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Abstract—In this paper, we propose a method for estimating
in-hand object poses using proprioception and tactile feedback
from a bimanual robotic system. Our method addresses the
problem of reducing pose uncertainty through a sequence of
frictional contact interactions between the grasped objects. As
part of our method, we propose 1) a tool segmentation routine
that facilitates contact location and object pose estimation, 2)
a loss that allows reasoning over solution consistency between
interactions, and 3) a loss to promote converging to object
poses and contact locations that explain the external force-
torque experienced by each arm. We demonstrate the efficacy
of our method in a task-based demonstration both in simulation
and on a real-world bimanual platform and show significant
improvement in object pose estimation over single interactions.
Visit www.mmintlab.com/multiscope/ for code and videos.

I. INTRODUCTION

Dexterous object manipulation is a challenging open prob-
lem in robotics. Inaccurate in-hand pose estimation of grasped
objects is an important cause of failure during robust robot
manipulation. Inaccurate pose estimates can lead to misalign-
ment (that can cause slip), unforeseen contacts, and jamming.
These failure modes result in unreliable interactions between
the robot and its environment when performing tasks such as
tool use and assembly.

Many current state-of-the-art approaches to this problem use
visual feedback to identify objects in the scene and estimate
their poses [6, 9, 11, 12, 15, 19, 21, 25, 26, 29]. These
approaches produce poor or unreliable estimates in vision-
deprived environments. Vision deprivation occurs naturally
due to occlusions from the robot or environment during
task execution (e.g., during fine assembly or operation in
narrow spaces) and is often unavoidable [27, 30, 32, 33].
Recent progress in high-resolution collocated tactile sensing
has enabled in-hand pose estimation [1, 3, 16, 18, 28, 31, 34].
While these novel sensors present many new possibilities for
tactile feedback, they also present several challenges including
high cost, components that easily fatigue, difficult to model
dynamics between the robot and grasped object, and data
processing complexity.

Here, we present MultiSCOPE: a method to simultaneously
estimate the poses of two objects grasped in unknown config-
urations by two collaborative arms using only proprioception
and 6-DOF force-torque sensing at the wrists, shown in Fig. 1.

Fig. 1. Each robot in this bimanual system is grasping an object (probe
and wrench) in unknown configurations. Using our method, MultiSCOPE, the
robot is able to localize both simultaneously using a sequence of information-
gathering ”poking actions”, its own proprioception and external wrench
measurements, and object models. After running MultiSCOPE to estimate
object poses, the robot will attempt to use the wrench tool.

Our method works by iteratively bringing the two objects into
contact with one another and uses two complementary particle
filters to accurately estimate in-hand object poses. These filters
exploit mutual information between known object geometries
and detected contact events. Specifically, we contribute:

• A framework for sequential bimanual interactions to re-
duce pose ambiguity through iterative Bayesian filtering,

• A memory loss to promote consistency between sequen-
tial information-gathering physical interactions,

• A tool segmentation algorithm to improve object pose
and contact location estimation, and

• A wrench loss to promote converging to object poses and
contact locations that explain the external force-torque
experienced by each arm.

We demonstrate the efficacy of our proposed approach on
simulated and real data using 2 Franka Emika Panda robots.
We emphasize that our approach does not require visual
feedback or high-resolution tactile sensing and is compatible
with most existing robot hardware.

www.mmintlab.com/multiscope/


II. RELATED WORK

In-hand object pose estimation is an important challenge in
robotics. The extensive literature on the subject can be grouped
into two approaches: vision-based and tactile. More recently,
there is an increasing amount of overlap in visuotactile ap-
proaches that we discuss below:

A. Vision-Based State Estimators

Many works on in-hand object pose estimation use vision-
based approaches [9, 11, 15]. Vision-based methods are signif-
icantly impacted by occlusion. Aside from occlusion, two main
challenges for these methods are i) multi-object interactions
(i.e. cluttered scenes) [21, 29] and ii) reasoning about contact
[6, 25, 26]. One of the main advantages of these methods
is that they often mitigate the need for object models via
learning because vision is a much more global sense than touch
[19, 25, 26].

B. Tactile and Visuotactile-Based State Estimators

These works use a variety of tactile sensors and visuotactile
methods to reason about pose at the interface between the
robot and the object. There are many different types of
tactile and visuotactile sensors including robotic skin [8],
tactile fingertips [3, 14, 31], Soft Bubbles [33], and GelSlim
[16, 28] that are being used in robotic manipulation research.
While these sensors hold a lot of promise, they are often
expensive and fragile. In our method, we use robot-estimated
wrenches and an off-the-shelf force-torque sensor to gain
tactile feedback. These methods are more accessible than most
current tactile and visuotactile sensors. Two other works that
also use robot proprioception to estimate contact are [17, 34].
However, these methods estimate contact on the surface of the
robot rather than an object grasped by the robot. [23] extends
this idea to an object grasped by a robot, as well as to objects
grasped in a bimanual system. Several other methods use
finger/robot position combined with RGB(-D) data to estimate
object shape and pose [1, 12, 22]. Additionally, several works
have explored using particle filtering methods [2, 4, 10, 13, 24]
to estimate contact between a robot and its environment.
Generally, these methods consider single robot arms or known
in-hand object pose but an uncertain environment. Our method
could reasonably be integrated with the above vision-based and
tactile techniques discussed here.

III. METHODOLOGY

In this paper, we extend recent work from Sipos and Fazeli
[23] on single-action object pose estimation with propriocep-
tion and tactile feedback called Simultaneous Contact and
Object Pose Estimation, or SCOPE. Our method extends
this framework to multiple contact-rich interactions in order
to achieve object pose estimates that are consistent across
actions and result in more accurate object pose estimates. We
emphasize that in this framework, the robot is estimating the
pose of both grasped objects (e.g., the probe and tool in Fig. 1).

A. Assumptions

We assume that the grasped objects are rigid and that we
have access to their geometric models. We further assume
that the robot is capable of estimating externally applied
wrenches. This is a common functionality for most existing
cobots (e.g., Franka Emika Panda and Kuka lbr iiwa) and can
be implemented using an external force-torque sensor at the
wrist for arms without this capability. We also assume that we
have access to robot proprioception. We assume that contacts
are well-approximated by the point contact model and that no
moments are transmitted through the contact location. Finally,
we assume that the robot’s exploratory actions (pokes) result in
contact with no relative slip. These assumptions are the same
as SCOPE [23] and no additional information is required.

B. SCOPE Review

SCOPE [23] leverages two complementary particle filters
to jointly estimate the contact location and grasped object
poses (for two objects grasped in unknown configurations)
using robot proprioception and tactile feedback from a single
interaction. The first filter is called the Contact Particle Filter
for Grasped Objects, or CPFGrasp. For each arm, this filter
takes as input the measured robot wrench at the end-effector
ΓEE ∈ R6 and an estimate of the pose of the grasped object
represented as a transform between the object and end-effector
frames HO ∈ SE(3). In this work, we estimate grasped object
poses in SE(2) because the pose is constrained by the parallel
jaw grippers of the Frankas. The output of this filter is a belief
distribution over the estimated contact locations on the objects’
surfaces and the forces applied at these locations conditioned
on (ΓEE ,HO). This distribution is approximated by a set of
particles referred to as the Contact Location Particles (CLPs):
Rc = {ri ∈ R3 | i ∈ N < nclp} where r denotes the contact
location w.r.t. to the end-effector frame and where nclp denotes
the number of particles. Once converged, CPFGrasp is able to
provide a score S = {si ∈ R | i ∈ N < nclp} for how well an
estimated pose is able to explain the measured robot wrenches:

(Rc,S) = CPFGrasp(HO,ΓEE)

The second filter, SCOPE, maintains a belief distribution
over object poses and updates this belief distribution using the
scores computed by CPFGrasp. This distribution is approxi-
mated using the Object Pose Particles (OPPs): H = {Hi

O ∈
SE(2) | i ∈ N < npp} where npp denotes the number of
particles. Given an initial distribution of object pose particles,
CPFGrasp provides scores for how well each particle explains
the measured wrench, and SCOPE updates these particles
based on their computed scores. These two filters are run
sequentially until convergence. Each object in the bimanual
system has its own OPP distribution. OPPs from each grasped
object in the bimanual interaction are scored in pairs using the
losses described below.

Losses The losses introduced in SCOPE are the penetration
loss, force alignment loss, and contact consistency loss. Pene-
tration loss penalizes OPP pairs that are in collision. Contact



consistency loss penalizes OPP pairs that have spatially distant
contact locations. Finally, force alignment loss penalizes OPP
pairs that have misaligned applied force. These losses are
formalized in Eqs. 1, 2, and 3:

LP = max{0, Npp − ϵpp} (1)

LC =
∑

stsp∥rt − rp∥2 (2)

LF =
∑

stsp∥ −wt −wp∥2 (3)

where we introduce the subscripts t and p for clarity of
notation to describe the objects (e.g., tool and probe). Here,
NPP is the number of points in penetration for a given OPP
pair and ϵPP is a threshold for penetration in the ground truth.
rt and rp are the CLPs for the tool and probe respectively.
nclp is the number of CLPs for each of the objects. st and sp
are the scores of each CLP, and wt and wp are the external
force estimates at each contact location in the world frame.
The summations are taken pairwise.

C. MultiSCOPE

To extend SCOPE for sequential contacts, we introduce a
tool segmentation algorithm that improves contact location
initialization and convergence properties, a memory loss to
allow our method to find temporally consistent solutions, and a
wrench loss to promote consistency in wrench measurements.
In the following, we provide the details of each contribution
and summarize our proposed method in Algs. 2 and 3. Alg. 2
contains extensions to the algorithm presented in [23].

Algorithm 1 Tool Segmentation
procedure SEGMENTTOOL(nS , nclusters, ε, nmin)

nunique ← getUnique(nS )
centroids ← KMeans(nunique, nclusters)
groupsn ← groupNorms(nS , centroids)
faces ← DBSCAN(groupsn, ε, nmin)
return faces

end procedure

1) Tool Segmentation: In order to ensure better convergence
properties from the CPFGrasp introduced in [23], we propose a
tool segmentation method outlined in Alg. 1 that is designed to
improve CLP initialization and consequently pose estimation.
The original CPFGrasp method uniformly sampled from the
tool surface, and this means that smaller faces are less likely to
be sampled than large ones. However, in the case of the grey
face in Fig. 2a, these faces may be intended to make contact
with the environment. If there are no CLPs on this face at
initialization, it is unlikely that the filter will converge to it
because the particles would have to traverse high-error faces
to get there. To address this, we propose a tool segmentation
algorithm that samples Nface particles on each face, ensuring
better convergence properties for CPFGrasp. In order to do
this, we segment the tool into faces, then sample points from
each. We define a face as a group of points that have similar
surface normals and are spatially close together. To find groups
of similar surface normals, we use K-Means clustering [20] of

Fig. 2. a) Filled gray: useful face of the wrench tool, also one of the smaller
faces b) Filled red: faces of the wrench that share the same surface normal c)
Filled red and blue: faces that share the same surface normal segmented into
different faces based on spatial proximity.

unique surface normals. After grouping by surface normal, we
use DBSCAN [7] to further separate faces that share the same
surface normal but are spatially distant from one another, an
example of which is shown in Fig. 2b-c. Tool segmentations
produced by this method for all tools are shown in Fig. 4.
This method’s parameters are easy to modify for new tools.
This contribution improves the performance and reliability of
MultiSCOPE over random CLP initialization, as we show in
Fig. 11.

2) Wrench Loss: While the penetration, force alignment,
and contact consistency losses in [23] encode many properties
of contact-rich interactions, they don’t explicitly enforce that
the algorithm converges to the object pose(s) that best explains
the wrench the system is experiencing at the end-effector ΓEE .
To this end, we add a wrench loss LΓ to our method. We define
εΓ in Eq. 4 as the wrist wrench error of the CLP distribution:

εΓ =

nclp∑
i=0

si|Γi − ΓEE | (4)

LΓ in Eq. 5 is the summed difference between εΓ and εmin

for the tool and probe (denoted t and p respectively), where
εmin is the lowest error found so far across SCOPE steps for
this action:

LΓ = εt − εmin,t + εp − εmin,p (5)

The inclusion of this loss metric ensures that in addition to
the contact, alignment, and penetration constraints, the pose
estimates for the objects also explain the experienced wrist
wrench. This idea is shown in Fig. 3. On the left, the CPFGrasp
solution for the given object pose does not resolve the wrist
wrench experienced by the robot because the object surface
does not contain the ground truth contact location. The object
pose on the right is a better estimate because the CPFGrasp
solution resolves the wrench that the robot is experiencing at
the wrist.

Fig. 3. Left: The CPFGrasp solution does not resolve the wrist wrench
experienced by the robot. Right: The CPFGrasp solution is able to resolve
the wrist wrench. LΓ allows us to distinguish between these cases.



Fig. 4. The result of K-Means clustering of unique surface normals alongside the resulting tool segmentation for each of the wrench, hex key, pawl, and gear
tools. Each tri-mark is the 3D coordinate representing the X-, Y-, and Z-component of the surface normal unit vector. In the resulting tool segmentation, each
face is distinctly colored.

3) Memory Loss: To build MultiSCOPE, we introduce a
memory loss LM to our algorithm. The goal of this loss is
to leverage the results of previous interactions and reduce
uncertainty in our object pose estimates. This idea is shown in
a simple 2-DOF translational case in Fig. 5. The key challenge
we address in our implementation is assessing consistency
between pose estimates and sequential actions. In order to do
this, we introduce the contact clouds rcc for the tool and the
probe that contain estimated contact points. The contact clouds
grow over time as more actions are taken.

In order to construct the contact cloud with multiple actions,
we take the process depicted in Fig. 6. We define two scoring
functions in Eqs. 6 and 7: SOPP and SC .

SC = ηPLP + ηCLC + ηFLF + ηΓLΓ (6)
SOPP = ηPLP + ηCLC + ηFLF + ηΓLΓ + LM (7)

The difference between these functions is that SC does not
include memory loss and is used to directly compare OPP pairs
to one another across actions. At the last step of SCOPE for
Action An, we find the top nOPP tool and probe pose pairs
using SOPP . Without applying the noise model to these pairs,
we move to Action An+1 and run the first step of SCOPE.
Using SC rather than SOPP , we again find the top nOPP

pairs. By doing this, we are rewarding the OPP pairs that score
highly in both An and An+1 and penalizing the OPP pairs that
score well in only An. In order to update the contact cloud, we
use Eq. 8 to estimate the contact location rcc,i for each OPP
in the top pairs, then project rcc,i back into the frame of An.

We weight rcc,i by the score of the OPP it belongs to, Sc,i.
For the remaining SCOPE steps in An+1, we use SOPP to
take advantage of the contact cloud that we have just updated
for each tool. After we update the contact cloud, we project
it into the frame of An+1 and use SOPP finish SCOPE for
An+1.

rcc,i = SC,i

Nclp∑
j=0

sjrj (8)

When we use the contact cloud rcc to score memory at
each step, we compute the weighted average distance from
each point in the contact cloud to the surface of the object
using a signed distance function (SDF) as shown in Eq. 9.

LM =

Ncc,t∑
i=0

wiSDFt(rcc,ti) +

Ncc,p∑
i=0

wiSDFp(rcc,pi) (9)

We additionally encourage consistency between actions by
introducing what we call “memory dropout”. There are some
situations in which none of the OPPs provided by An are
consistent with An+1. We check for this by comparing SC

after the last step of An, SC−1 , with SC after the first step
of An+1, SC0

. Since the OPPs for each of these steps are the
same, we can directly compare their scores. We expect that if
the OPPs are consistent between An and An+1, SC0

≈ SC−1
.

If SC0
≫ ∆CSC−1

, we exclude An from memory scoring in
all future scoring runs and increase the magnitude and spread
of the noise model for the rest of An+1.



Fig. 5. Simple 2-DOF translational example of the intuition behind LM . a)
Probe takes Action 1, resulting in object pose estimates that have horizontal
uncertainty. b) Probe takes Action 2, resulting in object pose estimates that
have vertical uncertainty. c) By combining Action 1 and Action 2, we can
score object pose estimates on how well they satisfy both actions that have
been taken and reduce our uncertainty.

Fig. 6. OPPs are represented as blocks, colored orange for the tool and blue
for the probe. At the end of one action we use SOPP , which includes LM ,
to score our top OPP pairs. We then move to the next action without applying
the noise model so that we can directly compare the consistency of the last
and current OPP pairs using SC , which does not include LM . We take the
most consistent particles and use them to update each object’s contact cloud
rcc for use in memory scoring.

4) Preventing Divergence: When we inject noise after each
SCOPE step, we present the opportunity for the object pose
estimate to get worse. Therefore, when it is time to score the
OPP pairs we pick the top nOPP object pose pairs between
the last and current SCOPE steps.

IV. EXPERIMENTS

A. Simulation Environment

We implement our method first in simulation. We used
Pybullet [5] and configured the environment to reflect our
hardware setup. We use two Franka Emika Panda robots
mounted on the same table. In simulation, both robots use
the Panda Hand. We use four tools (wrench, hex key, pawl,
and gear) and a probe. We set the ground truth pose to be
[0, 0, 0]EE for each tool and the probe. To generate each
action, we sample a surface point of the tool and its surface

Algorithm 2 SCOPE: t → tool, p → probe

procedure SCOPE(H,Γ, f, S̄C−1
, rcc, nA)

Ht,Hp ← H
ΓEE,t,ΓEE,p ← Γ
ft, fp ← f ▷ Segmented object faces
Nos ← Number of SCOPE steps
for i← 0; i < Nos; i++ do

for j ← 0; j < Nopp; j ++ do
(Ht,j ,Hp,j)← Hj

Rc,t ← CPFGrasp(ft,Ht,j ,ΓEE,t)
Rc,p ← CPFGrasp(fp,Hp,j ,ΓEE,p)

end for
if i is 0 then

SOPP ← scoreConsistency(Ht,Hp,Rc,t,Rc,p)
rcc ← updateContactCloud(Ht,Hp,Rc,t,Rc,p)
if given S̄C−1and S̄OPP > ∆CS̄C−1 then

dropMemory(nA − 1)
end if

else
SOPP ← scoreOPPs(Ht,Hp,Rc,t,Rc,p, rcc)
H← preventDivergence(H)

end if
if i+ 1 < Nos then

H← Importance-Resample(H,SOPP )
H← Noise-Model(H, i, nA)

end if
end for
return H,S

end procedure

normal. We disable collision between the probe and tool then
use the surface point and normal to create a target pose for
the probe. To obtain force-torque data, we use Pybullet’s
applyExternalForce API to apply 3N of normal force to the
contact point. We do this because the force-torque generated
through contact resolution in Pybullet can be unpredictable and
at a different scale from real-world data. We selected 3N of
normal force based on similar real-world interactions, where
the normal force generally falls between 2N and 5N. We take
the joint states of each robot directly from Pybullet as our
proprioception data.

B. Real-World Environment

We further test our method in the real world using the
wrench tool. We again use two Franka Emika Panda robots
mounted on the same table. However, for the real robots we
use one robot with a Panda Hand and the other with an
ATI Gamma FT sensor mounted at the wrist with the probe
attached directly, as shown in Fig. 1. This shows flexibility in
the source of force-torque data. While running MultiSCOPE,
we still treat the probe pose as unknown by using the geometry
of a graspable probe and simulated gripper fingers at the origin
of the Gamma. This is shown in Fig. 7. The 3D-printed wrench
tool has a crosshair pattern that interfaces with the Panda



Fig. 7. Despite the probe being fixed on the real robot, we treat its pose as
being unknown in MultiSCOPE. To do this, we create a graspable probe and
use its mesh in MultiSCOPE. The surface points of this mesh are shown in
blue. To check grasp validity we create gripper points, shown in red, at the
origin of the ATI Gamma FT.

Fig. 8. 5 poking actions selected for MultiSCOPE trials in simulation.

Hand fingers to enforce that the ground truth pose is again
[0, 0, 0]EE .

One of the assumptions that we make in this method is
that we have access to robot proprioception. We do not reason
about noise or error in it. However, in the real world, we find
that this assumption does not hold to such a high standard. In
using our bimanual robot platform, we have found that it is
difficult to precisely calibrate the robots with respect to one
another even though they are rigidly mounted to the same
dimensioned surface. We have developed a simple calibration
routine in which we rigidly attach the end-effectors to one
another then manually guide the attached arms through the
workspace while collecting joint state data. Using this joint
state data and geometric information, we map one end-effector
frame to the other and create a point cloud for this frame on
each robot model. If the robots were perfectly calibrated the
point clouds would be identical; however, we have observed
that with no calibration we often find 1-1.5 cm of RMS error
between the two point clouds. We perform ICP to find the
transformation that best maps one point cloud to the other,
then apply this transformation to the base of that robot. We
find that this method reduces our RMS error to 3-7 mm.

In addition to robot proprioception noise and error, we
additionally confront force-torque signal noise and error. To
address this, we collect static signal before moving into contact
in order to zero the sensor and fit the signal noise to a

Gaussian distribution. We use the detected noise to form Σm,
the calibrated sensor noise used in CPFGrasp.

C. Noise Injection in Simulation

To mimic what we observe in real-world hardware, we inject
noise into the MultiSCOPE input ΓEE = [F ;T ] ∈ R6×1

for each arm. For each action, we separately calculate the
magnitude of the force ||F || and torque ||T ||. We define
two Gaussian distributions N ∼ (0, σ) where σF is defined
as n% of ||F || and σT as n% of ||T ||. We modify the
MultiSCOPE input to be ΓEE,noise = ΓEE + [δF ; δT ] where
δF ∼ N (0, σF ) ∈ R3×1 and δT ∼ N (0, σT ) ∈ R3×1. Results
with the wrench tool for n = 5% and n = 8% are shown in
Sec. V-A3.

Algorithm 3 MultiSCOPE: t → tool, p → probe
procedure MULTISCOPE(ΓEE,t,ΓEE,p)

Ht ← {Ht,0, · · · ,Ht,Nopp
} ▷ Init OPPs

Hp ← {Hp,0, · · · ,Hp,Nopp
} ▷ Init OPPs

H← (Ht,Hp)
Γ← (ΓEE,t,ΓEE,p)
S ← 1/Nopp ▷ Initially uniform OPP scores
rcc ← {} ▷ Initially empty contact cloud
NA ← Number of actions
ft ← segmentTool(nS,t, nclusters,t, εt, nmin,t)
fp ← segmentTool(nS,p, nclusters,p, εp, nmin,p)
f ← (ft, fp)
for i← 0; i < NA; i++ do

if i is 0 then
H,S← SCOPE(H,Γ, f, rcc, i)

else
H,S← SCOPE(H,Γ, f, S̄, rcc, i)

end if
end for
return H,S

end procedure

D. Task-Based Demonstration

The goal of MultiSCOPE is to estimate in-hand tool poses
that are sufficiently accurate to use in manipulation tasks.
In order to demonstrate the efficacy of our method, we use
the wrench tool to approach a screw in our environment,

Fig. 9. Examples of success and failure cases from the task-based demon-
stration of the Action 1 results shown in Table II. The grey wrench tool is
the underlying ground truth used for collision checking. In green on the far
left is a wrench tool pose estimate that succeeded in surrounding the screw
head. The middle and right examples, in red, show wrench tool pose estimates
that failed to complete the task. We observe that X-error is very influential in
determining task success.



Fig. 10. These results are the combined output of all 10 MultiSCOPE trials with the wrench tool. The error is presented in [x, z, θ]EE , which is shown on
the upper right with x in red, y in green, and z in blue. We visualize this 3D error as 3 separate planes: X-Z (red), X-θ (green), and Z-θ (blue). For clarity,
this is shown in the cube on the lower right. The first column (grey) shows the error at initialization and every subsequent column shows the results after
taking an additional action. We can see that as MultiSCOPE takes more actions, the pose estimate error shrinks and has higher density about [0, 0, 0]EE .

in preparation to tighten the screw. We assign a planning
frame based on the estimated wrench tool pose and plan to
an approach point. We then use the Pilz Industrial Motion
Planner to plan a linear Cartesian path into contact between
the wrench tool and the screw head. We qualify the trial as a
success if the wrench tool is able to surround the screw head.
Since we are using the ground truth geometry as the collision
body, our estimate of wrench tool pose must agree with the
ground truth in order to plan successfully.

We conduct this demonstration in the simulation environ-
ment as well as the real world, but with slightly different
tolerances. The opening of our wrench tool (which is the
3D printed version of a wrench tool sold by McMaster-Carr)
measures 1

2” (12.7 mm). Therefore, a square-headed bolt must
have a minimum side length of 0.35” (8.9 mm) in order to
catch in the mouth of the wrench when the wrench is turned.
This leaves at most 0.075” (1.9 mm) tolerance on either side
of the screw head. We created a mesh for this square-headed
screw and added it to our environment for the simulation
demonstration. For the real-world demonstration, we increased
the maximum tolerance to 3.5 mm on each side by foregoing
a screw head and using just a cylinder.

V. RESULTS

A. Simulated Experiments

For brevity, we present only the results for the wrench tool
here. The pose estimation results for the hex key, gear, and
pawl tools can be found in Appendix A. For the simulated
experiments, we generated a set of actions according to
Section IV-A and chose 5 of them to be advantageous for

reachability. We ran 10 MultiSCOPE trials on this set of
actions. We show these 5 actions in Fig 8 and present the
results of pose estimation and task completion here.

1) Pose Estimation: The robot grasping the wrench tool
achieved 0.47 ± 0.27 cm translation error and -0.76 ± 2.01◦
rotation error. For the probe, the robot achieved 0.49 ±
0.28 cm translation error and -2.67 ± 4.76◦ rotation error.
We visualize the progression of wrench tool pose estimation
results over several actions in Fig 10.

2) Task Completion: In the task-based demonstration with
tight tolerance, the robot succeeded in 8 of 10 trials to surround
the screw head with the wrench. In the 2 trials that failed, we
found that after Action 1 the pose estimate of the wrench
tool maintained relatively large X-error. These poses were
maintained in the contact cloud for the tool because they did
not meet the qualification for memory dropout mentioned in
Sec. III-C3. Because there was a similar trial that succeeded,
we hypothesize that a better-chosen value of ∆C would
improve our success rate.

3) Noise Injection: We sampled force-torque noise at 5%
and 8% of each action’s magnitude according to Sec. IV-C
and tested in 5 trials. At 5% noise, we found that the robot
grasping the wrench tool achieved 0.52 ± 0.31 cm average
translation error and -0.1 ± 3.08◦ rotation error. The robot
grasping the probe achieved 0.58 ± 0.48 cm of translation
error and 0.76 ± 5.38◦ of rotation error. Additionally, the robot
was able to complete 4 of 5 task-based demonstrations. At 8%
of each action’s magnitude, we found that MultiSCOPE was no
longer able to achieve results that were sufficiently accurate
to complete any demonstrations successfully. The results at



TABLE I
RESULTS OF ABLATION STUDY ACROSS LOSS METRICS LP ,LC ,LF ,LΓ, AND LM OVER 5 TRIALS.

Loss Ablation Study Results

Loss
Ht Trans Error (cm) ↓ Ht Rot Error (deg) ↓ Hp Trans Error (cm) ↓ Hp Rot Error (deg) ↓

Task Success (%) ↑
Mean Stdev Mean Stdev Mean Stdev Mean Stdev

LP 1.32 0.74 6.55 18.26 0.89 0.35 3.67 26.77 0
LC 0.80 0.31 -0.21 2.60 0.74 0.40 2.63 5.30 40
LF 1.19 0.59 -2.95 3.26 1.29 0.70 -7.29 14.68 40
LΓ 0.46 0.27 -1.26 2.10 1.06 0.64 -5.36 14.83 80
LM 1.30 0.41 -1.98 2.47 1.65 0.66 -6.06 20.64 20

LP ,LC ,LF 0.66 0.37 -2.13 2.64 0.82 0.44 0.08 11.63 N/a
LP ,LC ,LF ,LΓ 0.61 0.31 -0.47 2.92 0.84 0.47 2.45 11.64 N/a
LP ,LC ,LF ,LM 0.51 0.31 -1.15 2.79 0.78 0.49 -0.07 11.80 N/a

Full Method 0.48 0.16 -0.50 1.63 0.50 0.25 -1.71 4.23 100

Fig. 11. In this figure we compare the results of our tool segmentation algorithm vs. random CLP initialization when using CPFGrasp to estimate contact
location with Poke 4 from Fig. 8. We use 4 metrics: the position error, wrench error, number of steps to converge, and the number of CLPs. These results are
averaged across 20 random seeds: error bars are shown in the bottom row for random initialization. The 3 parameters for tool segmentation are nclusters,
ε, and nmin while the single parameter for random initialization is the density of the random sampling (fraction of surface points). We find that our tool
segmentation method is able to reduce the number of CLPs needed to converge to the ground truth contact location precisely, as shown with red dashed lines.

TABLE II
RESULTS OF ABLATION STUDY ACROSS STANDALONE ACTIONS OVER 10 TRIALS.

Action Ablation Study Results

Action
Ht Trans Error (cm) ↓ Ht Rot Error (deg) ↓ Hp Trans Error (cm) ↓ Hp Rot Error (deg) ↓

Task Success (%) ↑
Mean Stdev Mean Stdev Mean Stdev Mean Stdev

1 1.15 0.48 -3.71 3.62 0.51 0.27 -2.36 5.58 20
2 1.72 1.11 -0.23 2.46 0.58 0.23 -1.79 5.59 10
3 0.84 0.33 -2.25 2.94 0.6 0.36 -0.71 6.99 70
4 0.88 0.71 -2.27 2.67 0.94 0.42 2.77 9.28 50
5 0.83 0.46 -0.86 2.56 0.75 0.30 3.51 10.93 50

Mean 1.08 0.62 -1.86 2.85 0.68 0.32 0.28 7.67 40

Full Method 0.47 0.27 -0.76 2.01 0.49 0.28 -2.67 4.76 80



Fig. 12. Estimated wrench pose (green, transparent) compared to ground truth (black, opaque) after Action 1 through after Action 4. At the far right, the
result of planning using the estimated wrench pose after Action 4 in the real world. The robot succeeded in the task in all 5 real-world trials.

this 8% noise were 1.13 ± 0.33 cm translation error and 0.87
± 1.27◦ rotation error for the wrench tool and 0.94 ± 0.62
cm translation error and -1.31 ± 5.09◦ rotation error for the
probe.

4) Ablation Studies: We conducted several ablation studies
to examine how our selected loss metrics impacted our results.
In addition to examining the effect of each loss metric by
itself, we also compared the results of performing only a
single action. We present these results both in terms of their
[x, z, θ]EE errors as well as their task success rate. Results of
these ablation studies are presented in Table I and Table II.

B. Hardware Demonstrations

For the real robot demonstration, we chose and collected
data for 4 actions and ran 5 MultiSCOPE trials. 3 of the 4
actions are shown in Fig. 1. The last action is in the same
direction as Poke 3 on a different face of the wrench. We
present the results of the task-based demonstration trials in
Fig. 12. We successfully completed the task in 5 of 5 trials
despite the robot proprioception error discussed in Sec. IV-B.

VI. CONCLUSION

In this paper, we demonstrated the efficacy of MultiSCOPE
in disambiguating in-hand object poses using robot propri-
oception and tactile feedback. We evaluated our method in
both simulated and real world environments using Franka
Emika Panda robots and saw improved performance from
using multiple actions rather than single actions. These im-
provements enabled us to use the grasped tool for task-based
demonstrations.

Building on the success of this work, we look ahead to
more principled action selection to reduce the number of
actions needed to converge to accurate object pose estimates.
We also consider integrating vision or visuotactile sensing as
relevant extensions to our method to increase efficiency and
applicability.
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APPENDIX A
EXTENDED RESULTS

For brevity, we excluded these results from the main body
of the paper. We demonstrate that MultiSCOPE is effective at
disambiguating in-hand object poses for three additional tools:
a hex key, pawl, and gear. We take the simulated actions shown
in Fig. 13 and conduct 10 trials with each tool. These results
are compared to the MultiSCOPE results with the wrench tool
in Table III. We find that the results are consistent across tools.
We visualize the pose estimation results for the additional tools
in Figs. 14, 15, and 16 in the same style as Fig. 10.

(a) Hex Key Actions

(b) Pawl Actions

(c) Gear Actions

Fig. 13. Selected poking actions for MultiSCOPE trials in simulation with
the hex key, pawl, and gear tools.



TABLE III
RESULTS OF MULTISCOPE WITH DIFFERENT TOOLS OVER 10 TRIALS.

MultiSCOPE Results

Tool
Ht Trans Error (cm) ↓ Ht Rot Error (deg) ↓ Hp Trans Error (cm) ↓ Hp Rot Error (deg) ↓
Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Wrench 0.47 0.27 -0.76 2.01 0.49 0.28 -2.67 4.76

Hex Key 0.31 0.16 0.00 3.03 0.30 0.18 2.29 3.60

Pawl 0.33 0.22 2.23 4.25 0.63 0.57 -2.48 10.96

Gear 0.49 0.40 -2.66 2.49 1.10 0.57 -3.48 12.34

Fig. 14. These results are the combined output of all 10 MultiSCOPE trials with the hex key tool. The error is presented in [x, z, θ]EE , which is shown on
the upper right with x in red, y in green, and z in blue. We visualize this 3D error as 3 separate planes: X-Z (red), X-θ (green), and Z-θ (blue). For clarity,
this is shown in the cube on the lower right. The first column (grey) shows the error at initialization and every subsequent column shows the results after
taking an additional action.



Fig. 15. These results are the combined output of all 10 MultiSCOPE trials with the pawl tool. The error is presented in [x, z, θ]EE , which is shown on the
upper right with x in red, y in green, and z in blue. We visualize this 3D error as 3 separate planes: X-Z (red), X-θ (green), and Z-θ (blue). For clarity, this
is shown in the cube on the lower right. The first column (grey) shows the error at initialization and every subsequent column shows the results after taking
an additional action.

Fig. 16. These results are the combined output of all 10 MultiSCOPE trials with the gear tool. The error is presented in [x, z, θ]EE , which is shown on the
upper right with x in red, y in green, and z in blue. We visualize this 3D error as 3 separate planes: X-Z (red), X-θ (green), and Z-θ (blue). For clarity, this
is shown in the cube on the lower right. The first column (grey) shows the error at initialization and every subsequent column shows the results after taking
an additional action.
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