
VIII. APPENDIX

A. Comparison against VID-Fusion

VID-Fusion is a visual-inertial-model-based odometry
method very similar to VIMO. The main difference between
the two methods is the external force model. While in VIMO,
the external force is modeled as a Gaussian random variable
with zero mean, in VID-Fusion, the mean is obtained by
integrating the difference between accelerometer and thrust
measurements. According to the authors, this prior helps the
estimation of continuous external forces. In the main paper,
we did not include VID-Fusion [2] among the baselines for
conciseness. Since the drone model is the same as the one used
in VIMO, VID-Fusion has the same limitations. Consequently,
including VID-Fusion in the baselines does not affect the
conclusions drawn in the paper.

In this appendix, for the sake of completeness, we present
the same experiments as in the main paper including VID-
Fusion among the baselines. We refer the reader to the main
paper for the detailed description of the experimental setup
and focus here only on the results.

1) Blackbird Dataset: We present the ATET and ATER on
the evaluation sequences of the Blackbird dataset in Table IV.
Since VIMO and VID-Fusion use the same drone dynamics
model and there are no external perturbances acting on the
drone in this dataset, their trajectory estimation accuracy
is similar. Our method outperforms both baselines as well
as the VIO solution. Large improvements are in the fast
sequences, where our learned aerodynamics model brings
additional information to the VIO backend. However, the
performance difference is small in slow sequences, where
including aerodynamic effects in the drone model is less
effective.

TABLE IV: Evaluation of the trajectory estimates in the Blackbird dataset. In
bold are the best values, and the second-best values are underlined.

Trajectory
Name

vmax

[m/s]

Evaluation Metric: ATET [m] / ATER [deg]

VIO VID VIMO HDVIO
(ours)

Bent Dice 3 0.20 / 1.78 0.25 / 1.18 0.31 / 1.53 0.21 / 1.53
Clover 5 0.90 / 3.52 0.83 / 2.48 0.88 / 3.66 0.60 / 2.08

Egg 5 1.07 / 1.54 0.81 / 1.61 0.75 / 1.34 0.59 / 1.21
Egg 6 1.40 / 2.35 1.10 / 2.42 0.98 / 4.89 0.83 / 1.62
Egg 8 1.79 / 4.55 1.47 / 4.84 1.57 / 3.69 1.06 / 2.89

Mouse 5 1.10 / 4.54 0.54 / 2.10 0.76 / 2.14 0.36 / 1.40
Star 1 0.17 / 0.78 0.18 / 0.54 0.18 / 1.05 0.16 / 0.58
Star 3 0.62 / 3.50 0.50 / 2.93 0.43 / 1.38 0.38 / 1.40

Winter 4 0.97 / 2.92 0.66 / 2.05 0.69 / 2.46 0.57 / 1.54

2) VID Dataset: We evaluate the estimates of the external
force in the sequence 17 of the VID dataset in Fig 10. In
this sequence, the quadrotor is attached to a rope. Ground-
truth forces are available from a force sensor attached to the
other end of the rope. The force estimates are aligned to the
motion-capture reference frame using the posyaw alignment
method [33]. Our hybrid drone model has learned to compen-
sate for a systematic residual error affecting the thrust inputs.
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Fig. 10: Comparison of the external force estimate in the sequence 17 of the
VID dataset. Comparison of the external force estimate. HDVIO drastically
improves the force estimation along the z-axis resulting in a 42% reduction
of the RMSE compared to VID-Fusion.
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VIMO 3.70 1.92
HDVIO 3.70 1.86

Fig. 11: The plot and accompanying table show how our HDVIO performs in
a setting where the training data for the learning-based component is gathered
from a vision-based SLAM system in the outdoor sequences of the VID
dataset. The flown trajectories are at low speeds below 3 m/s, which is why all
four methods show good performance, with HDVIO being the more accurate.

We believe that the cause of this error is inaccuracy in the
rotor/thrust coefficients used to compute the collective thrust
inputs from the rotor speed measurements. It is visible from
the force estimates along the z-axis, that, VID-Fusion, similar
to VIMO (see Fig. 6), is not able to compensate for this
systematic error. The RMSE achieved by VID-Fusion along
the z-axis is 1.95 N. The overall RMSE achieved by VID-
Fusion is 1.12 N. The RMSE achieved by HDVIO along the
z-axis is 0.55 N. The overall RMSE achieve by HDVIO is
0.65 N. We do not include the estimates of VIMO in Fig. 10
for the sake of readability. The ATET achieved by VID-Fusion
is the same as the one achieved by VIO, VIMO, and, HDVIO
namely 0.02 m.

For completeness, we evaluate VID-Fusion also on the
outdoor sequences. We present the relative errors and the ATET
and ATER in Fig. 11. In these experiments, our hybrid drone
model has been trained without using an external motion-
capture system. The flown trajectories are at low speeds below
3 m/s, which is why all four methods show good performance,
with HDVIO being the more accurate.
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Fig. 12: Wind disturbance estimates in our real-world experiments. The magnitude and the y-axis component of the wind force estimated by HDVIO and
VID-Fusion. Left: circle trajectory. Right: Lemniscate trajectory. In all the plots, it is visible that HDVIO achieves more accurate force estimates than VID-
Fusion.
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Fig. 13: Accelerometer bias estimates from our real-world experiments. The
ground-truth bias is obtained from the VIO system. The estimates of our
HDVIO match the ground-truth values, while, VID-Fusion estimates diverge
along the x-axis.

3) Real-world Experiments: The estimates of the external
force of VID-Fusion due to the wind gusts are in Fig. 12.
We show the force along the y-axis, which is the direction of
the wind gusts, after alignment to the world frame using the
ground-truth orientations. From Fig. 12, it is clear that HDVIO
outperforms VID-Fusion. Notably, VID-Fusion overestimates
the wind force when the quadrotor enters the wind field. The
reason for this behavior is that VID-Fusion jointly estimates
the drag force with the external force.

Similar to VIMO, the measurement model in VID-Fusion
introduces inconsistency in the estimates of the accelerometer
bias resulting in decreased accuracy of the motion estimate.
We show in Fig. 13 the accelerometer bias estimated by the
VIO algorithm, by VID-Fusion, and by our method. This
is done for a sequence where the quadrotor, equipped with
the dragboard, flies a circle trajectory. Here, we consider the
bias estimated by the VIO algorithm as a good approximation
of the ground-truth values since the VIO achieves very high
performance in this sequence thanks to the large number of
visual features being tracked. The bias estimate of HDVIO

TABLE V: Experimental results from our real-world experiments. We use (d)
to indicate that a dragboard was attached to the drone.

ATE Position [m] ATE Rotation [deg]
VIO VID VIMOHDVIO VIO VID VIMOHDVIO

Circle (d) 0.07 0.10 0.1 0.07 2.02 2.31 1.80 2.06
Circle 0.06 0.06 0.08 0.06 1.21 1.37 1.19 1.17
Lemniscate (d) 0.38 0.53 0.34 0.30 2.39 2.39 2.93 2.81
Lemniscate 0.27 0.28 0.32 0.20 2.44 2.05 1.93 1.84

closely matches the one of the VIO system, while the estimate
of VID-Fusion converges to wrong values. We include the
position and orientation absolute trajectory errors in Tab. V.
In all 4 sequences, the rich texture environment simplifies the
pose estimation problem. For this reason, the four algorithms
achieve similar accuracy.

B. Clarification on Training with Vision-based SLAM Super-
vision

We show in Fig. 7, that our hybrid drone model can be
trained using pose supervision from a vision-based SLAM
system [34] on the VID dataset. However, the improvement
in pose estimates is small compared to the baselines because
these trajectories contain slow flights.

An alternative would have been to train with supervision
from the vision-based SLAM system on the Blackbird dataset
which contains faster flights. However, this was not possible
because most of the train sequences did not include images at
the time this work was carried out.


