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Abstract—Reasoning over the interplay between object defor-
mation and force transmission through contact is central to the
manipulation of compliant objects. In this paper, we propose
Neural Deforming Contact Field (NDCF), a representation that
jointly models object deformations and contact patches from
visuo-tactile feedback using implicit representations. Represent-
ing the object geometry and contact with the environment
implicitly allows a single model to predict contact patches of
varying complexity. Additionally, learning geometry and contact
simultaneously allows us to enforce physical priors, such as
ensuring contacts lie on the surface of the object. We propose a
neural network architecture to learn a NDCF, and train it using
simulated data. We then demonstrate that the learned NDCF
transfers directly to the real-world without the need for fine-
tuning. We benchmark our proposed approach against a baseline
representing geometry and contact patches with point clouds. We
find that NDCF performs better on simulated data and in transfer
to the real-world. More details and video results can be found
at https://www.mmintlab.com/ndcf/.1

I. INTRODUCTION

The ability to manipulate elastically deformable objects
(e.g., spatulas and sponges) is crucial for many contact-rich
manipulation tasks. In order for robots to effectively use these
compliant tools, they must reason over the coupled dynamics
of object deformation and environmental contact to control the
resulting contact interface between the two. However, there are
two key challenges to address. First, the frictional interactions
between these objects and their environment is governed by
complex non-linear mechanics, making it challenging to model
and control their behavior. Second, perception of these objects
is challenging due to both self-occlusions and occlusions that
occur at the contact location (e.g., when wiping a table with
a sponge, the contact is occluded).

In this paper, we propose Neural Deforming Contact Fields
(NDCF) – a visuo-tactile neural implicit representation that
models both the object and contact patch geometries as im-
plicit fields (see Fig. 1). Specifically, our approach maps each
point in 3D space to a signed-distance value and a probability
of contact. By jointly reasoning over these coupled fields, our
representation enables: i) modeling complex object and contact
formation geometries; ii) enforcing physical priors such as
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Fig. 1. We present Neural Deforming Contact Fields (NDCFs), a method
for recovering deformation and contact patch predictions from partial point
clouds and tactile feedback (here, robot proprioceptive tactile feedback). We
show that while NDCF is trained using simulated data, it is able to transfer
to the real-world directly. Here, a robot with a deforming sponge presses
into the YCB mug object. NDCF is able to faithfully recover the deformed
tool geometry and contact patch between the deformed sponge and rigid mug
(shown in red) given real-world sensing from this interaction.

ensuring that contacts lie on the surface of the object; and
iii) estimating contact patches or deformed geometries given
partial visuo-tactile observations. We further present a neural
network implementation and learning algorithm for NDCF.
Finally, we evaluate NDCF on simulated and real-world data
and benchmark against explicit methods utilizing point cloud
representations.

Our work builds on the recent advances in neural im-
plicit and signed-distance field (SDF) representations of ob-
ject geometry that have recently gained significant attention
in computer vision [26, 31, 28] and robotics [6, 35, 36].
These representations offer several advantages over traditional
geometric object and environment models. One of their key
benefits is the ability to handle objects and environments with
complex, non-linear shapes, such as deformable objects and
cluttered scenes. Unlike traditional geometric models, which
often rely on a fixed set of vertices and edges, neural implicit
representations and SDFs encode the shape and behavior of
objects as continuous functions. Recent work has utilized
neural implicit representations to effectively model deformable
object geometries [35, 36]. However, existing methods have
largely ignored geometric representations of contact. Our
approach brings contact geometry to center stage, considers
object deformations, and allows for far greater flexibility
than classical models such as a point contacts [18], line
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Fig. 2. Method Overview: We propose Neural Deforming Contact Fields, to jointly reason over deformable object geometries and contact patches,
conditioned on wrench feedback. We represent both geometry and contact as an implicit method, predicting an SDF s and a contact probability c for query
points q. At inference time, we take in a partial point cloud and wrench value and recover a desired trial latent code, which can be used to reconstruct the
full geometry and contact patch.

contact [19, 10, 15], or planar patch contact [14, 38, 39] that
are typically limited to rigid-body objects and have limited
representation capacity.

II. RELATED WORK

3D geometry representation for deformable objects:
Several robotics manipulation studies adopt discrete geome-
try representations including meshes [7, 29, 32] and GNNs
[16, 30, 12]. These approaches often require identification of
connectivities [12, 32] and special node-tracking techniques
during inference [29]. Though these methods seem promising
for cloth folding [12, 9, 32] and dough manipulation [30],
it is unclear how to use these representations for complex
volumetric objects, predicting dense contacts, and integration
with force transmissions. On the other hand, prior works
on dense 3D geometry representations provide high-fidelity
surface reconstructions for complex volumetric geometries
[26, 4, 31]. These approaches include SDF [35, 36, 25, 21, 24],
occupancy [23], and volume density [27, 6, 5], which directly
use raw vision output (RGB-D) without annotations. Unlike
existing work modeling deformable object geometries which
either assume known contact geometries [35] or do not ex-
plicitly reason over contact [36], our proposed work directly
incorporates contact into the representation.

Contact representations: Prior works on recovering con-
tact locations have utilized a set of points [18] and lines [10,
15, 19] as representations for contacts. These representations
are appropriate for rigid or relatively non-deformable object
interactions. However, the sponge, being a highly deformable
tool, often undergoes contacts that occur in the form of
patches, making the conventional representations insufficient.

Contact patches have been utilized as a representation when
using collocated sensing at the point of contact [11, 34, 33].
We are interested instead in extrinsic contact interactions,
where we have little to no sensing at the location of contact.

Most related to our work by way of representing contact
is the Neural Contact Field proposed by Higuera et al. [8].
Similar to our method, the Neural Contact Field treats contact
as an implicit function which maps from a query point to a
contact probability. However, they assume rigid, known object
models and do not consider multi-modal inputs, focusing on
tactile sensing. In contrast, we consider the case of deformable
objects, where the change in geometry due to contact is
unknown, and focus on a joint representation of deformable
object geometry and contact, learned from visuo-tactile inputs.

III. METHOD

A. Formulation

We propose Neural Deforming Contact Fields (NDCF), a
learned multimodal implicit representation that simultaneously
reasons over grasped object deformations, wrench feedback,
and contact patches. The key insight of our method is to jointly
predict the geometry of the object and the contacts on the
object surface, rather than assume contacts are provided [35]
or reasoning about contacts indirectly [36]. We choose to
represent the contact patch implicitly as a neural field, which
allows for contact patches of varying shapes and topologies to
be represented with a single model. Additionally, by learning
the deformed object geometry and contact patch jointly, we can
enforce physical priors during training and inference, ensuring
that contacts lie on the surface of the deformable object.

Our method is designed to incorporate feedback from com-
mon robotic sensors. As such, we assume access to a partial
point cloud P̃ ∈ RN×3 of the segmented object and wrench
feedback at the robot wrist w ∈ R6. Then, given a query point
q ∈ R3, we predict its SDF value s ∈ R and the likelihood
that it is in contact c ∈ [0, 1]:

(s, c) = f(P̃ ,w, q)



The deformable object surface is given by the zero-level set
of the SDF value:

S = {q | (s = 0, c) = f(P̃ ,w, q)} (1)

The zero level set can be recovered through Marching Cubes
[13] or ray tracing methods and can easily be converted to a
point cloud or a geometric mesh M [2].

The contact patch is given by the intersection of the object
surface with points classified as in contact, where ϵ is the
binary classification threshold:

C = S ∩ {q | (s, c > ϵ) = f(P̃ ,w, q)} (2)

B. Architecture

We propose a neural network architecture for learning
NDCFs from data. The full architecture can be seen in Fig. 2.
1. Network Inputs: We train the network to reconstruct
geometry and contact patches from static interactions between
a deforming object and its environment. To this end, we adopt
the encoder-less geometric reasoning popular for learning
implicit geometries [21, 26, 35, 36]. By training without
an encoder, we additionally decouple the input point cloud
distribution from the network training. We introduce a trial
code ϕ ∈ RL that captures the current deformation and
contact occurring in the scene. The latent space of ϕ is learned
simultaneous to the training of the network weights.

The wrench w is encoded through a neural network E into
a latent vector ψ = E(w) ∈ RL used to introduce force
reasoning into the network. The latent vectors ϕ and ψ are
jointly input to later parts of the network and trained together,
allowing for joint reasoning over forces, deformations, and
contact patches.
2. Signed Distance Field: We follow Wi et al. [35, 36] in
representing deforming object SDFs by decomposing into a
nominal SDF and deformation field, relating the deformed
geometry to the nominal geometry. First, we represent the
nominal SDF implicitly, with a neural network O, taking in a
query point q ∈ R3 and predicting a SDF s ∈ R as s = O(q).

The second component is a predicted deformation field. This
network predicts how each point in space can be deformed
back to the nominal geometry, represented implicitly with the
network D. As the deformation is dependent on the particular
interaction, we provide this network with our latent vectors
(ϕ, ψ) to inform the deformation. D then maps from a query
point q ∈ R3 to a deformation ∆q ∈ R3 as ∆q = D(q|ϕ,ψ).
Following Wi et al. [35, 36], the final SDF prediction becomes:

s = O(q +D(q|ϕ,ψ))

In this paper, we learn an NDCF for a single object. In
future work, we plan to extend this framework to learning
across multiple classes of object by adding an additional object
latent code [35, 21, 26].
3. Contact Field: We predict the likelihood of contact at every
point in space. To make the prediction we use a neural network
T . Similar to deformation, our contact is dependent on the
particular interaction, so we provide this network with our

latent vectors (ϕ,ψ). T then maps from a query point q ∈ R3

to a contact probability c ∈ [0, 1]:

c = T (q|ϕ,ψ)

C. Training

Our training is composed of two steps: first, we pretrain
the object module O such that the nominal geometry (without
contact) is accurately represented by this module. Next, we
train the entire architecture end-to-end to model deformations
and contact patches.
1. Pretraining the Object Module: We pretrain our object
module O to fit the SDF of our nominal object geometry.
Given a dataset of sampled points around the nominal geom-
etry, Ω = {qi, s∗i ,n∗

i }i, we train with the following loss:

Lsdf =
1

|Ω|

|Ω|∑
i=1

|O(qi)− s∗i |+ ξ
1

|ΩS |

|ΩS |∑
i=1

(1− ⟨∇O(qi),n
∗
i ⟩)

where ΩS is the subset of sampled surface points and ξ weights
the SDF and normal losses. The normal loss encourages the
predicted and ground truth normals to align on the object
surface. The predicted surface normal can be recovered by
differentiating the SDF output with respect to the query point:
∇O(qi) = ∂O(qi)/∂qi. The gradient can be calculated
using backpropagation. The weights of O are frozen after
pretraining.
2. Loss Formulation: Our model is trained on a dataset of
interactions provided as:

D = {(Ω1,w1,ϕ1), (Ω2,w2,ϕ2), . . . , (ΩN ,wN ,ϕN )}

For each interaction we have a set of sampled points Ωi =
{qj , s∗j ,n∗

j , c
∗
j}i, as well as the generated trial code ϕi and

wrench for the example wi. For each example (Ωi,wi,ϕi),
we calculate the training loss given by:

Ltrain =Lsdf + αLembedding + βLdeform + ωLchamfer

+ γLcontact

where Lsdf encourages the final predicted SDF values and
normals to match the ground truth, and is defined as:

Lsdf =
1

|Ωi|

|Ωi|∑
j=1

|O(qj +D(qj |ϕi,ψi))− s∗j |

+ ξ
1

|Ωi,S |

|Ωi,S |∑
j=1

(1− ⟨∇O(qj +D(qj |ϕi)),ψi),n
∗
j ⟩)

where Ωi,S are the points in Ωi lying on the surface of the
object, ξ weights the SDF and normal losses, and ∇O(qj +

D(qj |ϕi, E(wi)) =
∂O(qj+D(qj |ϕi,ψi))

∂qj
is computed using

backpropagation.
Lembedding = ||ϕi||22 is used to ensure the

learned latent space is well-formed [26]. Ldeform =
1

|Ωi|
∑|Ωi|

j=1 ||D(qj |ϕi,ψi)||22 is used to embed the prior
that smaller deformations are preferred to complex large
deformations.



The loss Lchamfer is a Chamfer distance used to encourage
the predicted nominal surface, derived by adding the query
points that lie on the surface to their predicted deformations,
matches the ground truth nominal surface. Let

P = {qj +D(qj |ϕi,ψi)|s∗j = 0}

be the predicted nominal surface and P ∗ be the ground truth
nominal surface point cloud. Then,

Ldeform = CD(P, P ∗)

where CD is the Chamfer distance between two point clouds:

CD(P1, P2) =
1

|P1|
∑
x∈P1

min
y∈P2

||x− y||22

+
1

|P2|
∑
x∈P2

min
y∈P1

||x− y||22
(3)

Finally, we supervise our contact field using Lcontact de-
fined as follows:

Lcontact =
1

|Ωi,S |

|Ωi,S |∑
j=1

BCE(T (qj |ϕi,ψi), c
∗
j ) (4)

where BCE is the Binary Cross Entropy loss. Notably, we only
evaluate binary classification on the surface, that is the set of
points Ωi,S . This avoids having to learn a 2D contact surface
directly, rather inheriting the geometric surface predicted by
the SDF, while maintaining the flexibility of the implicit
function in terms of shape and topology.

Training is achieved by solving the following optimization:

θ∗,ϕ∗
i = argmin

θ,ϕ

|D|∑
i=1

Ltrain(Di) (5)

As in other encoder-less methods, we simultaneously train our
trial codes ϕi alongside the weights of our network.

D. Inference

We assume access to a partial point cloud P̃ and wrench
reading w. We then can perform inference to find the trial
code ϕ∗ for the example using the following optimization:

ϕ∗ = min
ϕ

1

|P̃ |

|P̃ |∑
i=1

O(P̃i +D(P̃i|ϕ, E(w))) + η||ϕ||22 (6)

This optimization finds the latent vector ϕ that places all
the partial points on the surface of the generated geometry,
additionally conditioned on the wrench w, thus matching the
generated NDCF to the observations. The second loss term is
used to regularize the prediction [26] and prevents drifting
away from well formed latent vectors. The geometry and
contact patch can then be recovered from the partial point
cloud and wrench measurements, as detailed in Sec. III-A.

IV. IMPLEMENTATION

A. NDCF Implementation

Our wrench encoder E is implemented as multi-layer
perceptron (MLP) with a single hidden layer with size 16.
Recent studies in neural implicit methods suggest the best
method for conditioning outputs is using Hyper Networks,
where conditioning vectors are used to predict the weights
of an additional network, which takes in the query point
and predicts the field value [35, 36, 4, 28]. As such we
implement our deformation module D and contact module T
as hypernetworks:

∆q = D(q|HD(ϕ,ψ))

c = T (q|HT (ϕ,ψ))

Here HD and HT predict the weights of each module MLP.
We add additional regularization terms to regularize the pre-
dicted weights.

Lhyper =ζ(
1

|HD(ϕ,ψ)|
||HD(ϕ,ψ)||22

+
1

|HT (ϕ,ψ)|
||HT (ϕ,ψ)||22)

ζ is a weighting on the loss. The predicted deformation MLP
has a single hidden layer of size 256 while the predicted
contact MLP has two hidden layers of size 256. The object
nominal SDF module O is implemented as a MLP with 2
hidden layers of size 256. All models are implemented using
Pytorch. We set latent space dimension of ϕ and ψ to be in
L = 16.

B. Training and Inference Details

NDCF Pretraining is performed using the Adam Optimizer
with learning rate 1e − 5. We set normal loss weighting
term ξ = 0.01. The pretraining is run for 50000 epochs to
effectively memorize the nominal object geometry.

NDCF Training is performed using the Adam Optimizer
with learning rate 1e − 4. The latent codes ϕi are initialized
from the zero mean Gaussian with standard deviation 0.1.
From Sec. III-C, we set α = 1e − 3, β = 1.0, ω = 0.01, γ =
0.1, ξ = 0.01. From Sec. IV-A, we set ζ = 1e − 6. We train
our method for 200 epochs.

NDCF Inference is performed with the Adam Optimizer
with learning rate 2e−3. Latent codes, as during training, are
initialized from a zero mean Gaussian with standard deviation
0.1. In each experiment, we use a validation set to select
the choice of η in Eq. 6, the contact probability threshold
ϵ, and the number of gradient descent iterations to perform.
In particular, we perform a grid search and choose inference
hyper-parameters with the best performance. We report the
selected hyper-parameters for each experiment in Sec. V.

C. Data Collection

1) Simulation: The training methodology described in
Sec. III-C relies upon having strong supervision of sampled
points and their corresponding SDF and contact patches. In
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Fig. 3. Real-world experiment setup with 1 Pandas arm, 2 depth cameras
(Photoneo ScannerL and Photoneo MotionCam-3D color), 1 force-torque
sensor (ATI Gamma), and 1 46mm sponge mounted on the force-torque sensor.
ScannerL was used for labelling while MotionCam was used for the partial
point cloud inputs.

Fig. 4. Visualization of generated environments and sampled interactions for
our training dataset in Isaac Gym. Environments per column are box, curves,
and ridges from left to right.

this work, we utilize Isaac Gym [17], a GPU-based physics
simulator, to collect simulated deformable-object interactions.
Isaac Gym implements 3D Finite Element Method (FEM) on
the GPU and has been experimentally validated for accuracy
in rigid-deformable interactions [22].

In this work, our object is a 46mm cube sponge rigidly
attached to a Franka Emika Panda end effector, with an
ATI Gamma F/T sensor mounted between (see Fig. 3). We
recreate the sponge in Isaac Gym, rigidly attached to the
wrist mounting geometry used in the real world (see Fig. 4).
Isaac Gym FEM assumes homogenous material properties and
requires specification of the Poisson’s ratio ν and Young’s
Modulus E. We set ν = 0.1 (a low value) to reflect the
fact that because the sponge is a porous material with air
gaps, it has a significantly smaller transverse elongation due to
compression than a solid object. To determine E we perform
system identification. On the real system, we collect a series of
16 presses onto a flat surface and record the wrench response
measured by the F/T sensor. We then recreate those presses in
simulation, by moving the simulated wrist to the same pose,
and measure the simulated response. We perform a line search
over Young’s Modulus values, using the euclidean distance
between real and simulated wrenches to evaluate match. We

Fig. 5. We perform system identification to match simulated material
properties to our real object setup. 16 real setup presses are recreated in
simulation and the simulated wrench is compared to that registered in the
real world. Points indicate individual simulation trial comparisons to the real
world data, colored for visual clarity by the used Young’s Modulus. We found
the optimal Young’s Modulus to be E = 1.1e4 Pa.

find that E = 1.1e4 Pa best matched our robot setup in
simulation (see Fig. 5).

We collect a dataset of simulated presses to train our
NDCF. We use three scenarios: first is a box, second is a
randomly generated curved surface, and third is a randomly
generated ridge terrain (see Fig. 4). In each scenario, we
sample random orientations for the wrist and randomize the
starting position of the gripper to enable interactions near the
edges of objects as well as on the surfaces, then lower straight
down until a randomly sampled distance between 3mm and
1cm past the point of initial contact. The resulting data is
saved and processed to form dataset D, including ground truth
geometries, feedback wrenches, and contact labels.

In total, 3000 environments and interactions are sampled,
1000 per each environment type. For each interaction, we
sample 40000 query points off surface and 20000 query points
on the surface and generate ground truth SDF values, contact
patches, and normal labels. We augment our dataset by rotating
all inputs around the tool z-frame (frame shown in Fig. 3), as
our system exhibits symmetry due to the shape of the tool.

To evaluate our method, we also collect an additional dataset
of new interactions with full labels. We generate 300 new
press interactions, 100 per environment, and prune examples
where the resulting contact area was less than 1× 10−6mm2,
for an evaluation set of 298 interactions. To provide partial
geometric information, we place eight cameras spaced evenly
around the wrist facing the tool to capture partial point clouds
of the sponge in contact from multiple angles, which are used
during inference, along with the simulated wrench feedback.
Examples of partial views are shown in Fig. 6.

2) Physical Robot: We also demonstrate our method’s
effectiveness in the real-world using a physical robot. In order
to provide useful evaluation of our method, we design a real-
world test bed from which we can derive contact patch labels.
However, we emphasize that these labels are not used for
training and are only for evaluation purposes. Shown in Fig. 3,



our real world setup places a clear acrylic plate in front of the
Franka Emika Panda with the sponge mounted rigidly to the
robot end effector. A Photoneo Phoxi 3D scanner (L) is placed
opposite the acrylic. When the robot moves the sponge into
contact with the acrylic, the Photoneo depth scan sees through
the acrylic and locates the contacting face of the sponge. By
calibrating the position of the acrylic, we can estimate the
contact patch from the resulting depth scan by thresholding
the points near the face of the acrylic. Examples of resulting
labels can be found in Fig. 8. We use these as the ground truth
contact patch to evaluate our methods on the real world data.

We use the wrench feedback from the mounted ATI gamma
as the wrench input. To get our partial point cloud, a Photoneo
MotionCam-3D Color (M+) is mounted next to the robot
viewing the contact interaction. The sponge is segmented from
the resulting point cloud and provided as the partial geometry
to each method.

We collect 48 different interactions with the acrylic sheet.
We randomize the orientation of the sponge before pressing by
sampling an offset angle in the range [−0.3, 0.3] for rotations
about the (x, y, z) axes relative to the nominal pose, which is
the robot ATI Gamma frame (shown in Fig. 3) with the z axis
pointing directly at the plate and the x axis pointing normal to
the table underneath. The robot is moved to an offset position
then pressed straight forward towards the acrylic 1cm past the
point of initial contact.

V. EXPERIMENTS

A. Baseline

We compare our implicit representation method to an
explicit counterpart. Point clouds are flexible shape repre-
sentations; however, they lack connectivity and are funda-
mentally discrete which limits their resolution and ability
to capture high-frequency details. Here, we implement an
explicit baseline representation that directly predicts both the
geometry and contact patch as point clouds. We adopt the
point cloud encoder-decoder architecture of [37] and condition
the bottleneck feature on both the partial pointcloud P̃ and
wrench w. We implement two point cloud decoders, one to
output deformed object geometries and the other to output the
contact patch predictions.

P,C = f(P̃ ,w)

We use the following loss to train:

Lbaseline = ξ1CD(P, P ∗) + ξ2CD(C,C∗) + ξ3CDuni(C,P )

where P is the estimated object surface point cloud and P ∗

is the ground truth surface point cloud. Similarly, C is the
estimated contact patch and C∗ is the ground truth contact
patch. The final loss term incorporates the knowledge that we
know that the contact patch should lie on the surface of the
object. This can be encouraged in the learned model by a
uni-directional Chamfer distance, which only calculates the

distance from the contact patch C to the nearest points on the
geometry P .

CDuni(C,P ) =
1

|C|
∑
x∈C

min
y∈P

||x− y||22

We used Adam Optimizer with learning rate 1e-4, set ξ1 =
ξ2 = ξ3 = 1e4, and ran 200 epochs for training on the same
dataset used to train the NDCF. Upon reconstructing geometry
from the point cloud P , we apply a meshing algorithm to
convert the output to a mesh [3].

The use of an encoder-decoder structure means the baseline
is sensitive to the distribution of the partial view P̃ seen
for training examples, e.g., the placement of the cameras.
As such, we perform augmentation during training, selecting
subsets of the camera views so that the encoder is somewhat
robust to the available partial view. We note our decoder-only
method is invariant to the input distribution, since partial views
are not used during training and rather are used in the loss
during inference. As such, we do not need to perform any
augmentation when training our method, in comparison to the
baseline.

B. Metrics

1. Geometry: To evaluate the deformed object geometry, we
use two metrics. The first metric is the Chamfer Distance (see
Eq. 3) of the predicted surface point cloud to the ground truth
surface point cloud. For NDCF, we generate the surface point
cloud P by sampling from the generated object mesh. For
the point cloud baseline, we directly compare the generated
object surface point cloud to the ground truth. To make for
fair comparison, we down-sample each resulting point cloud
and ground truth point cloud to 10,000 points.

The second metric is a Volumetric IoU of the predicted
mesh M and ground truth mesh M∗. The Volumetric IoU is
defined as the quotient of the volume of the intersection of the
meshes by the union of the meshes,

IoU(M,M∗) =
|M ∩M∗|
|M ∪M∗|

We estimate the volumes by sampling 100,000 points near the
object and determining which points lie inside the predicted
and ground truth meshes [20].
2. Contact Patch: We evaluate the contact patch geometries
using the Chamfer Distance (see Eq. 3). For NDCF, we
use rejection sampling on the surface to recover the contact
patch, evaluating the contact probability at each sample and
accepting those above ϵ. For the point cloud baseline, we
directly compare the generated contact patch point cloud to the
ground truth. To make for fair comparison, we downsample
the predicted and ground truth contact patch point clouds to
300 points. We found that the baseline did not spread the
points evenly through the predicted patch, so we use a voxel-
downsampling technique to better sample from the point cloud
volume fairly.



TABLE I
MODEL PERFORMANCE ON SIMULATED AND REAL-WORLD DATA

Deformed Geometry (sim) Contact Patch (sim) Inference Time (sim) Meshing Time (sim) Contact Patch (real-world)
CDmm2 IoU CDmm2 Seconds Seconds CDmm2

Ours 0.910 (0.158) 0.987 (0.007) 22.840 (40.414) 0.173 (0.006) 1.906 (0.378) 39.502 (23.797)
Baseline [37] 5.746 (1.091) 0.817 (0.058) 36.537 (19.046) 0.026 (0.001) – 57.853 (39.502)

Fig. 6. Selected simulation geometry results from each of our test envi-
ronments (Box, Curves, and Ridges). Our proposed method NDCF shows
crisp reconstructions with high retention of detail, while the baseline exhibits
artifacts and lacks geometric details.

C. Simulated Experiments

We first evaluate our method on 298 unseen simulated
interactions, as detailed in Sec. IV-C1. We use a validation set
of 90 press interactions, 30 from each environment, to select
inference hyper-parameters. We select η = 0.001, ϵ = 0.2,
and run inference for 100 gradient steps.

Our method successfully predicted a contact patch in all
but two cases, in which it failed to predict any points on
the deformed surface with contact probability above ϵ = 0.2.
To avoid skewing baseline performance, we remove these
two examples when calculating performance metrics for both
methods.

Fig. 7. Simulation contact patch estimation results for examples from Fig. 6.
Our proposed method NDCF captures the variety in contact shapes while the
baseline estimates exhibit high variance with points predicted far from the
contact patch.

Full performance results are shown in Table I. We see that
our method outperforms the proposed baseline on all three
metrics, reflecting better prediction of both object geometry
and contact patches. We also show the runtime of each method
- while the inference procedure does take longer than a forward
pass of a model, we still are able to run our method at roughly
0.5Hz, including the time to perform meshing via Marching
Cubes. Further tuning of inference parameters could trade off
performance and runtime for specific applications. Additional
simulation performance analysis can be found in Appendix B.

In Fig. 6 and Fig. 7, we show the predicted geometry and



Fig. 8. NDCF geometry and contact patch estimation on real world
interactions with a flat surface. Our results show that NDCF trained on
simulated data transferred to real world examples. Predicted meshes accurately
predict where deformation occurs for each interaction and the contact patches
are accurate to the measured ground truth patch. Note that the right three
columns are rotated to view the contacting face of the object. The last row
shows a failure case, where the contact occurs opposite the camera and thus
is harder to detect.

contact patch for several examples from each environment.
Our method, NDCF, shows high retention of geometric details,
such as the curvature of the mesh in the first “Curves”
example. The proposed baseline is much more noisy, with
rounded edges and artifacts appearing off the surface from
spuriously generated points. Our method also shows the ability
to capture diverse contact shapes accurately, whereas the
baseline method, while often clustered near the patch, is
noisy, with contact points predicted at times far from the
object surface. Our method, can directly take advantage of
the geometric reasoning of NDCF, and as such the contact
patches lie cleanly on the predicted surface of the object.

D. Physical Robot Experiments

Here, we evaluate our methods ability to generalize from
the simulated environment to the real world one. We use 48
physical robot interactions with ground truth contact patch
labels, collected as described in Sec. IV-C2. We use a set of 16
validation interactions, collected in the same manner, to choose
inference hyper-parameters. We select η = 0.1, ϵ = 0.2, and
run inference for 100 gradient steps. A higher η is intuitive,
since the real world sensing is more noisy than the simulated
data, thus a term preventing the latent from drifting out of
distribution prevents over-fitting to sensor noise.

Fig. 8 shows our methods performance on the real world

Fig. 9. Clockwise from top-left: baseline contact predictions for the first four
examples in Fig. 8. While the main cluster of points is located near the ground
truth patch, the baseline predictions exhibit variance, with points predicted far
from the patch and object surface.

data for several interactions with varying contact patch shapes.
In each case, the predicted mesh appears to closely match the
interaction and the contact patches are good estimates of the
ground truth. Fig. 9 shows baseline predictions for the first
four examples of Fig. 8. Similar to the simulation results, we
found that the baseline often clustered points roughly near the
patch but exhibited noise and often predicts points far from
the contact.

Over the 48 test interactions, we evaluate the quality of the
contact patch using the Chamfer Distance metric. As we do not
have ground truth geometries, we forgo deformed geometry
evaluation. As shown in Tab. I, our method outperforms the
baseline on patch CD.

E. YCB Interaction Experiments

As a final experiment, we qualitatively investigate our
method’s performance on objects in the real world. We place
the mug and bowl object from the YCB dataset [1] in front of
the robot. Poke interactions are prerecorded by a demonstrator,
then repeated autonomously. We use the same robot and sensor
setup described in Sec. IV-C2, but now use partial point clouds
combined from both the Photoneo MotionCam and Photoneo
Scanner L as the partial visual data. We found using the
inference hyper-parameters from Sec. V-C worked well for
this data.

We show the qualitative results for three presses on each
object in Fig. 1 and Fig. 10. The “ground truth” pose of the
object used in visualization is approximated by performing
ICP on a scan of the object from the Photoneo sensors
with the robot moved clear. We see that NDCF is able to
complete reasonable geometries and contact patches, including
differentiating between flat contacts and contacts near the edge
of objects, as well recognizing the “ridge” like contact of the
mug handle.

To provide an approximate quantitative measure of real
world performance, we measure the average squared distance



Fig. 10. Qualitative results of applying NDCF to poke interactions with the
YCB mug and bowl object. We find that for interactions with these objects,
our method is able to recover feasible geometric completions and contact
patches that are close to the ground truth object surface.

from the predicted contact patch points to the surface of the
object mesh (this can be seen as a uni-directional Chamfer
Distance). Our method achieves 15.379 mm² for the Mug and
2.728 mm² for the Bowl.

VI. CONCLUSION

We present Neural Deforming Contact Fields (NDCFs),
a representation that jointly reasons over extrinsic contact
patches, deformable object geometry, and force transmitted
via contact. Our method represents both the object geometry
and contact patch using neural implicit fields, which makes
the representation flexible enough to handle complex contact
shapes and object deformations.

Our results indicate that we can utilize NDCFs to recover
deformed object geometries and corresponding contact patches
with high accuracy, and outperforms an explicit representation

baseline method which uses point cloud representations. Ad-
ditionally, we showed that we could transfer the representation
to the real world without finetuning and demonstrated the
ability to recover geometries and contact patches given real
interaction data.

So far, our demonstration of NDCF has been limited to
a single tool interacting statically with an environment. To
handle multiple objects, we can condition our nominal object
model using an object latent code to distinguish geometries,
and introduce a materials latent code to address the case
of identical geometry with varying material properties. For
dynamic interactions, our representation can be augmented
with dynamics in the latent space to predict future trial and
wrench latent codes, conditioned on actions.

Another limitation of this current work is that it does
not directly consider the surrounding environment. Here, we
primarily focused on demonstrating shared reasoning over
geometries and contact, independent of the environment geom-
etry. However, in certain cases (see last row Fig. 8) the partial
geometry of the deformable object and the reaction wrench
may not fully disambiguate the underlying deformations and
contacts, as many varying contact configurations can yield
similar observations.
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Deformed Geometry (sim) Contact Patch (sim)
Noise (%) CDmm2 Patch % CDmm2

0 0.910 (0.158) 99.3 22.840 (40.414)
10 0.958 (0.233) 97 26.644 (41.411)
50 2.895 (12.144) 95.7 128.865 (292.644)
100 15.304 (77.485) 83.3 434.111 (774.389)

TABLE II
MODEL PERFORMANCE WITH NOISY WRENCH INPUTS

Fig. 11. Boxplot of Simulated Test Contact Patch CD. Stars indicate the
mean of each method. The right pane shows a zoomed view to highlight
performance details. Our method outperforms the baseline on mean, median,
and quartile performance, but does have outliers with high error.

APPENDIX A
INPUT ABLATIONS

To better elaborate on the role of the wrench input, we show
model performance on our simulated test data as increasing
amounts of noise are injected into the wrench input. Noise is
added by sampling zero-mean noise with variance scaled by
the size of the reading. That is, for our wrench input w we
add a percentage p noise to each term as follows:

wi = wi + ϵ; ϵ ∼ N (0.0, p ·wi)

We investigate how increasing the percentage of the scale as
the standard deviation of the noise affects model performance.
Table II shows model performance as we increase the injected
noise. Patch % indicates the percentage of examples for which
a patch is correctly predicted (it is possible for no points on
the surface to have contact likelihood above ϵ). We see that
for mild noise (10%), the performance stays largely the same.
At lower noise levels, information from the point cloud may
be enough to correct for the noise in the wrench. At higher
noise levels, the estimation of both geometry and contact
deteriorates, both in terms of percent of examples where
patches are predicted and the quality of the patch predictions,
indicating the importance of the wrench value.

APPENDIX B
CONTACT PATCH PERFORMANCE DETAILS

We provide further details on the simulated contact patch
Chamfer Distance (CD) performance. In Fig. 11 we show the
spread of the contact patch CD as a boxplot. Our method



Fig. 12. Contact Patch predictions (in red) vs. ground truth (in blue) for
our method and the baseline on our method’s outlier result in the simulation
dataset. We see that our method predicts a patch that could have similar
composite wrench feedback and similar geometry.

shows better median and quartile performance than the base-
line. Our method also outperforms on average, but we see
that our average is pulled up by outliers. This also explains
the higher standard deviation in Tab. I.

In Fig. 12, we show our method and the baseline on our
method’s outlier example from Fig. 11. This is a difficult
example due to its small deformation and contact, as well as
the split contact, which can alias other contact configurations.
We see that our method predicts a patch that could have
a similar wrench feedback to the composite wrench of the
actual interaction. The baseline prediction has a cluster of
points that is similarly located, but the baseline’s tendency
to predict a noisy spread of points means the evaluation is
much more kind to the baseline, with a CD of 103.5mm2,
than to our method, with a CD of 435.9mm2, despite the fact
that neither method predicted accurately on this example (note,
as explained in Sec. V, each point cloud is sampled to 300
points before evaluating CD). This result helps contextualize
why our method has higher error on a small number of outlier
examples.

We found that for most examples, however, as shown
qualitatively in Fig. 7 and in the distribution of CD values
in Fig. 11, our method performs favorably to the baseline.
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