
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

1

InstaLoc: One-shot Global Lidar Localisation in
Indoor Environments through Instance Learning

Lintong Zhang1, Tejaswi Digumarti1, Georgi Tinchev2, and Maurice Fallon1
1 University of Oxford 2 Amazon Research

Abstract—Localization for autonomous robots in prior maps is
crucial for their functionality. This paper offers a solution to this
problem for indoor environments called InstaLoc, which operates
on an individual lidar scan to localize it within a prior map. We
draw on inspiration from how humans navigate and position
themselves by recognizing the layout of distinctive objects and
structures. Mimicking the human approach, InstaLoc identifies
and matches object instances in the scene with those from a prior
map. As far as we know, this is the first method to use panoptic
segmentation directly inferring on 3D lidar scans for indoor
localization. InstaLoc operates through two networks based on
spatially sparse tensors to directly infer dense 3D lidar point
clouds. The first network is a panoptic segmentation network that
produces object instances and their semantic classes. The second
smaller network produces a descriptor for each object instance. A
consensus based matching algorithm then matches the instances
to the prior map and estimates a six degrees of freedom (DoF)
pose for the input cloud in the prior map. InstaLoc utilizes two
efficient networks, requires only one to two hours of training on a
mobile GPU, and runs in real-time at 1 Hz. Our method achieves
between two and four times more detections when localizing, as
compared to baseline methods, and achieves higher precision on
these detections.

I. INTRODUCTION

Localization is a fundamental capability needed for mobile
robots to navigate their environment and make decisions.
There have been many studies on vision, lidar, and radar-based
localization. The parent problem of Simultaneous Localisa-
tion and Mapping (SLAM) concerns a robot determining its
pose while building a map of its environment concurrently.
Localization, or place recognition, can contribute to SLAM
by helping to close loops, or to determine the robot’s position
in a fixed prior map - the kidnapped robot problem.

Many popular localization methods using visual and lidar
sensors have been proposed. Among visual-based approaches,
visual teach-and-repeat [16, 17] is one of the most popular
methods, where a robot first constructs a visual prior map and
then localizes on its repeat phase. Compared to image-based
camera solutions, modern 3D lidar sensors are view-invariant,
robust to lighting changes, and can operate when the path
traveled is offset from the original path. Given that lidar is
a precise and long-range sensor, lidar localization has been
heavily researched in outdoor environments, especially in the
context of autonomous driving [21, 14, 27]. However, there
are fewer approaches for indoor environments because these
environments contain more complex structures and clutter,
hence fewer clear separations between objects in lidar scans.
In an indoor environment, there are many different classes
of objects, with one dataset proposing 13 semantic classes

Fig. 1: An illustration of the InstaLoc method, where a ‘live’
lidar scan (top) is localized inside the orange colored prior
map (bottom) by matching semantically segmented objects
(red lines). The green arrow shows the estimated position and
the left corner image is the corresponding camera view.

[2]. The indoor scene varies greatly: from bare box-shaped
rooms with four walls to narrow corridors with two long
walls. Room surfaces are often covered with objects such as
electronics, hanging art, ceiling lights, bookcases, and various
decorative objects. Localization algorithms cannot rely on flat
ground assumptions as there is often an incomplete view of
the floor. In addition, there are changes in levels, with steps
and staircases. Nevertheless, it is important to localize in
these indoor scenarios to enable robots to operate robustly in
complex office buildings, construction sites, warehouses, and
other commercial environments.

In this paper, we draw inspiration from how humans per-
ceive the world and reach the “I know where I am” moment.
By memorizing and recognizing the distinctive structures and
unique objects inside a space, humans can spatially locate
themselves in the environment. Based on the same principle,
InstaLoc makes use of individual object instances to localize.
Different from existing approaches that rely on primitive
shapes or other handcrafted features, InstaLoc learns to seg-
ment and match individual objects to the prior scene. These
scenes include both fixed objects (walls, ceilings, beams) and
movable objects (chairs, desks), in order to tolerate active
dynamics and longer term scene changes. To train the seg-
mentation network with accurate class labels, we leverage a

2

simulator to synthesize and automatically annotate every point
— thus avoiding onerous point cloud labeling. To overcome
the challenge of imperfect instance segmentation, we designed
a sparse convolutional descriptor network that infers many
instances simultaneously and tolerates mild changes in the
instance point cloud.

To summarize, our contributions are:
• A novel learning-based lidar localization approach for

indoor environments that can process dense lidar scans
on a mobile GPU in real time.

• An improved panoptic segmentation network that works
with single lidar scans.

• A fast and efficient descriptor network to learn object
instances with a variable number of input points.

• State-of-the-art performance on indoor localization com-
pared to other segment-based methods, achieving two to
four times more detection.

II. RELATED WORK

In this section, we describe recent work on segment-
based lidar localization and its applications to urban, natural,
and industrial environments. We review approaches that use
semantic segmentation for outdoor localization. Finally, we
discuss methods that rely on the geometry of the scene and
algorithms which can localize in maps made with other sensor
modalities (co-localization).

A. Outdoor Segment-based localization

Scan segment matching was first introduced by Douillard
et al. [6], where segments were considered as a midway
point between local and global approaches for describing a
scene. The approach was initially applied to lidar localization
by Dubé et al. [7] where segments were extracted directly
from raw point clouds and described with a descriptor based
on the geometry of the segment (such as its eigenvalues
and proportions). Later, Dubé et al. [8], Tinchev et al.
[20] described segments using a neural network to provide
a richer and more meaningful descriptions. Building on this
research, Ratz et al. [18] showed that lidar segments fused
with visual data further improve the performance of global
localization algorithms. Cramariuc et al. [5] fused both colour
and semantic information from images to create an enriched
point cloud that was later segmented and used for localization.
We use this segment-direct concept as the basis of InstaLoc,
however in contrast to these approaches, InstaLoc does not
use engineered segmentation methods, nor images, to extract
the semantic information but directly learns to predict the per-
point instance annotation.

There are several relevant outdoor lidar localization methods
that make use of semantics and segments. Vidanapathirana
et al. [21] used global descriptors with segments and spa-
tiotemporal high-order pooling for place recognition. Kong
et al. [14] presented a semantic graph-based approach to place
recognition, where the topological information of the point
cloud is preserved. Zhu et al. [27] extracted common semantic
classes, such as vehicles, trunks, and poles from the raw
point cloud for loop closure detection. The above methods are

designed primarily for outdoor scenarios and are inadequate
for an indoor setting. However, they demonstrate the value that
semantic information brings to place recognition. To extend
this line of research, we leverage a panoptic segmentation
method that predicts both the semantic mask and instance label
of each point.

B. Indoor localization

Specifically focusing on indoor localization, the state-of-the-
art methods often focus on planar floors or geometric features
which describe corners and intersections as landmarks for
localization. For example, Wei et al. [24] used planar floor
assumption to constrain the vertical pose drift of a robot in
a multi-floor parking lot. [26, 10] used planar surfaces to
efficiently align two lidar scans for loop closure detection.
Li et al. [15], Wang et al. [23] used floor plan features
such as corners and wall intersections for localization. Bae
et al. [3] proposed to use semantic features to detect and
match corners of doors and walls. Other works rely upon a
predefined map of the world such as a BIM model or a floor
plan. Hendrikx et al. [12], Yin et al. [25] built a map from
a subset of semantic entities and their associated geometries
drawn from a BIM model of the world. They used a spatial
database to query the position of the robot within a graph-
based localization approach. They impose a prior to use static
features for localization. In comparison to these approaches,
we do not rely on planes or any other explicit structure to
constrain our localization performance. Instead, our approach
is to learn to segment semantically meaningful objects and
match them between different observations of the scene.

III. METHODOLOGY

In this section, we first formulate the research problem, then
present the entire pipeline as shown in Fig.2: the panoptic
segmentation network, the instance description module, and
the matching and pose estimation module,

A. Overview

The problem is defined as localizing a single query li-
dar scan Q = {qi ∈ R3} within a prior map M =
{P1, P2, . . . Pti−1

}. We seek to determine the pose of the lidar
at time ti defined as follows,

xi ≜ [ti,Ri] ∈ SO(3)× R3 (1)

where ti ∈ R3 is the translation, Ri ∈ SO(3) is the orientation
of Q in M. The map M is a collection of registered lidar
scans, Pt = {mi,t ∈ R3}, accumulated over time.

We approach the problem at the level of objects and
compute the pose xi by matching object instances identified
in the query scan Q with those previously identified in the
map M.

The first step is to partition the map scans into meaningful
object instances. Prior approaches have used planes or region
growing methods to segment objects with a scan. This segmen-
tation approach works well in outdoor environments such as in
the case of autonomous vehicle localization. This is because

3

sizes of outdoor objects and the separation between them is
many times greater than the average inter-point distance in a
lidar scan. However, in indoor environments, due to the close
proximity of objects with each other, space partitioning and
region growing approaches perform poorly. On the other hand,
there are many distinguishable objects such as furniture, doors
and windows; because of this we can use semantic object
segmentation to partition the environment into these object
segments.

Objects observed in a query scan will often be quite different
from those in the prior map. This could be due to observing the
object from a different viewpoint in the query scan than from
which it was observed in the prior map. Partial observations
from different viewpoints, occlusions by other objects, or
different point sampling densities (if the query and map scans
were taken from different ranges) all contribute to variation in
the reconstruction of an object instance. Due to this variation
in the observations, finding matches by aligning a 3D point
cloud of the objects between the query and the map will result
in poor pose estimation. To overcome this issue, we use object
level descriptors that capture the distinguishing features of
each object. Estimating pose by matching these descriptions
provides some robustness against the variations which occur
due to differing viewpoints and partial observations. Descrip-
tor matching also requires lower computational and memory
resources as the dimensions of the descriptor are typically
smaller than the number of points in each object.

After this step, descriptors of the objects segmented from the
query scan need to be matched against the database of objects
with descriptors in the map to determine correspondences
between the query scan and the map. We use the approach
from [1] to group descriptors based on their similarity and to
find correspondences. Finally, we use RANSAC on a subset
of correspondences to estimate the 6-DOF pose of the lidar
sensor by aligning the matched objects between the two scans.

In InstaLoc both the instance segmentation module and the
instance description module are modeled using deep neural
networks which work directly on 3D point cloud data. Typical
lidar scans are point clouds with large amounts of spatially
sparse data. We use sparse tensors to represent this data
and designed both networks in our framework using the
Spatially Sparse Convolution Library (SpConv) [4] which
uses sub-manifold sparse convolutions in its neural network
implementation. Sub-manifold convolutions have the advan-
tage that they maintain a greater degree of sparsity than
other sparse convolutions by overcoming the issue of sub-
manifold dilation [11]. As a result, deeper networks with
lower memory and computational requirements, and practical
real-time capabilities can be constructed to work with large
amounts of sparse data. Furthermore, Graham et al. [11]
also showed that sub-manifold sparse convolutions are more
efficient than alternate approaches that use spatial partitioning
schemes.

B. Instance Segmentation

The instance segmentation module is a point-wise panoptic
segmentation network. Given a lidar scan, i.e. a set of N 3D

points, P =
{
p1,p2, . . .pN |pk ∈ R3

}
as input, the network

predicts for each point pk a semantic label sk corresponding to
the object class that the point belongs to (e.g. chair, table, wall,
ceiling) and an instance label ik representing the unique object
that the point corresponds to (e.g. chair1, chair14 or chair42).
We use the state-of-the-art Softgroup [22] network architecture
to construct this module. This architecture consists of three
stages; (1) a U-Net based point-wise prediction network that
generates semantic scores and an offset vector representing the
distance from the point to the instance it belongs to, (2) a soft-
grouping step where points are grouped by similarity of their
semantic scores and their spatial distance to generate instance
proposals and (3) a refinement network that extracts features
for every instance proposal and then uses a tiny U-Net based
network to refine the proposals.

A fixed distance threshold used to group the points in step
(2) of the Softgroup architecture works well for point clouds
with uniform sampling density. In lidar scans, the sampling
density is much lower along the vertical axis as compared to
the density in the horizontal axis and points become further
separated as the sensing range increases. If a fixed distance
threshold is used for grouping, then the number of instance
proposals would be overestimated in regions further away
from the sensor; this can lead to incorrect object segmentation.
We counter this issue by using an adaptive radius threshold
proportionate to the vertical distance between two beams.
Typically, 3D lidars rotate 360° horizontally and have a vertical
field of view of θ radians. For a point pi(xi, yi, zi) resulting
from a lidar beam in a point cloud, with the sensor origin O,
its radius threshold ρi is:

ρi = α · d(pi, O) · tan(θ

Nbeam
) = α · d(pi, O) · θ

Nbeam
(2)

where
d(pi, O) =

√
x2
i + y2i + z2i (3)

and Nbeam is the number of lidar beams and α is a constant
scale factor.

The output of panoptic segmentation network is a set of
M object instances I = {I1, I2, . . . , IM} where each object
instance is a set of Nj points representing the 3D coordinates
of the point and the semantic label sj of the object, i.e. Ij ={
hk,j |k = {1, 2 . . . Nj},hk,j = (pk,j , sj)

}
.

C. Instance Description

After the object instances are segmented, the next step is
to generate descriptors for each of the instances. An overview
of the network is shown in Fig. 3. The network is designed
to be small and fast: it can take all instances in one batch
with varying number of points as input. This is done using
the instance descriptor network, which consists of four sub-
manifold sparse convolutional layers of increasing feature size
followed by three fully connected layers, with a dropout layer
before the final fully connected layer. The input to the network
is a set of object instances I = {I1, I2, . . . , IM}, the output
of the instance segmentation network, with each instance Ij
containing Nj points (with Nj varying for each object). The
descriptor network output for each object instance Ij is an

4

Match with

Prior Map

Segmentation

Network

Semantic

Classes

Instances Chair 1

Chair 2

Wall 4

Window 3
.

.

.

P
o
s
e
E
s
ti
m
a
ti
o
n

simulator generated scans & labels for training

Descriptor

Network

Query: Single Scan

Mx16

Fig. 2: Overview of the proposed learned lidar localization system

SMC FCSMCSMCSMC FC FC

x, y, z,

semantic

AP

Descriptor

(1, 16)

SMC - Submanifold Convolution

FC - Fully Connected

AP - Average Pooling

(N ,4)1

(N ,32)j

(N ,4)2

(N ,4)M

Instances (N ,64)j (N ,128)j (N ,256)j (N ,256)j (N ,64)j (N ,16)j

MM

Fig. 3: Instance descriptor network architecture. The input is
a set of object instances with a variable number of points per
instance, with each point representing the 3D coordinates of
the point and the semantic label of the object. The network
consists of layers of sub-manifold convolutions with increasing
feature size followed by fully connected layers, with dropout
before the final fully connected layer. Finally an average
pooling layer computes a single descriptor for each object
instance.

Nj × D tensor where every row is a descriptor of length D
for one point in the object instance. Finally, an average pooling
layer computes the average of the Nj descriptors to create a
single descriptor of length D for each object instance. This
results in an output vector of dimensions M ×D, where M
is the number of object instances.

The network is trained using triplet loss. If a, p, n ∈ RD

are the descriptors for an anchor, the corresponding positive
element and a negative element respectively, then the triplet
loss Ltriplet can be calculated as

Ltriplet(a, p, n) = max {d(a, p)− d(a, n) +m, 0} (4)

where

d(x, y) = ||x− y||2

is the pairwise distance between the descriptors; and the
margin m is set to 1. The average loss over all the samples in
a mini-batch is considered as the loss during training.

D. Matching

For each instance in the query scan, we first obtain its
N closest descriptors from the database of instances of the
prior map. This generates a list of instance-to-instance corre-
spondences. A correspondence grouping method from [1] is
used to find the correct correspondence. We start from a seed
correspondence cn = {IQn , IMn }, where IQn and IMn are two
instances from the query scan and the prior map respectively.

We then loop through all candidate correspondences, so an-
other correspondence cm = {IQm, IMm } can be grouped with
cn if:

||IQn − IQm|| − ||IMn − IMm || < ϵ (5)

ϵ is the parameter that restricts how strictly the grouping
algorithm behaves. The accepted consensus group has to
contain a minimum of τ instances. Finally, for the 6 DoF
pose estimation, we apply a RANSAC step on the subset of
correspondences to align the query scan with the prior map,
with τ and ϵ.

IV. IMPLEMENTATION

A. Simulated Lidar Data

Training deep learning algorithms requires large amounts
of data. To bypass the need to do time-consuming manual
labeling, we constructed several indoor environments in the
Unreal Engine simulator to take advantage of automatic label-
ing. As well as being automatic, it eliminates errors in human
labeling and can be easily extended to other environments. We
created about 20 unique rooms and assembled them into six
room networks which contained a total of ∼1500 objects. As
an example, two of the six networks are shown in Fig. 4. We
used the Airsim plugin [19] to capture over 90 scans from
these spaces.

The simulator allowed us to configure the lidar settings —
including frequency, range, the field of view, and the number
of lidar beams. The simulated lidar configuration we used was
modelled on the Ouster OS-128 lidar 1, which has ∼50 m
range, 90° field of view, and 128 lidar beams. Note, that
this is a wide field of view and dense lidar coming on the
market. Similarly to the existing indoor point cloud dataset,
Stanford 3D Indoor Scene Dataset (S3DIS) [2], we used 13
object classes: ceiling, floor, column, beam, wall, table, chair,
bookcase, sofa, window, door, board, and clutter.

1) Labeled Data for Instance Segmentation: Each simu-
lated lidar beam that intersects with an object would result
in a range measurement and a unique object ID. Using the
object ID, we can assign a semantic class and an instance
number. These labels are used in the supervised training of
the two networks. Overall, each point has five fields: (X,Y, Z)
coordinates, semantic class, and object instance number.

1https://ouster.com/products/scanning-lidar/os0-sensor/

https://ouster.com/products/scanning-lidar/os0-sensor/

5

Fig. 4: Two indoor office networks constructed using the
Unreal Engine to simulate lidar scans with semantic labels.

2) Triplets for Descriptor Network: To train the descriptor
network, we need to generate object instances as triplets - with
anchor, positive and negative instances. First, we generate two
scans that are 2m apart and a 10° rotation in the simulator.
Given that every object in the lidar scan is labeled, we classify
the same objects in these two scans as the anchor and positive
instance. We then randomly selected another object as the
negative instance. Because the anchor and positive instances
have mild viewpoint differences, the objects scanned in the
point clouds may have slight changes. These slight appearance
changes contribute to algorithm robustness. In total, about
9900 triplet object instances were generated for training,
validation, and testing.

B. Training

As mentioned in Sec. III-A, both networks are built with a
sparse tensor framework and were trained on a 4GB mobile
GPU, NVIDIA Quadro T2000.

1) Instance Segmentation Network: We use a pre-existing
Softgroup model (trained on S3DIS) as a warm start. The voxel
size was set to 2 cm and the minimum number of points in
each instance was set to 50. The network was trained for 50
epochs which took about one hour.

2) Instance Descriptor Network: The network is trained
from scratch with a triplet loss function (Eq. (4)). Compared
to a whole scan (which usually contains over 100,000 points)
each triplet instance is only a small fraction of a whole scan;
because of this we could increase the batch size to allow
parallel input. The descriptor network was trained for 90
epochs, and took around 90 minutes.

Both networks were trained with an Adam optimizer with
a learning rate of 0.001.

V. EXPERIMENT AND RESULTS

In this section, we describe experiments conducted on in-
stance segmentation and descriptor networks. This is followed
by real world experiments using InstaLoc as a complete
localization system. Lastly, we demonstrate that the algorithm
is robust to a changing number of prior map scans which
indicates robust performance.

A. Experimental Setup

We use a fully labeled simulated dataset to train the instance
segmentation and descriptor network. The dataset also holds
113 test scans for the instance segmentation network and 2123
test triplet instances for the descriptor network.

For the localization experiment, we collected an indoor
environment dataset using a Ouster lidar OS-128 in small,
medium, and large scale buildings. The dataset includes se-
quences in office rooms, meeting rooms, and social spaces as
well as lecture theatres, staircases, and hallways. Fig. 5 shows
the prior maps built with a lidar SLAM system. The SLAM
poses are 0.7 m apart so there are 147, 192, and 384 individual
scans which form the final map for George, Thom, and IEB
buildings. As an indication of size, the estimated map floor
area for each building is around 500 m2, 1100 m2, and 2000 m2

respectively. However, in our localization experiments, the
prior map is made up of a subset of registered scans that are
spaced 2.1 m apart. As the lidar sensor was running at 10 Hz,
the localization system is triggered every ten scans - once per
second.

Tab. II presents specific details for each building. For
example, the prior map of George Building consists of 32
scans, and the trajectory length is 96 m. In total, 106 scans
were queried. A detection is classified as being correct when
the estimated pose is within 0.2 m and the orientation is
within 10° of the ground truth pose. Please note, there is
no point cloud alignment step, such as Iterative Closest Point
(ICP) refinement, and the pose estimation is from the instance
correspondence matching.

B. Results

1) Instance Segmentation Results: Fig. 6 shows two illus-
trations of instance segmentation results. The left side image
of a scan is from the simulated dataset. In this classroom
environment, each object instance has been assigned a ran-
dom color. Chairs, tables, and wall surfaces are individually
segmented. Note that the door (colored in red) is partially
segmented from the blue wall. In another example result,
the right side image of a scan was captured in a hallway in
George Building with the Ouster lidar. The hallway connects
several rooms with lidar beams scanning into those rooms,
which resulted in several partially scanned walls. The ceiling
is accurately segmented (colored in orange), but the blue wall
is mixed with one light green and one black segment. The
imperfection in segmentation is expected as the current state-
of-the-art instance segmentation method, SoftGroup, achieves
an average precision (AP) of around 54.5 % on indoor datasets
such as the S3DIS dataset [2].

Unlike the S3DIS dataset, there is no visual color infor-
mation for lidar points in our simulator synthesized data. In
addition, our data contains a larger variety of spaces and
objects than S3DIS, and some objects in the scans are scanned
partially. Hence after applying the default SoftGroup on our
synthesized data, it reaches 39 % average precision across
13 classes. Our proposed improvement of incorporating lidar
properties in (2) improved the Average AP from 39 % to 41 %,
shown in Tab. I. Larger objects such as ceilings, floors, and
walls have higher AP. Objects such as boards, windows, and
doors, which are gathered under ”other1” and ”other2” in Tab.
I have much low AP, less than 20 %.

One key design consideration for our localization method
to be able to deal with imperfect segmentation is to use all

6

Fig. 5: Our indoor datasets. The height direction is indicated by color: blue is the lowest level and red is the highest level.
Left: Small size George building. Middle: Medium size Thom building. Right: Large size Information Engineering Building.

Fig. 6: Instance segmentation results. Left: Result with a
simulated lidar scan. Right: Result with a real Ouster lidar
scan. Random colors are assigned to each instance.

Class AP Class AP Class AP

ceiling 0.923 floor 0.838 wall 0.565
column 0.632 beam 0.367 chair 0.723
sofa 0.402 others1 0.144 others2 0.163

Average AP 41.3

TABLE I: Average precision for each object class. others1 is
the mean value of table, board, and window, others2 is the
mean value of door, bookcase, and clutter.

available instances with descriptors that can tolerate incom-
plete object point clouds.

2) Instance Descriptor Results: In 3D point cloud learning,
data representation and augmentation have a significant impact
on achieving on best matching or labeling performance. We
experimented with several approaches and found that centering
individual instances and applying random rotations during data
preparation can optimize learning results. We randomly elimi-
nate 20 % of the points in each instance and add random noise
to lidar point positions during data preparation to improve
descriptor robustness.

Fig. 7 (right) presents descriptor pairwise distances between
the anchor, positive and negative instances in a subset of 120
test triplets. The blue lines correspond to smaller, positive
distances (as desired). There is a clear separation between the

Fig. 7: Left: A precision/recall curve for all test data in the
descriptor network. Right: A subset of the test data showing
in blue the distance between the anchor and the positive
instances. In red, the line shows the distance between the
anchor and the negative instances.

typical positive and negative distances.
The graph in Fig. 7 (left) shows the precision and recall

curve for the 2000 test triplets. At a descriptor distance (L2

norm) threshold of 0.56, the model can classify the instances
with 91.4 % precision and 88.1 % recall. Here we purposely
choose a smaller distance threshold to have higher precision as
false positives are more detrimental to the localization system.
Our network is fast and efficient. For comparison, we tested
on the Thom Building dataset. Averaged across all scans, ESM
[20] descriptor processed 30 segments in a scan in 72 ms, while
InstaLoc descriptor network processed 30 instances in 21 ms.
In addition, our descriptor network can operate on any number
of input points but ESM needs to downsample a segment to
256 points and SegMap uses fixed 3D voxel grid dimension
of 32× 32× 16 which compromises on detail.

3) Localisation Results: Fig. 1 shows a lidar scan that has
been successfully localized within the ground floor of Thom
building. Several object instances have been matched including
walls, sofas, and flat planes (TV screens). The top section
shows the matched instances within the query scan, and the
bottom section shows the matched instance within the larger
prior map. The estimated pose is indicated with a gold arrow.

InstaLoc and two state-of-the-art baselines were tested with
datasets from George, Thom, and Information Engineering

7

Data Length Scan Number ESM* [20] SegMap* [8] InstaLoc (Ours)
Building (m) Map Query Detect Recall Precision Detect Recall Precision Detect Recall Precision

George 96 32 106 12 11 % 75 % 28 26 % 81 % 56 49 % 93 %
Thom 121 45 137 36 26 % 92 % 28 30 % 83 % 88 58 % 91 %
IEB 253 98 211 29 14 % 93 % 27 13 % 56 % 94 42 % 95 %

TABLE II: Numerical summary table showing the performance of InstaLoc compared to two state-of-the-art benchmarks. The
prior map is made of N scans and the query scan is the total number of scans queried. *: both methods have been adapted for
better performance.

Building (IEB). InstaLoc successfully detected 48 out of 106
scans in the prior map of George building, and all detections
were correct according to the ground truth. Hence the recall
rate is 45 % and the precision is 100 %. For Thom building,
the recall rate was 56 % but the precision was lower at 86 %.
The lower precision was largely due to the two near identical
lecture theatre halls on the two sides of Thom building, shown
in Fig. 5. This caused confusion in the localization system.
Over the three sequences, the average recall was around 47 %,
and the average precision was about 94 %. Note that all three
datasets are for test, the segmentation and description networks
have not seen them as they are trained on simulated lidar scans.

We selected two segment-based localization methods as
comparative baselines, as they are most similar to our method.
We modified the two algorithms to the best of our efforts to
offer a fair comparison in indoor environments. In the Efficient
Segmentation and Matching (ESM) paper[20], the authors
used the Euclidean cluster extraction (ECE) method to segment
the lidar scans. As it was originally designed for outdoor
environments, objects in the scan are expected to be distinctly
separated, especially after removing points corresponding to
the ground. However, in an indoor environment, the ECE
method cannot separate objects efficiently as walls and ceilings
often become one segment. To mitigate this, we first calculate
the curvature and remove high curvature points so there are
distinct gaps between structured objects. After this, the ECE
method can produce more reasonable segments.

The second algorithm we test is SegMap [8]. We first
simplified the system by removing the lidar accumulating
through the odometry system, as the lidar scans in our test are
from a 128-beam lidar so it is very dense compared to 16 or
32-beam lidar used in their paper. More importantly, we used
the incremental region growing method [9] for segmentation,
which computes local normals and curvatures for each point
and uses these to extract flat or planar-like surfaces. After
these two modifications, the system can operate in real time
and have better segmentation performance.

However, even as we improved the segmentation method
in both systems, there is still a limitation in their descriptor
network. One factor is that it does not use sparse tensor
networks, and as a result only a small and fixed number of
points can be used as input.

A table presenting comparison results is shown in Tab. II,
our approach outperforms the baseline methods by a factor of
between two and four times in recall, and also achieved higher
precision. In general, these systems tend to be tuned to prefer
higher precision - for accurate and trustworthy localization.

Data Fewer Scans Default Density More Scans
Building Map R/P % Map R/P % Map R/P %

George 22 30 / 94 32 45 / 100 48 49 / 84
Thom 33 45 / 97 45 56 / 86 60 54 / 86
IEB 68 30 / 100 98 41 / 97 125 42 / 93

TABLE III: Ablation study: varying the number of scans used
for the prior map. The same number of query scans are used as
Tab. II. R and P are the recall and precision values respectively.

Fig. 8: An example of inferior instance segmentation within a
corridor from two different viewpoints. In the side view scan,
both the left and right walls are being over-segmented. In the
top view scan, the points near the sensor origin (<1.0 m) have
much higher noise, resulting in uneven wall surfaces.

We also considered ScanContext [13] for comparison, but
its descriptor is too rudimentary to work in tight indoor spaces,
as opposed to the road networks it was designed for.

4) Varying the Size of the Prior Map: As a robustness test,
we conducted experiments to see how the number of individual
scans in a prior map can affect localization results. Intuitively,
as the number of prior map scans is reduced, the localization
detection rate should reduce. Shown in Tab. III, the middle
column is the baseline which has the same configuration as II,
and the columns left and right of it have either an increased
or decreased number of prior map scans. With the decreased
number of prior map scans, there is a slight reduction in recall
values, but no negative effect on precision. This demonstrates
the robustness of our system to changes in the number of prior
map scans.

C. Limitations

As mentioned in Sec. V-B1, the precision of the instance
segmentation can directly impact the performance of the
localization system. Since the descriptor network has already
reached high precision and recall values, good instance seg-
mentation is a key way of improving overall localization recall

8

performance. In our experiments, the instance segmentation
network performs well in structured and enclosed spaces such
as theatres, classrooms, offices, etc. However, it performs
much more poorly in corridors and staircases, especially when
there are embedded small objects inside the walls, such as
handrails.

As shown in the camera image in Fig. 8 (left), there
were fire extinguishers, radiators, and cupboards along the
corridor walls. We did specifically use examples of hallways
and corridors in our training dataset. While that did improve
performance, the results still have room for improvement. This
might be due to the inconsistent point cloud density on the
walls and the noisier lidar measurements from the Ouster lidar
at close distances. An example of this issue is shown in Fig.
8 (right) in a corridor. This is a topic for future work.

VI. CONCLUSION

In this paper, we proposed a fast and accurate lidar lo-
calization approach. InstaLoc learns to segment and describe
different object instances in a scene. It consists of two net-
works, joined together to recognize and describe individual
objects. InstaLoc can localize between two to four times as
many matches as two state-of-the-art baseline methods while
retaining high levels of precision. In future work, we want to
improve the localization performance in hallways and corridor
spaces. Moreover, we intend to combine visual information
with lidar measurements for instance segmentation. Equally
important, we aim to extend InstaLoc to be independent of the
type of operating environment. Lastly, we will add flexibility to
InstaLoc to work with sparse lidar scans from different lidars.

ACKNOWLEDGMENTS

This research was partly funded by the Horizon Europe
project DIGIFOREST (Grant ID 101070405), UKRI/EPSRC
ORCA Robotics Hub (EP/R026173/1), and a Royal Society
University Research Fellowship (Fallon).

REFERENCES

[1] Aitor Aldoma, Federico Tombari, Luigi di Stefano, and
Markus Vincze. A global hypotheses verification method
for 3d object recognition. In European Conference on
Computer Vision, 2012.

[2] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang,
Ioannis Brilakis, Martin Fischer, and Silvio Savarese.
3D semantic parsing of large-scale indoor spaces. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1534–1543, 2016.

[3] Sang-Hyeon Bae, Sung-Hyeon Joo, Jun-Hyun Choi,
Hyun-Jin Park, and Tae-Yong Kuc. Localization system
through 2D LiDAR based semantic feature for indoor
robot. In International Conference on Ubiquitous Robots,
pages 338–342. IEEE, 2022.

[4] SpConv Contributors. SpConv: Spatially sparse convolu-
tion library. https://github.com/traveller59/spconv, 2022.

[5] Andrei Cramariuc, Florian Tschopp, Nikhilesh Alatur,
Stefan Benz, Tillmann Falck, Marius Bruehlmeier, Ben-
jamin Hahn, Juan I. Nieto, and Roland Y. Siegwart. Sem-
SegMap – 3d segment-based semantic localization. In

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1183–1190, 2021.

[6] Bertrand Douillard, Alastair Quadros, Peter Morton,
James Patrick Underwood, Mark De Deuge, S Hugosson,
M Hallström, and Tim Bailey. Scan segments match-
ing for pairwise 3d alignment. In IEEE International
Conference on Robotics and Automation (ICRA), pages
3033–3040. IEEE, 2012.

[7] Renaud Dubé, Daniel Dugas, Elena Stumm, Juan Nieto,
Roland Siegwart, and Cesar Cadena. SegMatch: Segment
based place recognition in 3D point clouds. In Interna-
tional Conference on Robotics and Automation (ICRA),
pages 5266–5272. IEEE, 2017.

[8] Renaud Dubé, Andrei Cramariuc, Daniel Dugas, Juan
Nieto, Roland Siegwart, and Cesar Cadena. SegMap:
3d segment mapping using data-driven descriptors. In
Robotics: Science and Systems (RSS), 2018.

[9] Renaud Dubé, Mattia G. Gollub, Hannes Sommer, Igor
Gilitschenski, Roland Siegwart, Cesar Cadena, and Juan
Nieto. Incremental-segment-based localization in 3-d
point clouds. IEEE Robotics and Automation Letters,
3(3):1832–1839, 2018.

[10] Patrick Geneva, Kevin Eckenhoff, Yulin Yang, and Guo-
quan Huang. LIPS: Lidar-inertial 3D plane slam. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 123–130. IEEE, 2018.

[11] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
9224–9232, 2018.

[12] Bob Hendrikx, Pieter Pauwels, Elena Torta, Herman
Bruyninckx, and Marinus van de Molengraft. Connecting
semantic building information models and robotics: An
application to 2D LiDAR-based localization. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 11654–11660, 2021.

[13] Giseop Kim and Ayoung Kim. Scan context: Egocentric
spatial descriptor for place recognition within 3d point
cloud map. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4802–
4809, 2018.

[14] Xin Kong, Xuemeng Yang, Guangyao Zhai, Xiangrui
Zhao, Xianfang Zeng, Mengmeng Wang, Yong Liu,
Wanlong Li, and Feng Wen. Semantic graph based place
recognition for 3d point clouds. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 8216–8223, 2020.

[15] Zhikai Li, Marcelo H Ang, and Daniela Rus. On-
line localization with imprecise floor space maps using
stochastic gradient descent. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 8571–8578. IEEE, 2020.

[16] Kirk MacTavish, Michael Paton, and Timothy D Bar-
foot. Selective memory: Recalling relevant experience for
long-term visual localization. Journal of Field Robotics,
35(8):1265–1292, 2018.

https://github.com/traveller59/spconv

9

[17] Matias Mattamala, Milad Ramezani, Marco Camurri, and
Maurice Fallon. Learning camera performance models
for active multi-camera visual teach and repeat. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 14346–14352, 2021.

[18] Sebastian Ratz, Marcin Dymczyk, Roland Y. Siegwart,
and Renaud Dubé. OneShot global localization: Instant
LiDAR-visual pose estimation. In IEEE International
Conference on Robotics and Automation (ICRA), pages
5415–5421, 2020.

[19] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-fidelity visual and physical simu-
lation for autonomous vehicles. International Symposium
on Field and Service Robotics, 2017.

[20] Georgi Tinchev, Adrian Penate-Sanchez, and Maurice
Fallon. Learning to see the wood for the trees: Deep
laser localization in urban and natural environments on
a CPU. IEEE Robotics and Automation Letters, 4(2):
1327–1334, 2019.

[21] Kavisha Vidanapathirana, Peyman Moghadam, Ben Har-
wood, Muming Zhao, Sridha Sridharan, and Clinton
Fookes. Locus: LiDAR-based place recognition using
spatiotemporal higher-order pooling. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 5075–5081, 2020.

[22] Thang Vu, Kookhoi Kim, Tung Minh Luu, Xuan Thanh

Nguyen, and Chang-Dong Yoo. Softgroup for 3d instance
segmentation on point clouds. In 2022 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2698–2707, 2022.

[23] Xipeng Wang, Ryan J Marcotte, and Edwin Olson.
GLFP: Global localization from a floor plan. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1627–1632. IEEE, 2019.

[24] Xin Wei, Jixin Lv, Jie Sun, Erbao Dong, and Shiliang
Pu. GCLO: Ground constrained lidar odometry with
low-drifts for gps-denied indoor environments. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 2229–2235. IEEE, 2022.

[25] Huan Yin, Zhiyi Lin, and Justin KW Yeoh. Semantic
localization on BIM-generated maps using a 3D LiDAR
sensor. Automation in Construction, 146:104641, 2023.

[26] Lipu Zhou, Shengze Wang, and Michael Kaess. π-
LSAM: LiDAR smoothing and mapping with planes. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5751–5757. IEEE, 2021.

[27] Yachen Zhu, Yanyang Ma, Long Chen, Cong Liu,
Maosheng Ye, and Lingxi Li. GOSmatch: Graph-of-
semantics matching for detecting loop closures in 3d
lidar data. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5151–5157.
IEEE, 2020.

Appendix: Further Implementation Details

This appendix discusses further implementation details of the InstaLoc method and acts as an extension
to Sec. IV of the main paper. In particular, we will discuss the training procedures, data generation and
augmentation, and our triplet mining strategy.

1 Panoptic Segmentation Network
For panoptic segmentation of the lidar scan, we adopted SoftGroup method of Vu, Thang et al1, a state-of-the-
art method for 3D point cloud instance segmentation. SoftGroup offers a model pertained on the S3DIS dataset.
Each scan in the S3DIS dataset is a high accuracy static 3D scan of a room with millions of points. Hence we
need to adapt the network and model to better suit the sparser point clouds from 3D automotive lidars such as
Ouster or Velodyne. Details of the algorithmic adaptation are in Sec III B. The radius threshold ρi in Equa. (2)
is added into CUDA processing for each point.

Figure 1: SoftGroup panoptic segmentation architecture

1.1 Generating Simulated Scans
Extending the description presented in Sec. IV A, we purchased the 3D model assets 2 from the Unreal Engine
marketplace and built a six-room building space. Within this space we simulated the lidar scans shown in Fig.
4. We enabled complex collision properties in the Unreal Engine to obtain object details such as object instance
and class for each simulated lidar points - not just just their bounding boxes. Similarly to the S3DIS dataset, we
assign the objects to 13 classes. Tab. 1 shows the number of objects in each class.

• Movable: board, bookcase, chair, sofa, table

• Fixed: beam, ceiling, column, door, floor, wall, window

Note that objects are classed as clutter, which could be both movable or fixed, but are typically movable.

Level beam board bookcase ceiling chair clutter column door floor sofa table wall window Total

Level 1 4 4 10 1 34 119 3 8 4 0 37 18 9 251
Level 2 4 10 11 1 39 113 4 8 4 1 32 20 7 254
Level 3 4 12 7 1 35 109 4 8 6 4 33 30 7 253
Level 4 1 16 8 1 35 109 3 11 6 6 26 20 9 251
Level 5 5 14 3 1 59 65 6 9 5 2 50 16 13 248
Level 6 7 5 4 1 41 98 8 7 11 5 38 16 13 254

Table 1: Number of objects in each class in the simulated environments

1.2 Data Augmentation
Similarly to many point cloud segmentation methods, we augmented the scans by adding Gaussian noise of 1cm
along each of the three dimensions, randomly mirror flipping each scan, and applying random yaw rotations.

1Vu, Thang et al. “SoftGroup for 3D Instance Segmentation on Point Clouds.” 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2022): 2698-2707.

2https://www.cgtrader.com/3d-models/interior/interior-office/low-poly-interior-13-office

1

1.3 Training
We captured 270 simulated scans for training, validation, and testing, and split them into 90 scans each. The
training step aims to fine-tune the pre-trained S3DIS model to adapt to the sparser lidar scans. The original
S3DIS dataset contains 271 scans so we use a smaller number of simulated scans for fine-tuning training.

To fine-tune the pre-trained model, we adapted a two-step training process. First, we froze the modules in
the top-down refinement section (highlighted in color) and only trained the U-Net, semantic branch, and offset
branch modules. Second, we froze the aforementioned modules and fine-tuned the modules in the tiny U-Net,
classification, segmentation, and masking scoring. In this way, we can maintain all the weights in the pre-trained
model and adjust them for sparse 3D lidar scans.

2 Instance Descriptor Network

2.1 Generate Triplet Data
Extending the description in Sec IV A, we obtain instance triplets from the simulated lidar scans in 1.1. So as to
achieve view invariance in the instance descriptor, we generate pairs of Lidar scans from nearby poses in each
room, 2m apart with a 10° rotation around the yaw axis. The algorithm to generate triplets is described below.
In total, we generated 9900 triplets to train the descriptor network.

Algorithm 1: Generate triplets for a pair of lidar scans
Result: N number of triplets
Segment objects in each scan by using their ground truth object instance ID;
Bin the objects based on their semantic label;
while each semantic label do

anchor: Pick an object from scan 1;
positive: Pick the same object from scan 2, using the instance ID;
negative: Randomly pick 4 other objects: from the same class in scan 1 and 2; from a different
class in scan 1 and 2;

return 4 x (anchor, positive, negative)
end

2.2 Data Augmentation
For each instance in the simulated triplet data, we follow the same procedure as Appendix 1.2. We noticed the
simulated lidar scans have very even spacing between points and little noise in the scan line pattern compared
to real lidar scans, so we randomly eliminate 20% of the points in each instance to mimic such effect.

2.3 Training
The train, validate and test split for the triplet network was chosen to be around 60, 20, and 20%. As the size
of each triplet is relatively small compared to the original point cloud, we train and test 8 triplets in a batch on
our mobile GPU. Note that during inference we combine all instances from each point cloud as one batch for
the forward pass.

3 Sim to Real Transfer
In general, the sim-to-real domain gap between lidar scans is smaller than with images. Images depend on
lighting, reflection, camera angle, and object texture making transfer much more challenging. By contrast, 3D
lidar scans only contain geometric information (XYZ point coordinates) which is much more amenable to direct
transfer and training with a smaller amount of samples. In addition, we applied data augmentation in Appendix
1.2 and 2.2 to narrow the gap between the simulated point clouds and the real point clouds.

2

	Introduction
	Related Work
	Outdoor Segment-based localization
	Indoor localization

	Methodology
	Overview
	Instance Segmentation
	Instance Description
	Matching

	Implementation
	Simulated Lidar Data
	Labeled Data for Instance Segmentation
	Triplets for Descriptor Network

	Training
	Instance Segmentation Network
	Instance Descriptor Network

	Experiment and Results
	Experimental Setup
	Results
	Instance Segmentation Results
	Instance Descriptor Results
	Localisation Results
	Varying the Size of the Prior Map

	Limitations

	Conclusion

