certain design
decisions.

3.1 System Evolution of Scenario in Main Paper

The main paper focuses on the per-iteration behavior of the EM algorithm at a single frame. Here,
we take a look at how the system behaves across frames as the robot navigates in the simulator. Figure 1
shows the ground truth and estimated system state over the first four frames. In Frame 1, all objects are
spawned with a consistency expectation of 0.5. After the first round of EM iterations, the system is able
to successfully distinguish the static objects from the moved ones. Object consistency scores are also
updated accordingly. In the third frame, the system decides that sufficient evidence has been observed,
and all moved objects are relocalized to their correct locations. From then on, all object measurements
are accepted in succeeding frames. Figure 2 illustrates the evolution of the object consistency expectation
over frames. Note that the moved objects experience an initial drop in consistency (rejection phase), but
their scores eventually increase after relocalization (acceptance phase).

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Frame 1 Frame 2

Frame 3 Frame 4

Moved

Moved

Moved

MovedMoved

Moved

Relocalized

Relocalized

Relocalized

Relocalized
Relocalized

Relocalized

Relocalized

Relocalized

Relocalized

Relocalized
Relocalized

Relocalized

Moved

Moved

Moved

Moved
Moved

Moved

Figure 1: The setup of the 2D semi-static simulation with six moved objects and four unchanged objects
over the first four frames of optimization. Rectangle: object, triangle: robot, green: ground truth,
yellow: estimate.

6

Text

Object-Level Consistency Over Frames

O
b

je
ct

-L
ev

el
 C

o
n

si
st

en
cy

Frame

Rejection
Phase

Relocalize

Acceptance
Phase

Figure 2: Object consistency expectation over frames. Moved objects are first rejected and relocalized
in the first 3 frames. All objects are accepted henceforth.

7

3.2 Dynamic Object Handling

Figure 3 illustrates a scenario where our system tracks both semi-static changes and highly dynamic
objects in a unified framework. The scenario contains two unchanged static objects, three moved static
objects, and six dynamic objects. All dynamic objects, as well as the robot, move upwards in the scene
at a speed of 1 m/s. All dynamic object estimates are initialized with a zero-velocity initial state and
propagated separately using a linear Kalman filter. The system solves a temporal factor graph shown in
Figure 3 of the main paper to optimize robot and all object states together at every EM iteration. As in
the previous section, the three moved objects are successfully identified and relocalized in the first three
frames. Figure 4a illustrates the estimation errors of the object centroids and Figure 4b illustrates the
velocity errors. We can see that the system is able to track the dynamic objects with high accuracy even
under noisy measurements and semi-static scene changes.

Frame 1 Frame 2

Frame 3 Frame 4

Unchanged

Moved Dynamic

Dynamic

Dynamic

Dynamic

Dynamic

DynamicMoved

Moved

Unchanged Unchanged

Moved Dynamic

Dynamic

Dynamic

Dynamic
Dynamic

DynamicMoved

Moved

Unchanged

Unchanged

Reloc.
Dynamic

Dynamic

Dynamic

Dynamic
Dynamic

Dynamic Unchanged

Reloc.

Reloc. Unchanged

Reloc.
Dynamic

Dynamic

Dynamic

Dynamic
Dynamic

Dynamic Unchanged

Reloc.

Reloc.

Figure 3: A scenario with unchanged static, moved static, and dynamic objects. The robot and dynamic
objects all move upwards in the scene at 1 m/s. The system is robust enough to relocalize the moved
objects and track all dynamic objects in a unified framework. Rectangle: object, triangle: robot,
green: ground truth, yellow: estimate.

(a) Pose error of the dynamic objects over frames,
measured at the object centroids.

(b) Velocity error of the dynamic objects over frames.

Figure 4: Pose error and velocity estimates over frames for dynamic objects moving at 1 m/s.

8

3.3 Adversarial Scenario: Symmetric Scene Change

This section illustrates a typical failure case of the system where several objects change in the same
way, creating ambiguous solutions. Figure 5 illustrates a scenario with four unchanged objects and six
moved objects. However, all moved objects are shifted in the up-right direction by the same amount. Since
there are more moved objects than unchanged ones, the system actually converges to the incorrect state
where it believes the unchanged objects have moved. Without prior robot pose information, however, the
converged state does exhibit higher measurement likelihood, and thus it is not possible to distinguish the
correct solution from a probabilistic point of view. Figure 6a shows the robot pose error and Figure 6b
shows the object consistency estimates over the EM iterations at the first frame. In practice, we can use
additional sensors, such as wheel odometry and an inertial measurement unit (IMU), to regularize the
solution.

Frame 1 Frame 2

Frame 3 Frame 4

Moved

Moved
Moved

Moved

Moved

Moved

Unchanged

Moved

Moved
Moved

Moved

Moved

Moved

Moved

Moved
Moved

Moved

Moved

Moved

Incorrectly Reloc.

Moved

Moved
Moved

Moved

Moved

Moved

Incorrectly Reloc.

Incorrectly Reloc.

Incorrectly Reloc.

Incorrectly Reloc.

Incorrectly Reloc.

Incorrectly Reloc.

Incorrectly Reloc.

Unchanged

Unchanged Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Figure 5: An adversarial scenario where a dominating number of objects move in the same direction.
The system is not able to converge to the correct solution, as the adversarial solution exhibits higher
measurement likelihood. As can be seen, the supposedly unchanged objects are incorrectly relocalized
against the moved ones. Rectangle: object, triangle: robot, green: ground truth, yellow: estimate.

(a) Robot pose error over the EM iterations at
Frame 1. The system converges to an incorrect,
but more likely solution due to symmetry.

(b) Object consistency expectations over the EM
iterations at Frame 1. Moved objects are classified
as unchanged while the actual unchanged objects
are classified as moved, due to symmetry.

Figure 6: Robot pose error and object consistency estimates in an adversarial scenario.

9

3.4 Adversarial Scenario: Fully Dynamic Scene

Another adversarial scenario where the proposed method can fail is when all objects in the scene
are moving. Figure 7 illustrates a scenario with ten objects all moving in random directions, at random
speeds. As we can see, the system fails to converge to the correct configuration and many objects are
reconstructed at incorrect locations. Ultimately, our optimization-based approach only converges to a
minimum-cost state but there is no guarantee to the correctness as no static “anchor” is available in a
fully dynamic scene. In practice, additional sensors such as IMUs and wheel odometry can be used to
alleviate this issue.

Frame 1 Frame 2

Frame 3 Frame 4

Figure 7: A scenario with fully dynamic objects. The objects all rotate and move at random velocities.
The system fails as no static ”anchor” can be used to correctly localize the robot. Rectangle: object,
triangle: robot, green: ground truth, yellow: estimate.

10

3.5 Abalation Study: Full ELBO versus Max-Mixture Approximation

The full evidence lower bound (ELBO) overestimates the consistency of objects when there are not
sufficient measurements, due to the use of the mean-field approximation. This section illustrates the
importance of using max-mixture to guide the optimization. The following results are obtained from the
scenario shown in the main paper. We compare Figure 8 and Figure 9. As can be seen in the plots, one of
the moved objects is misclassified as unchanged when we use the full ELBO as the cost function, causing
the robot pose to fall into a local minima. On the other hand, with the max-mixture approximation,
all objects are classified correctly and the robot converges to the true state in just six iterations. This
emphasizes the need to use the max-mixture, allowing the system to rely on objects which have higher
measurement likelihoods and rejecting uncertain objects in the optimization. We should note that the
decisions are revised at every gradient step so objects rejected previously could be accepted again when
we have a more accurate robot pose estimate.

(a) Evolution of the object consistency expectations
Epvq over the EM iterations at Frame 0. Without
the max-mixture approximation, one moved object is
misclassified due to ambiguity.

(b) Evolution of the robot pose error over the EM
iterations at Frame 0. Without the max-mixture ap-
proximation, the system converges to a local mini-
mum.

Figure 8: System using full ELBO cost.

(a) With max-mixture, all objects are classified cor-
rectly.

(b) With max-mixture, the system converges to the
correct configuration and at a much faster rate.

Figure 9: System using max-mixture to guide optimization.

11

3.6 Ablation Study: ELBO versus Single Point Measurement Model

As discussed in the main paper, the mixture model in the derived ELBO is weighted by Erπs, whereas
the naive, single point measurement model (Equation 5 in the paper) is weighted by Ervs. The follow-
ing results are obtained from the scenario shown in the main paper. We first compare Figure 10a to
Figure 10b. While in both cases the objects are classified correctly, the consistency expectation, Ervs,
converges slightly faster when using ELBO. Moreover, in Figure 11a and Figure 11b it can be seen that
the robot pose converges to the correct solution in just six iterations instead of eight when using ELBO.
The difference is more obvious when we use the full mixture models as the cost function. Comparing
Figure 12a and Figure 8a, two objects are misclassifed when using the full naive measurement model
whereas just one object got misclassified when using the full ELBO. Finally, comparing Figure 12b and
Figure 8b, the robot pose converges much faster when using the full ELBO, although both converge to
a local minimum by the end. Therefore, the ELBO improves the convergence behaviour of the system,
as it provides a more accurate estimate for the underlying multimodal measurement likelihood.

(a) With the naive measurement model, all objects
are classified correctly.

(b) With ELBO, all objects are classified correctly
once again, but the consistency expectations converge
faster.

Figure 10: Object consistency, Ervs, evolution over 100 EM iterations at Frame 0 using the naive single
point measurement model and the derived ELBO. The max-mixture approximation is used in both cases.

(a) With the naive measurement model, the system
converges to the correct configuration in 8 iterations.

(b) With ELBO, the system converges to the correct
configuration in 6 iterations.

Figure 11: Robot pose error over 100 EM iterations at Frame 0 using the naive single point measurement
model and the derived ELBO. The max-mixture approximation is used in both cases.

12

(a) When using the full naive mixture measurement
model, two objects are misclassified.

(b) When using the full naive mixture measurement
model, the robot pose converges to a local minimum.

Figure 12: System convergence behavior over 100 EM iterations at Frame 0 using the naive single point
measurement model and the derived ELBO. The max-mixture approximation is not used here.

13

3.7 Ablation Study: Mode Weight for Max-Mixture Approximation

Recall, in Equation 16 of the main paper, the max-mixture approximation compares the weighted
measurement likelihood under the unchanged and moved scenarios. In this subsection, we study which
weight should be used in the comparison. The following results are obtained from the scenario shown
in the main paper. We begin two optimizations, one using Erπs, the variational estimate of whether an
object has changed, and one using Ervs, the expectation of the Beta distribution, in the max-mixture
approximation. Looking at Figure 13, Ervs is much smoother when compared to Erπs. This is because
Ervs is derived from the Bayesian update rule and is guaranteed to be smooth. On the other hand, Erπs

tends to be overconfident in the object consistency due to the mean-field approximation, thus producing
noisy estimates, especially in the first few iterations. To ensure a smooth gradient, we use Ervs as the
weight when selecting which mode to use in optimization.

(a) Using Ervs, the object-level confidence is much
smoother at the beginning of the optimization.

(b) Using Erπs, although the estimates converge to
the true states faster, they are very noisy at the be-
ginning when the Beta consistency models have high
uncertainty.

Figure 13: Object-level evolution when using Ervs and Erπs in the optimization, over the first 20 EM
iterations at Frame 0.

14

4 List of Parameters

We list the parameters used in this work. Symbols, descriptions and values are provided.

Table 1: Parameters used in the POV-SLAM framework.

Parameter Description BoxSim Real-World Warehouse Dataset
Object Detection and Mapping Parameters Refer to Qian et. al for details

ν voxel size 10 cm 10 cm
s stationarity class 0: -, 1: box 0: pillar, roof, shelf, 1: box, pallet
λ1 association weight for position difference 1 1
λ2 association weight for orientation difference 1 1
λ3 association s for semantic consistency 1000 1000
λdiff scaling factor for geometric change estimation 1.6 1.8
θdist maximum centroid-distance for association 1.0 m 3 m
θsim percent of outliers from ICP during association 10% 10%
θcutoff cutoff cost for feasible association 3.6 3.6

θvis
threshold of points within camera FOV to
label an unassociated object as unobserved

20% 30%

θstat stationarity threshold for object pruning 0.4 0.3
θdepth cutoff threshold for depth information 8 m 10 m
v initial stationarity expectation semi-static: 0.67, dynamic: 0.67 semi-static: 0.67, dynamic: 0.67

vmax max stationarity expectation 0.9999 0.9999
µ initial geometric change expectation 0 cm 0 cm
σ initial geometric change standard deviation 0.5 m 0.5 m

∆max maximum geometric change cutoff 10 m 10 m
τ measurement standard deviation 8 cm 15 cm

k weights for stationarity class measurements

outlier measurements, dynamic-class: 3
inlier measurements, dynamic-class: 0
outlier measurements, static-class: 0
inlier measurements, static-class: 3

outlier measurements, dynamic-class: 3
inlier measurements, dynamic-class: 0
outlier measurements, static-class: 0
inlier measurements, static-class: 3

POV-SLAM Parameters

T factor graph window size 5 8
N maximum EM iterations 20 15
H ORB-SLAM3 steps between V-EM update 1 6

σrigid factor graph rigidity stddev 0.01 0.1
σprior factor graph pose prior stddev 0.1 0.1
σkey-pt factor graph measurement stddev 0.05 0.15
σpose factor graph odometry stddev 0.15 0.2
emax maximum association distance 10 m 10 m
v initial consistency expectation for EM 0.5 0.5

15

5 Dataset Information

In this section, we provide additional information on the real-world, semi-static, long-term warehouse
dataset to be released with this paper.

5.1 Robot and Sensors

The dataset was collected on a mobile platform, remotely driven by a human operator at walking
speed. Sensor measurements were recorded from two Microsoft Azure RGB-D cameras, an Ouster 128-
beam LiDAR, and three inertial measurement units (IMU), all rigidly mounted on the platform. Figure 14
shows the robot platform with the mounted sensors, and Table 2 lists the specifications of the sensors.

Figure 14: The robot platform used to collect the dataset, with the mounted sensors.

5.2 Sensor Calibration and Synchronization

We calibrate the intrinsics of the Microsoft Azure cameras using the Matlab Camera Calibration
Toolbox, and the extrinsics are obtained by aligning the depth data to the Ouster Lidar. It is assumed
that the calibrations remain intact for all trajectories. The two stereo cameras are triggered synchronously
with a cable. The Ouster 3D LiDAR is time-stamped with respect to the internal oscillator instead of
using the ROS arrival time. Both Azures and the Ouster are time-synchronized to the host computer
via precision time protocol (PTP).

5.3 Dataset Scenarios

The dataset provides 20 trajectories in three scenarios. Each trajectory contains the robot traversing
through a specific portion of the warehouse environment, starting and finishing around the origin of the
provided ground truth map. A high level overview of the scenarios and trajectories is listed in Table 3.
Examples of dynamic objects include other robots, people, and forklifts. Semi-static objects include

Table 2: Sensor Data and Specifications

Sensor Data FPS FOV Format
Microsoft Azure 1 colour and depth 15 90˝ ˆ 59˝ RGB and 16-bit Depth images

Microsoft Azure 2 colour and depth 15
90˝ ˆ 59˝

45˝ overlap between Azure 1 & 2
RGB and 16-bit Depth images

IMU accel & gyro 100 -
text file containing:

ID Time a ω
Os0-128-beam Ouster laser scan 10 270˝ binary point cloud file

16

boxes and pallets that shift over the course of the four months. The warehouse blueprint can be seen in
Figure 15. The data was collected on June 15, June 23, and October 12, 2022.

Table 3: Dataset Trajectory Breakdown by Scenarios

Route Number of Trajectories Description

Aisle - CW 5 Moving through the aisle area clockwise.

Aisle - CCW 5 Moving through the aisle area counter-clockwise.

Hallway Straight - CW 2 Moving through the straight hallway area clockwise.

Hallway Straight - CCW 3 Moving through the straight hallway area counter-clockwise.

Hallway Full - CW 4
Moving through the hallway, aisle, and

receiving area clockwise.

Hallway Full - CCW 1
Moving through the hallway, aisle, and

receiving area counter-clockwise.

Table 4: Dataset Trajectory Breakdown by Date

Date Number of Trajectories

Jun. 15, 2022 7

Jun. 23, 2022 7

Oct. 12, 2022 6

Figure 15: A blueprint of the warehouse in which the dataset was collected. The blue route completed
counter-clockwise is the Forward Loop, and completed clockwise is the Backward Loop. The red route
completed counter-clockwise is the Forward Aisle, and completed clockwise is the Backward Aisle. The
trajectories all start and end at the yellow star.

5.4 Ground Truth Information

To facilitate with benchmarking, we also provide a high-precision map of the warehouse and ground
truth robot pose for each trajectory. A Leica MS60 multistation, shown in Figure 16, was used to obtain
high-density 3D scans of the warehouse, which were later stitched together using the Leica Geosystems
Cyclone software to form the complete ground truth map. To obtain the ground truth robot poses,
we first run a Lidar SLAM algorithm using the onboard 3D Ouster Lidar and then fine tune the poses
against the ground truth map.

17

Figure 16: An image of the Leica MS60 multistation that was used to obtain a ground truth map of the
warehouse, as seen in Figure 17.

Figure 17: A sample view of the ground truth 3D map taken with the Leica MS60 multistation.

18

	Derivation of the Measurement ELBO (E-Step)
	Algorithm Summary
	Inputs to Algorithm
	Data Pre-processing
	Variational EM Execution
	Output Processing

	2D Simulation and Ablation Studies
	System Evolution of Scenario in Main Paper
	Dynamic Object Handling
	Adversarial Scenario: Symmetric Scene Change
	Adversarial Scenario: Fully Dynamic Scene
	Abalation Study: Full ELBO versus Max-Mixture Approximation
	Ablation Study: ELBO versus Single Point Measurement Model
	Ablation Study: Mode Weight for Max-Mixture Approximation

	List of Parameters
	Dataset Information
	Robot and Sensors
	Sensor Calibration and Synchronization
	Dataset Scenarios
	Ground Truth Information

