
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

RADIUS: Risk-Aware, Real-Time, Reachability-Based Motion
Planning

Jinsun Liu∗†, Challen Enninful Adu∗†, Lucas Lymburner†, Vishrut Kaushik†,
Lena Trang‡, and Ram Vasudevan†

Abstract—Deterministic methods for motion planning guarantee
safety amidst uncertainty in obstacle locations by trying to restrict
the robot from operating in any possible location that an obstacle
could be in. Unfortunately, this can result in overly conservative
behavior. Chance-constrained optimization can be applied to im-
prove the performance of motion planning algorithms by allowing
for a user-specified amount of bounded constraint violation.
However, state-of-the-art methods rely either on moment-based
inequalities, which can be overly conservative, or make it difficult
to satisfy assumptions about the class of probability distributions
used to model uncertainty. To address these challenges, this
work proposes a real-time, risk-aware reachability-based motion
planning framework called RADIUS. The method first generates
a reachable set of parameterized trajectories for the robot offline.
At run time, RADIUS computes a closed-form over-approximation
of the risk of a collision with an obstacle. This is done without
restricting the probability distribution used to model uncertainty
to a simple class (e.g., Gaussian). Then, RADIUS performs real-
time optimization to construct a trajectory that can be followed
by the robot in a manner that is certified to have a risk of
collision that is less than or equal to a user-specified threshold. The
proposed algorithm is compared to several state-of-the-art chance-
constrained and deterministic methods in simulation, and is shown
to consistently outperform them in a variety of driving scenarios.
A demonstration of the proposed framework on hardware is also
provided. Readers can find the paper project page here1.

I. INTRODUCTION

For mobile robots to safely operate in unstructured envi-
ronments, they must be able to sense their environments and
develop plans to dynamically react to changes while avoid-
ing obstacles. Unfortunately, it is challenging to accurately
and precisely estimate and predict an obstacle’s movement.
For mobile robots to operate robustly, the uncertainty within
these estimations and predictions must be accounted for while
generating motion plans. Various approaches to account for
this uncertainty have been proposed in the literature, but these
methods either (1) have difficulty being utilized in real-time,
(2) make strong assumptions on the class of probability distri-
butions used to model the uncertainty, or (3) generate motion
plans that are overly conservative and thereby restrict motion.
This paper develops an algorithm called RADIUS: Risk-Aware,
real-time trajectory Design In Uncertain Scenarios (introduced
in Figure 1) for risk-aware, real-time motion planning while
addressing each of the aforementioned challenges.

∗These authors contributed equally to this work.
†Robotics, University of Michigan, Ann Arbor, MI. <jinsunl,

enninful, llymburn, vishrutk, ramv>@umich.edu.
‡College of Engineering, University of Michigan, Ann Arbor, MI.

ltrang@umich.edu.
1https://roahmlab.github.io/RADIUS/

Control Parameter Space

Fig. 1: An illustration of the motion planning framework RADIUS that is
developed in this paper. RADIUS first performs offline reachability analysis
using a closed-loop full-order vehicle dynamics to construct a series of control-
parameterized, zonotope reachable sets (shown as dark gray boxes) that over-
approximate all possible behaviors of the ego vehicle over the planning horizon.
During online planning, given some user-defined risk of collision (ϵ) for
the motion plan, RADIUS constructs a trajectory by solving an optimization
problem that selects subsets of pre-computed zonotope reachable sets that are
certified to have a no greater than ϵ risk of colliding with any obstacles. In
this figure, the moving obstacles are shown in white and the 3-σ regions
of the corresponding probability distributions for the obstacle locations are
shown as the purple and blue ellipses where the probability density from
low to high is illustrated from blue to purple. The subsets of the dark gray
zonotope reachable sets corresponding to the trajectory parameter shown in
green ensure a collision-free path that is guaranteed to have a no greater than
ϵ risk of colliding with all obstacles, while the two trajectory parameters and
their corresponding reachable sets shown orange may have a greater than ϵ risk
of collision with the moving obstacles.

We first summarize related algorithms for safe motion plan-
ning under uncertainty. Approaches to address this problem can
be categorized as deterministic or stochastic. The deterministic
approaches often assume some bounded level of uncertainty
and solve for motion plans that are robust to this bounded
uncertainty. Reachability-based methods [1][2] for instance,
over-approximate the uncertain regions using polynomial level
sets or polytopes and plan paths that do not intersect with
these regions. As we illustrate in this paper, such methods
may be overly conservative as they must over-approximate the
uncertain region to include events that may have an exceedingly
small probability of occurring to ensure safety.

Stochastic methods incorporate probabilistic information
about the environment to reduce the level of conservative-
ness of their motion plans. Many of these methods leverage
chance constraints that allow for some user-specified amount
of constraint violation. For instance, sampling-based algorithms
for chance-constrained motion planning apply numerical inte-
gration techniques to compute the risk of collision between
the agent and obstacles in the environment [3], [4]. In this
context, random samples are drawn from the uncertain region,
and the number of samples that cause a collision is used to

https://roahmlab.github.io/RADIUS/
h
t
t
p
s
:
/
/
r
o
a
h
m
l
a
b
.
g
i
t
h
u
b
.
i
o
/
R
A
D
I
U
S
/


approximate the risk of collision. These methods are simple to
implement, but can be time-consuming as they require large
numbers of samples to converge to a good estimate of the
risk of collision. To address these limitations, moment-based
methods upper bound the risk of collision using moments of
the probability distribution [5]–[7]. Recent works leverage MPC
and SOS programming in conjunction with these moment-based
upper bounds to perform motion planning. Unfortunately, these
methods can be conservative as the bound must be valid for any
distribution with the given moments. Coherent risk measures
like conditional value-at-risk (CVaR) and Entropic value-at-
risk (EVaR) have been used to regulate safety by limiting the
expectation of the distance to the safe region using a worst-
case quantile representation of a distribution [8]–[10]. However,
CVaR constraints are difficult to construct directly due to
the computationally expensive multi-dimensional integration
that is required. As a result, they are often approximated
using sampling methods, which as mentioned earlier can be
computationally expensive. Branch-and-bound methods like the
Chance-Constrained Parallel Bernstein Algorithm (CCPBA) use
reachability-based methods in conjunction with a branch-and-
bound style algorithm to compute tight bounds for the risk of
collision [11]. To compute these probabilities they assume that
they have access to a cumulative distribution function, a priori,
that can be evaluated efficiently during online optimization.
However, such an assumption may not hold for arbitrary
distributions.

This paper makes the following contributions. First, it pro-
vides a novel, parallelizable, closed-form over-approximation of
the risk of collision given an arbitrary probability distribution
with a twice-differentiable density function (Section VI-A).
Second, it describes the analytical derivative of the probabil-
ity over-approximation with respect to the control parameter
(Section VI-C). Third, this paper presents a general, real-
time risk-aware motion planning framework that guarantees
robot safety up to a user-specified risk threshold over time
intervals rather than just at discrete time instances (Section
VI-D). Lastly, this paper demonstrates RADIUS in simulation
and on hardware and compares its performance to CCPBA,
and Cantelli MPC on a variety of scenarios (Section VII).
The rest of this manuscript is organized as follows: Section
II gives necessary notations for the manuscript. Section III
presents the parameterized vehicle dynamics and environment
representation. Section IV describes obstacle uncertainty, risk-
aware vehicle safety and online planning. Section V discusses
offline reachability analysis of the vehicle dynamics. Section
VIII discusses the generalizability of the proposed algorithm
and highlights the assumptions that need to be satisfied to apply
RADIUS to other robotic systems. Section IX concludes the
paper.

II. NOTATION

This section formalizes notations used throughout the pa-
per. Sets and subspaces are typeset using calligraphic font.
Subscripts are primarily used as an index or to describe a
particular coordinate of a vector. Let R and N denote the

spaces of real numbers and natural numbers respectively. The
Minkowski sum between two sets A and A′ is A ⊕ A′ =
{a + a′ | a ∈ A, a′ ∈ A′}. Given a set A, denote its power
set as P (A). Given vectors α, β ∈ Rn, let [α]i denote the i-th
element of α, let diag(α) denote the diagonal matrix with α
on the diagonal, and let int(α, β) denote the n-dimensional
box {γ ∈ Rn | [α]i ≤ [γ]i ≤ [β]i, ∀i = 1, . . . , n}. Given
arbitrary matrix A ∈ Rn×n, and let det(A) be the determinant
of A. Let Prob(E) denote the probability of occurrence of
some event E, and let rotate(a) denote the 2-dimensional

rotation matrix
[
cos(a) − sin(a)
sin(a) cos(a)

]
for arbitrary a ∈ R.

Next, we introduce a subclass of polytopes, called zonotopes,
that are used throughout this paper:

Definition 1. A zonotope Z is a subset of Rn defined as

Z =

{
x ∈ Rn | x = c+

ℓ∑
k=1

βkgk, βk ∈ [−1, 1]

}
(1)

with center c ∈ Rn and ℓ generators g1, . . . , gℓ ∈ Rn.
For convenience, we denote Z by <c, G> where G =
[g1, g2, . . . , gℓ] ∈ Rn×ℓ.

Note that an n-dimensional box is a zonotope because

int(α, β) = <
1

2
(α+ β),

1

2
diag(β − α)>. (2)

By definition the Minkowski sum of two arbitrary zonotopes
Z1 = <c1, G1> and Z2 = <c2, G2> is still a zonotope as
Z1⊕Z2 = <c1 + c2, [G1, G2]>. Note that one can define the
multiplication of a matrix A of appropriate size with a zonotope
Z = <c, G> as

AZ =

{
x ∈ Rn | x = Ac+

ℓ∑
k=1

βkAgk, βk ∈ [−1, 1]

}
. (3)

Note that AZ is equal to the zonotope <Ac, AG>.

III. PRELIMINARIES

The goal of this work is to plan trajectories for a mobile
robot to navigate through environments with uncertainty in the
locations of obstacles while having guarantees on the risk of
collision. We illustrate the proposed method on an autonomous
vehicle in this work. This section discusses the vehicle model,
parameterized trajectories, and lastly the environment.

A. Open Loop Vehicle Dynamics

1) High-Speed Model
This work adopts the Front-Wheel-Drive vehicle model from

[2], and can be generalized to All-Wheel-Drive and Rear-
Wheel-Drive vehicle models. Let the ego vehicle’s states at a
time t be given by zhi(t) = [x(t), y(t), h(t), u(t), v(t), r(t)]⊤ ∈
R6, where x(t) and y(t) are the position of the ego vehicle’s
center of mass in the world frame, h(t) is the heading of the ego
vehicle in the world frame, u(t) and v(t) are the longitudinal
and lateral speeds of the ego vehicle in its body frame, and
r(t) is the yaw rate of the vehicle center of mass. To simplify



exposition, we assume vehicle weight is uniformly distributed
and ignore the aerodynamic effect while modeling the flat
ground motion of the vehicles by the following dynamics:

żhi(t) =


u(t) cosh(t)− v(t) sinh(t)
u(t) sinh(t) + v(t) cosh(t)

r(t)
1
m

(
Fxf(t) + Fxr(t)

)
+ v(t)r(t) + ∆u(t)

1
m

(
Fyf(t) + Fyr(t)

)
− u(t)r(t) + ∆v(t)

1
Izz

(
lfFyf(t)− lrFyr(t)

)
+∆r(t)

 , (4)

where lf and lr are the distances from the center of mass to
the front and back of the vehicle, Izz is the vehicle’s moment
of inertia, and m is the vehicle’s mass. Note: lf, lr, Izz and m
are all assumed to be known constants. The tire forces along
the longitudinal and lateral directions of the vehicle at time
t are Fxi(t) and Fyi(t) respectively, where the ‘i’ subscript
can be replaced by ‘f’ for the front wheels or ‘r’ for the
rear wheels. ∆u,∆v,∆r are modeling error signals that are
unknown and account for imperfect state estimation and tire
models. To ensure the system is well-posed (i.e., its solution
exists and is unique), we make the following assumption:

Assumption 2. ∆u,∆v,∆r are all square-integrable functions
and are bounded (i.e., there exist real numbers Mu,Mv,Mr ∈
[0,+∞) such that ∥∆u(t)∥∞ ≤ Mu, ∥∆v(t)∥∞ ≤
Mv, ∥∆r(t)∥∞ ≤Mr for all t).

Note that ∆u,∆v,∆r can be computed using real-world data
[2, Section IX-C]. In this work, we assume linear tire models
and assume that we can directly control the front tire forces.
Such assumptions are validated in [2, Section V.B and VIII.B].
Additionally, we treat rear tire forces as observed signals.

2) Low-Speed Model
When the vehicle speed lowers below some critical value

ucri > 0, applying the model described in (4) becomes in-
tractable as explained in [2, Section III-B]. As a result, in
this work when u(t) ≤ ucri, the dynamics of a vehicle are
modeled using a steady-state cornering model [12, Chapter 6],
[13, Chapter 10]. Note that the critical velocity ucri can be
found according to [14, (5) and (18)].

The steady-state cornering model or low-speed vehi-
cle model is described using four states, zlo(t) =
[x(t), y(t), h(t), u(t)]⊤ ∈ R4 at time t. This model ignores
transients on lateral velocity and yaw rate. Note that the
dynamics of x, y, h and u in the low-speed model are the
same as in the high-speed model (4); however, the steady-state
cornering model describes the yaw rate and lateral speed as

rlo(t) =
δ(t)u(t)

l + Cusu(t)2
, vlo(t) = lrr

lo(t)− mlf
c̄αrl

u(t)2rlo(t) (5)

with understeer coefficient

Cus =
m

l

(
lr
c̄αf
− lf

c̄αr

)
, (6)

where δ(t) is the front tire steering angle at time t, c̄αf and c̄αr
are cornering stiffness of the front and rear tires respectively.

As we describe in Section III-C, the high-speed and low-
speed models can be combined together as a hybrid system to
describe the vehicle behavior across all longitudinal speeds. In
short, when u transitions past the critical speed ucri from above
at time t, the low speed model’s states are initialized as:

zlo(t) = π1:4(z
hi(t)) (7)

where π1:4 : R6 → R4 is the projection operator that projects
zhi(t) onto its first four dimensions via the identity relation. If
u transitions past the critical speed from below at time t, the
high-speed model’s states are initialized as

zhi(t) = [zlo(t)⊤, vlo(t), rlo(t)]⊤. (8)

B. Trajectory Parameterization

In this work, each trajectory plan is specified over a compact
time interval of a fixed duration tf . Because RADIUS performs
receding-horizon planning, we make the following assumption
about the time available to construct a new plan:

Assumption 3. During each planning iteration starting from
time t0, the ego vehicle has tplan seconds to find a control input
that is applied during the time interval [t0+tplan, t0+tplan+tf ],
where tf ≥ 0 is some user-specified constant. In addition, the
vehicle state at time t0 + tplan is known at time t0.

This assumption requires RADIUS to generate plans in real-
time. This means that the ego vehicle must create a new plan
before it finishes executing its previously planned trajectory.

In each planning iteration, RADIUS chooses a desired tra-
jectory to be followed by the ego vehicle. The desired trajectory
is chosen from a pre-specified continuum of trajectories, with
each uniquely determined by an np-dimensional trajectory
parameter p ∈ P ⊂ Rnp . We adapt the definition of trajectory
parametrization from [2, Definition 7], and note two important
details about the parametrization: First, all desired trajectories
share a time instant tm ∈ [t0 + tplan, t0 + tplan + tf ) such
that every desired trajectory consists of a driving maneuver
during [t0 + tplan, t0 + tplan + tm) and a contingency braking
maneuver during [t0 + tplan + tm, t0 + tplan + tf ]. Second, the
contingency braking maneuver slows down the ego vehicle’s
longitudinal speed to 0 by tf . Note this latter property is used
to ensure safety as we describe in Section IV-B. There are
many choices of trajectory parametrizations, and the trajectory
parametrization utilized in this work is provided in Appendix
B-A.

C. Closed Loop Vehicle Dynamics

A partial feedback linearization controller that tracks a
parameterized desired trajectory robustly and accounts for the
modeling error described by ∆u, ∆v and ∆r is provided in [2,
Section V]. Using this controller, the closed loop dynamics of
the high and low-speed systems can be written as:

żhi(t) = f hi(t, zhi(t), p), (9)

żlo(t) = f lo(t, zlo(t), p), (10)



respectively. Moreover, because the vehicle dynamics changes
depending on u, we model the ego vehicle as a hybrid system
HS [15, Section 1.2] as is done in [2, Section V-C]. The hybrid
system HS contains a high-speed mode and a low-speed mode
with state z := zhi, whose dynamics can be written as

z(t) =


f hi(t, zhi(t), p), if u(t) > ucri,

[
f lo(t, zlo(t), p)

02×1

]
, if u(t) ≤ ucri,

(11)

Instantaneous transition between the two modes within HS is
described using the notion of a guard and reset map. The guard
triggers a transition and is defined as {z(t) ∈ R6 | u(t) = ucri}.
Once a transition happens, the reset map resets the first z(t)
via (7) if u(t) approaches ucri from above and via (8) if u(t)
approaches ucri from below.

D. Ego Vehicle, Environment, and Sensing

To provide guarantees about vehicle behavior in a receding
horizon planning framework, we define the ego vehicle’s foot-
print similarly to [2, Definition 10]:

Definition 4. Given W ⊂ R2 as the world space, the ego
vehicle is a rigid body that lies in a rectangle Oego :=
int([−0.5L,−0.5W ]T , [0.5L, 0.5W ]T ) ⊂ W with width
W > 0 and length L > 0 at time t = 0. Oego is called
the footprint of the ego vehicle.

For arbitrary time t, given state z(t) of the ego vehicle that starts
from initial condition z0 ∈ Z0 ⊂ R6 and applies a control input
parameterized by p ∈ P , the ego vehicle’s forward occupancy
at time t can be represented as

E
(
t, z0, p

)
:= rotate(h(t)) · Oego + [x(t), y(t)]⊤, (12)

which is a zonotope by (3). We define the obstacles as follows:

Definition 5. An obstacle is a set Oobs
i (t) ⊂ W that the ego

vehicle should not collide with at time t, where i ∈ I is the
index of the obstacle and I contains finitely many elements.

The dependency on t in the definition of an obstacle allows
the obstacle to move as t varies. However, if the i-th obstacle
is static, then Oobs

i (t) is a constant. Note that in this work, we
assume that we do not have perfect knowledge of obstacle loca-
tions and motion as is normally the case in real-life scenarios.
We assume that this uncertainty in the locations of obstacles
is represented by some arbitrary probability distribution. This
is described in the next section. Assuming that the ego vehicle
has a maximum speed νego and all obstacles have a maximum
speed νobs for all time, we make the following assumption on
planning and sensing horizon.

Assumption 6. The ego vehicle senses all obstacles within
a sensor radius greater than (tf + tplan) · (νego + νobs) +
0.5
√
L2 +W 2 around its center of mass.

Assumption 6 ensures that any obstacle which may cause a
collision between times t ∈ [t0 + tplan, t0 + tplan + tf ] can

be detected by the vehicle [16, Theorem 15]. Note one could
treat sensor occlusions as obstacles that travel at the maximum
obstacle speed [17], [18]. To simplify notation, we reset time
to 0 whenever a feasible control policy is about to be applied,
i.e., t0 + tplan = 0. Finally to aid in the descriptions of
obstacle uncertainty and system trajectory over-approximation
in Sections IV and V, we partition the planning horizon [0, tf ]
into tf/∆t time intervals with some positive number ∆t that
divides tf , and denote Tj the j-th time interval [(j−1)∆t, j∆t]
for any j ∈ J := {1, 2, . . . , tf/∆t}.

IV. ONLINE PLANNING UNDER UNCERTAINTY

This section constructs a chance-constrained optimization
problem to generate risk-aware motion plans. First, we describe
the representations of the obstacle uncertainty used in this
work. Then, we define risk-aware vehicle safety and conclude
by illustrating how to formulate online planning as a chance-
constrained optimization that limits the risk of collision.

A. Obstacle Uncertainty

To incorporate uncertainty in both obstacle sensing and
obstacle motion prediction into the motion planning framework,
let wobs

i,j be a random variable that takes values in W . wobs
i,j de-

scribes the possible locations of the center of the i-th obstacle,
Oobs

i (t), for any time t ∈ Tj . We then make the following
assumption about how wobs

i,j is distributed:

Assumption 7. For any i ∈ I and j ∈ J , wobs
i,j ’s Probability

Density Function (PDF), qi,j : W → [0,+∞), exists and is
twice-differentiable. In addition, there exists some wobs

i,j sampled
according to qi,j such that Oobs

i (t) ⊆ <wobs
i,j , Gobs> at some

t ∈ Tj , where Gobs is a 2-row constant matrix.

According to Assumption 7, <wobs
i,j , Gobs> = wobs

i,j +
<0, Gobs> has an uncertain center wobs

i,j with probability den-
sity qi,j(w

obs
i,j ), and has invariant shape and size with respect to

i and j due to the constant generator matrix Gobs that accounts
for the footprint of any obstacle. Such probability density
functions qi,j can be generated by, for example, performing
variants of Kalman Filter [19], [20] on the i-th obstacle given
its dynamics or detecting the i-th obstacle with a Bayesian
confidence framework [21] during Tj . The generator matrix
Gobs can be generated as the union of footprints of all obstacles.

B. Risk-Aware Vehicle Safety

In dynamic environments, it may be difficult to avoid col-
lisions in all scenarios (e.g., a parked ego vehicle can be run
into). As a result, we instead develop a trajectory synthesis
technique that ensures that the ego vehicle is not-at-fault [16,
Definition 11]. We define not-at-fault safety in this work from
a probabilistic perspective by bounding the probability of the
ego vehicle running into any obstacles.

Definition 8. Let the ego vehicle start from initial condition
z0 ∈ Z0 with control parameter p ∈ P . Given a user-specified



allowable risk threshold ϵ ∈ [0, 1], the ego vehicle is not-at-fault
with a risk of collision of at most ϵ, if it is stopped, or if∑

i∈I

∑
j∈J

∫
∪t∈Tj

(E(t,z0,p)⊕<0, Gobs>)

qi,j(w) dw ≤ ϵ, (13)

while it is moving during [0, tf ].

Note that the domain of integration in (13) is the ego vehicle’s
forward occupancy buffered by the obstacle’s footprint. Thus
to satisfy (13), the probability that the buffered ego vehicle’s
forward occupancy intersects with an obstacle’s center must
be bounded by epsilon over all time intervals and all possible
obstacles. In particular, this ensures that the probability of
the ego vehicle (including its footprint) intersecting with any
obstacle (including its footprint) over the planning horizon is
bounded by ϵ via [22, Lem. 5.1].

C. Online Optimization

To construct a motion plan that ensures the ego vehicle is not-
at-fault with a risk of collision at most ϵ during online planning,
one could solve the following chance-constrained optimization:

min
p∈P

cost(z0, p) (Opt)

s.t.
∑
i∈I

∑
j∈J

∫
∪t∈Tj

(E(t,z0,p)⊕<0, Gobs>)

qi,j(w) dw ≤ ϵ

where cost : Z0 × P → R is a user-specified cost function,
and the constraint is a chance constraint that ensures the vehicle
is not-at-fault with a maximum risk of collision ϵ during the
planning horizon as stated in Definition 8.

To achieve real-time motion planning, (Opt) must be solved
within tplan seconds. However, efficiently evaluating the chance
constraint in (Opt) in a closed form can be challenging in
real applications for two reasons. First, the exact information
of the ego vehicle’s location E(t, z0, p) at any time is usually
inaccessible due to the nonlinear and hybrid nature of the
vehicle dynamics. Second, the probability distribution that
describes the uncertain observation of an obstacle’s location
as described in Assumption 7 can be arbitrary. As illustrated in
Appendix C-B, even approximating this chance constraint ac-
curately using Monte-Carlo is challenging for real-time motion
planning. Therefore to achieve real-time performance, RADIUS
seeks a closed-form approximation of the risk of collision for
evaluation efficiency. This paper focuses on constructing an
over-approximation to ensure that RADIUS does not under-
estimate the true risk of collision or generate plans that violate
the not-at-fault condition from Definition 8. Moreover, it is
preferable that this approximation is differentiable, as providing
the gradient of the constraint can speed up the solving proce-
dure of online optimization. We describe how we generate an
approximation that satisfies these requirements in the next two
sections.

V. OFFLINE REACHABILITY ANALYSIS

Due to the nonlinear and hybrid nature of the vehicle
dynamics, it is challenging to compute the trajectory of vehicle

state exactly when evaluating the chance constraint in (Opt).
To resolve this challenge, RADIUS over-approximates the ego
vehicle’s trajectory using zonotopes as stated below:

Assumption 9. Let z be a solution to (11) starting from initial
condition z0 ∈ Z0 with control parameter p ∈ P . For each
j ∈ J , there exists a map ξj : Z0 × P → P (W) such that

1) ξj(z0, p) contains the ego vehicle’s footprint during Tj ,
i.e., ∪t∈TjE(t, z0, p) ⊆ ξj(z0, p), and

2) ξj(z0, p) is a zonotope of the form <cj(z0)+Aj ·p, Gj>
with some linear function cj : Z0 → R2, some matrix
Aj ∈ R2×np and some 2-row matrix Gj .

The collection of maps {ξj}j∈J can be constructed by
applying existing techniques for offline reachability analysis
[2, Section VI]. In particular, {ξj}j∈J can be generated by
first applying the open-source toolbox CORA [23] to over-
approximate the trajectory of the ego vehicle’s state with initial
condition z0 and control parameter p using a collection of
zonotopes, where each zonotope over-approximates a segment
of the trajectory during one small time interval among {Tj}j∈J ,
and then accounts for the ego vehicle’s footprint. The proof
of Lemma 26 in [2] provides explicit formulas for ξj , cj , Aj

and Gj . Note formulas provided in [2, Lemma 26] assume the
computation in the body frame of the ego vehicle, i.e., assuming
x(0) = y(0) = h(0) = 0. In the case when the initial position
and heading of the ego vehicle are not zeros, one can represent
ξj(z0, p) in the world frame via frame transformation based on
z0. In the remainder of this manuscript, we assume ξj(z0, p)
is represented in the world frame. We refer to ξj(z0, p) as the
zonotope reachable set.

VI. AN IMPLEMENTABLE ALTERNATIVE TO (OPT)

This section describes an implementable alternative to (Opt)
that can be solved rapidly. In particular, we discuss how to relax
the chance constraint in (Opt) in a conservative fashion.

A. Chance Constraint Relaxation

The chance constraint in (Opt) is relaxed conservatively as
illustrated in Figure 2. First, the risk of collision during [0, tf ]
is over-approximated using Assumption 9. Then we relax the
domain of integration into a collection of right-angled triangles
and relax the PDF as a quadratic polynomial. Finally, we
describe a closed-form equation for the relaxed integral.

1) PDF Integration
Recall the ego vehicle’s performance during the planning

horizon is over-approximated by a collection of maps {ξj}j∈J ,
then the chance constraint in (Opt) is relaxed according to the
following lemma which follows directly from the first property
in Assumption 9:

Lemma 10. Suppose the ego vehicle starts with initial condi-
tion z0 ∈ Z0 and control parameter p ∈ P . Let probability
density functions {qi,j}(i,j)∈I×J and matrix Gobs be as as-
sumed in Assumptions 7. Let maps {ξj}j∈J be as assumed in



(a) PDF Integration (Sec. VI-A1). (b) Domain Relaxation (Sec. VI-A2). (c) Integrand Relaxation (Sec. VI-A3). (d) Closed-form Computation (Sec. VI-A4).

Fig. 2: An illustration of chance constraint relaxation. Given arbitrary (i, j) ∈ I × J , in (a) the risk of collision between the ego vehicle and the i-th obstacle
during time interval Tj is relaxed as the integration of probability density function qi,j (shown in purple and blue) over zonotope ξj(z0, p)⊕<0, Gobs> ⊂ W
(shown in green). In (b), ξj(z0, p) ⊕ <0, Gobs> is over-approximated by a collection of right-angled triangles colored in white and black depending on if a
triangle has a nontrivial intersection with ξj(z0, p) ⊕ <0, Gobs> or not. In (c), Interval Arithmetic is used to generate an over- and under-approximation of
qi,j over each right-angled triangle. And in (d), the integration of the over-approximation of qi,j over each right-angled triangle is computed in closed form.

Assumptions 9. Then for arbitrary ϵ ∈ [0, 1], (13) holds if∑
i∈I

∑
j∈J

∫
ξj(z0,p)⊕<0, Gobs>

qi,j(w) dw ≤ ϵ. (14)

2) Domain Relaxation
Recall by Assumption 9 that ξj(z0, p) can be rewritten as

<cj(z0) + Aj · p, Gj> = <cj(z0), Gj> + Aj · p. Then to
relax the domain of integration ξj(z0, p)⊕<0, Gobs>, we start
by constructing a k-by-k grid that covers zonotope ξj(z0, 0)⊕
<0, Gobs> = <cj(z0), [Gj , G

obs]> where k is some user-
specified positive integer. Each cell in the grid shares the same
size and is indexed by its row and column index in the grid.
Each cell in the grid is further divided into two simplexes as
right-angled triangles that are indexed by 1 or -1 corresponding
to the lower or upper triangles of the cell, respectively. For
notational ease, denote Sj,k1,k2,k3

(z0) ⊂ W as the simplex
indexed by k3 ∈ {−1, 1} in the cell on the k1-th row and k2-th
column of the grid that covers <cj(z0), [Gj , G

obs]>. Define

Sj(z0) :=
{
Sj,k1,k2,k3(z0) | k1, k2 ∈ {1, 2, . . . , k}, (15)

|k3| = 1, Sj,k1,k2,k3(z0) ∩<cj(z0), [Gj , G
obs]> ̸= ∅

}
.

as the collection of every possible Sj,k1,k2,k3
(z0) that intersects

with <cj(z0), [Gj , G
obs]>, thus

<cj(z0), [Gj , G
obs]> ⊂ (∪S∈Sj(z0)

S). (16)

Notice ξj(z0, p) = ξj(z0, 0) + Aj · p, therefore ξj(z0, p) ⊕
<0, Gobs> ⊂

(
(∪S∈Sj(z0)

S) +Aj · p
)

and∫
ξj(z0,p)⊕<0, Gobs>

qi,j(w) dw ≤
∑

S∈Sj(z0)

∫
S+Ajp

qi,j(w) dw. (17)

Remark 11. Note that for any S ∈ Sj(z0), S depends on z0
and j. However, to reduce notational complexity, we drop its
dependency on z0 and j in the remainder of this manuscript.

3) Integrand Relaxation
Next, we present a lemma, whose proof is provided in

Appendix A, to conservatively approximate the integral in the
chance constraint by relaxing the integrand.

Lemma 12. Suppose the ego vehicle starts with initial condi-
tion z0 ∈ Z0 and control parameter p ∈ P . Let S ∈ Sj(z0)
and let wctr

S denote the vertex of the right angle in S. Define
the function qi,j,S :W ×P → [0,∞) as

qi,j,S(w, p) := qi,j(w
ctr
S +Ajp) +

∂qi,j
∂w

(wctr
S +Ajp)·

· (w − wctr
S −Ajp) +

1

2
(w − wctr

S −Ajp)
⊤·

·HS · (w − wctr
S −Ajp),

(18)

where HS ∈ R2×2 is generated by taking element-wise supre-
mum of the Hessian of qi,j over S ⊕ AjP using Interval
Arithmetic [24]. Then for all w ∈ S +Ajp:

qi,j(w) ≤ qi,j,S(w, p). (19)

Note the inequality in (19) flips if HS is generated by taking
an element-wise infimum of the Hessian of qi,j . This would
create an under-approximation to qi,j .

4) Closed-form Computation
As a result of (17) and (19), the following inequality holds:

∫
ξj(z0,p)⊕<0, Gobs>

qi,j(w) dw ≤

≤
∑

S∈Sj(z0)

∫
S+Ajp

qi,j,S(w, p) dw.
(20)

Notice that qi,j,S(w, p) defined in (19) is indeed a quadratic
polynomial of w, and S + Ajp is a simplex in R2. One can
then compute

∫
S+Ajp

qi,j,S(w, p) dw in closed-form as follows:

Theorem 13. For any i ∈ I , j ∈ J , z0 ∈ Z0, p ∈ P and
S ∈ Sj(z0), let Aj ∈ R2×np be defined as in Assumption 9,
let qi,j,S be defined as in (19), and let idxk3

(S) denote the
last index of its argument (i.e., idxk3

(Sj,k1,k2,k3
(z0)) = k3).

Assume that positive numbers l1 and l2 give the lengths of



horizontal and vertical right angle sides of S respectively, then∫
S+Ajp

qi,j,S(w, p)dw =
1

2det(AS)

(
qi,j(w

ctr
S +Ajp)+

+
[

1
4
√
3

1
4
√
3

] (
ĤS ⊙

[
2 1
1 2

])[
1

2
√
3

1
2
√
3

]
+

+
∂qi,j
∂w

(wctr
S +Ajp) ·A−1

S ·
[
1
3
1
3

]) (21)

where ⊙ denotes the element-wise multiplication and

AS =

[
idxk3

(S)/l1 0
0 idxk3

(S)/l2

]
, (22)

ĤS = A−⊤
S HSA

−1
S . (23)

Proof: The claim follows from [25, Theorem 1.1] and the
fact that AS ·

(
(S +Ajp)− (wctr

S +Ajp)
)

equals the canonical
simplex ∆ := {(a, b) ∈ R2 | a+ b ≤ 1, a ≥ 0, b ≥ 0}.

B. Tractable Online Optimization

The computation in Section VI-A provides a tractable way to
enforce not-at-fault behavior compared to the original chance
constraint in (Opt). As a result, RADIUS solves the following
optimization during online planning:

min
p∈P

cost(z0, p) (Opt-E)

s.t.
∑
i∈I

∑
j∈J

∑
S∈Sj(z0)

∫
S+Ajp

qi,j,S(w, p) dw ≤ ϵ.

(Opt-E) is a strengthened version of (Opt) because satisfac-
tion of the chance constraint in (Opt-E) implies satisfaction of
the chance constraint in (Opt) by Lemma 10, (16), and (19).
Thus, the following lemma holds based on Definition 8.

Lemma 14. If the ego vehicle applies any feasible solution,
p∗ ∈ P , of (Opt-E) beginning from z0 ∈ Z0 at t = 0, then it
is not-at-fault with a risk of collision at most ϵ during [0, tf ].

C. Constraint Gradient and Parallelization

To improve the solving procedure of (Opt-E), we provide
the derivative of its chance constraint. To compute the gradient
of the chance constraint in (Opt-E), it suffices to compute the
derivative of

∫
S+Ajp

qi,j,S(w, p) dw in (21) with respect to p.
Notice that AS and ĤS are invariant over P , then

∂

∂p

∫
S+Ajp

qi,j,S(w, p) dw =

=
1

2det(AS)
·
(
∂qi,j
∂w

(wctr
S +Ajp) ·Aj+

+
[
1
3

1
3

]
A−⊤

S Hessqi,j (w
ctr
S +Ajp) ·Aj

)
,

(24)

where Hessqi,j (w
ctr
S +Ajp) is the evaluation of the Hessian of

qi,j at wctr
S +Ajp.

Notice the computations of
∫
S+Ajp

qi,j,S(w, p) dw and its
gradient can be parallelized for all (i, j) ∈ I × J and all
S ∈ Sj(z0) as indicated in Algorithm 1. Sj(z0) is generated

Algorithm 1 Chance Constraint Parallelization

Require: z0 ∈ Z0, p ∈ P , {qi,j}(i,j)∈I×J , {ξj}j∈J
1: Generate {Sj(z0)}j∈J as in (15) using {ξj}j∈J
2: Parfor (i, j) ∈ I × J do
3: Parfor S ∈ Sj(z0) do
4: Compute

∫
S+Ajp

qi,j,S(w, p) dw as in (21)
5: Compute ∂

∂p

∫
S+Ajp

qi,j,S(w, p) dw as in (24)
6: End Parfor
7: End Parfor

in Line 1 for all j ∈ J . The outer parallel for loop that
starts at Line 2 iterates every element in I × J , and the
inner parallel for loop that starts at Line 3 iterates over each
simplex in Sj(z0). The integral and its gradient over each
simplex are computed from Lines 4 to 5. Then the chance
constraint and its gradient in (Opt-E) can be computed as
the summation of all computed

∫
S+Ajp

qi,j,S(w, p) dw and
∂
∂p

∫
S+Ajp

qi,j,S(w, p) dw respectively.

D. Online Operation

Algorithm 2 summarizes the online operation of RADIUS.
It begins by sensing and constructing predictions for obstacle
locations as in Assumption 7 in Line 1. OnlineOpt then
solves (Opt-E) to search for a not-at-fault plan with a risk
of collision at most ϵ in Line 2. If (Opt-E) is infeasible, then
RADIUS terminates planning in Line 3, otherwise it enters the
planning loop in Line 4. Within the loop, RADIUS first resets
time to 0 in Line 5 and executes the entire driving maneuver
corresponding to p∗ in Line 6. Meanwhile, SenseObstacles
updates the predictions for obstacle locations in Line 7 and
StatePrediction predicts the ego vehicle state at t = tm
as in Assumption 3 in Line 8. In the case when the predicted
vehicle state z0 /∈ Z0, then RADIUS breaks the planning loop
in Line 9. Otherwise (Opt-E) is solved again using the updated
obstacle information and z0 in Line 10, and RADIUS breaks
the planning loop if (Opt-E) is infeasible or takes longer
than tplan to find a solution in Line 11. Finally, once RADIUS
leaves the planning loop, the contingency braking maneuver
corresponding to p∗ is executed. This braking maneuver by
construction brings the vehicle to a stop. Note that the risk of
collision of this maneuver was already verified to be less than ϵ
during the previous planning iteration. Subsequently, RADIUS
terminates planning in Line 13. Note, we are able to obtain the
following theorem by iteratively applying Lemma 14:

Theorem 15. Suppose the ego vehicle can sense and predict the
surrounding obstacles as in Assumption 7, and starts from rest
with an initial condition z0 ∈ Z0 at t = 0. Then by performing
planning and execution as in Algorithm 2, the ego vehicle is
not-at-fault with a risk of collision at most ϵ for all time.

VII. EXPERIMENTS AND RESULTS

All experiments are conducted in MATLAB R2023a on a
Ubuntu 22.04 machine with an AMD Ryzen 9 5950X CPU,



Algorithm 2 RADIUS Online Planning

Require: z0 ∈ Z0 and ϵ ∈ [0, 1]
1: Initialize: {qi,j}(i,j)∈I×J ← SenseObstacles()
2: Try p∗ ← OnlineOpt(z0, {qi,j}(i,j)∈I×J , ϵ)
3: Catch terminate planning
4: Loop: // Line 6 executes simultaneously with Lines 7-11
5: Reset t to 0
6: Execute p∗ during [0, tm)
7: {qi,j}(i,j)∈I×J ← SenseObstacles()
8: z0 ← StatePrediction(z0, p∗, tm)
9: If z0 /∈ Z0, then break

10: Try p∗ ← OnlineOpt(z0, {qi,j}(i,j)∈I×J , ϵ)
11: Catch break
12: End
13: Execute p∗ during [tm, tf ], then terminate planning

two NVIDIA RTX A6000 48GB GPUs, and 64GB RAM.
Parallelization is achieved using CUDA 12.1. RADIUS invokes
C++ for online planning using IPOPT. Additional details on
experimental setup can be found in Appendix B An additional
experiment detailing the single planning iteration performance
of RADIUS, CCPBA, Cantelli MPC and REFINE can be found
in Appendix C-A. An ablation study illustrating the importance
of the analytical gradient and closed-form over-approximation
of the risk of collision for real-time performance can be found
in Appendix C-B. Readers can find our implementation2 and the
video3 of simulations and hardware demos utilising RADIUS
online.

A. Tightness and Generality of Risk Approximation

For effective motion planning, we desire a tight over-
approximation of the risk of collision. Additionally, we want
RADIUS to be able to generalize to arbitrary probability distri-
butions as well to accommodate other uncertainty representa-
tions. Thus, to evaluate the tightness of our over-approximation
of

∫
ξj(z0,p)⊕<0, Gobs>

qi,j(w) dw, we compare the proposed
method’s approximation of the risk of collision against Monte-
Carlo integration [26, Chapter 4], the Cantelli inequality [5,
Section IV B], and the Chance-Constrained Parallel Bernstein
Algorithm (CCPBA) [11, Chapter 6] on 9000 randomly gener-
ated test cases.

In each test case, (i, j, z0, p) is randomly chosen from
I ×J ×Z0 ×P . Additionally, qi,j is set to be the probability
density function of either a randomly generated 2-dimensional
(2D) Gaussian distribution, 2D Beta distribution [27] or a 2D
Multimodal distribution. Each type of distribution is evaluated
in 3000 test cases. Note that because CCPBA is unable to
handle a distribution that is not Gaussian, we only evaluate
RADIUS and the Cantelli inequality on these non-Gaussian
probability distributions. We perform the Monte-Carlo integra-
tion of qi,j over ξj(z0, p)⊕<0, Gobs> with 106 samples and
treat that as the ground truth.

2https://github.com/roahmlab/RADIUS
3https://youtu.be/8eU9fiA39sE

Method Gaussian Error Beta Error Multimodal Error
(Mean, Max.) (Mean, Max.) (Mean, Max.)

RADIUS (0.0073, 0.0523) (0.0065, 0.0489) (0.0079, 0.0262)
Cantelli (0.1774, 0.3420) (0.2221, 0.5062) (0.4734, 0.5851)
CCPBA (0.1881, 0.2149) - -

TABLE I: Results for the risk of collision estimation error of RADIUS and
the Cantelli Inequality when the obstacle location is represented by three
types of probability distributions. Note that CCPBA can only handle Gaussian
distributions so does not have results for the other types of distributions.

The risk approximation error, which is the difference between
the Monte-Carlo integration and each method, is illustrated in
Table I. The results from Table I show that RADIUS provides
significantly tighter upper bounds to the ground truth than
CCPBA and the Cantelli inequality for the tested probability
distributions. The associated average and maximum times to
compute the over-approximation for each method are shown in
Table IV of Appendix B-B.

B. Simulations

This section compares RADIUS to two state-of-the-art
chance-constrained motion planning algorithms: CCPBA [11]
and Cantelli MPC [5], and one state-of-the-art deterministic
motion planning algorithm REFINE [2] in dense highway
scenarios. Additionally, we evaluate how varying the allowable
risk threshold (ϵ) for RADIUS affects the ego vehicle behavior
in various unprotected left turn scenarios. For all simulation
experiments, tplan is set as 3[sec] and tf is chosen according
to [2, Lemma 14]. A description of parameterized desired
trajectories that are used in this work is provided in Appendix
B-A.

1) 3-Lane Highway
This experiment evaluates the performance of RADIUS in

a 3-lane highway environment where it must execute multiple
planning iterations in succession and compares its performance
to CCPBA, Cantelli MPC and REFINE. We compare the meth-
ods over 1000 randomly generated 3-lane highway scenarios
in simulation with ϵ = 0.05. In each simulation scenario, the
ego vehicle is expected to navigate through dynamic traffic for
1000[m] from a given initial position. Each scenario contains
3 static obstacles and a number of moving vehicles as dynamic
obstacles, where the number of moving vehicles in each sce-
nario is randomly selected between 5 and 25. To ensure that
we can compare to CCPBA, we choose the qi,j describing each
obstacle’s location during Tj as a Gaussian with a standard
deviation of σi,j for any (i, j) ∈ I × J . To compare to
REFINE, which is a deterministic motion planning algorithm
that assumes perfect knowledge of the locations of obstacles,
we require that REFINE avoids a box that over-approximates
the 5-σi,j region of a Gaussian distribution. Details on the
reasoning behind the choice of 5-σi,j are explained in the last
paragraph of Appendix B-C.

Each scenario is simulated for 10 trials resulting in a total of
10,000 simulation cases. In each trial, the starting locations of
the ego vehicle and obstacles are the same, but the trajectories
the obstacles follow are varied to capture the uncertain nature
of each scenario. Additional details on how these scenarios and

https://github.com/roahmlab/RADIUS
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
r
o
a
h
m
l
a
b
/
R
A
D
I
U
S
https://youtu.be/8eU9fiA39sE
h
t
t
p
s
:
/
/
y
o
u
t
u
.
b
e
/
8
e
U
9
f
i
A
3
9
s
E


1
2

3
4

1
2

3
4

5
7

6

3
4

56
7

8
1

2

Speed = 20.1 [m/s], Time = 0.0 [s]

Speed = 20.1 [m/s], Time = 3.0 [s]

Speed = 20.1 [m/s], Time = 6.0 [s]

(a) RADIUS utilized.

1
2

3
4

1
2

3
4

5
7

6

3
4

56
7

8

Speed = 20.1 [m/s], Time = 0.0 [s]

Speed = 10.6 [m/s], Time = 3.0 [s]

Speed = 0.0 [m/s], Time = 5.6 [s]

1
2

(b) CCPBA utilized.

1
2

3
4

1
2

3
4

5
7

6

3
4

56
7

8
1

2

Speed = 20.1 [m/s], Time = 0.0 [s]

Speed = 20.0 [m/s], Time = 3.0 [s]

Speed = 20.1 [m/s], Time = 5.3 [s]

(c) Cantelli MPC utilized.

Speed = 20.1 [m/s], Time = 0.0 [s]

Speed = 19.0 [m/s], Time = 3.0 [s]

Speed = 0.0 [m/s], Time = 6.4 [s]

1
2

3
4

1
2

3
4

5
7

6

3
4

56
7

8
1
2

(d) REFINE utilized.

Fig. 3: Example of a single planning iteration of a simulated scenario in which RADIUS is able to navigate the ego vehicle (black) to the provided waypoint
(black cross) through a lane change maneuver solved by one planning iteration, while CCPBA and REFINE execute contingency braking maneuvers as they are
unable to find feasible solutions. Cantelli MPC results in a crash, as it has no fail-safe maneuver, so it instead maintains its velocity and continues searching
for a feasible solution to execute the lane change. Forward reachable sets are shown in green. Obstacles are shown in white and are marked by their indices
to make them trackable among different time instances. Probability distributions are illustrated as purple and blue ellipses where the probability density from
low to high is illustrated from blue to purple. Note that for visualization purposes we have buffered the probability distributions shown in this figure by the
footprints of the obstacles. Lastly, the convex hull that REFINE uses to over-approximate the 5-σi,j regions of the obstacle probability distributions are shown
as gray boxes around the obstacles for all (i, j) ∈ I × J . Note that the distances on the x-axis and y-axis are in [m].

obstacle trajectories are generated can be found in Appendix
B-C.

Figure 3 depicts an example of a single planning iteration of
a scenario where RADIUS is able to successfully find a solution
to execute a lane change to get to the given waypoint, while
CCPBA, Cantelli MPC and REFINE are unable to execute
the lane change. Table II presents RADIUS, CCPBA, Cantelli
MPC, and REFINE’s results for all 10,000 cases of the 3-
lane highway multiple planning horizon experiment. As seen in
Table II, RADIUS is able to achieve a higher success rate than
CCPBA and Cantelli MPC. This is in part due to the fact that
RADIUS is able to more closely approximate the ground truth
risk of collision as shown in Table I. REFINE also has a lower
success rate than RADIUS due to its conservative treatment of
the uncertain region for the obstacle location. Cantelli MPC has
more crashes than CCPBA, and RADIUS because (1) Cantelli
MPC, unlike CCPBA and RADIUS can only enforce risk-aware
safety at discrete instances so crashes could occur in between
these instances, (2) Cantelli MPC does not have a fail-safe
stopping maneuver in case it cannot find a solution. Instead, it
maintains speed and searches for a new solution and sometimes
crashes into the vehicles in front of it.

Notice that despite the fact that ϵ = 0.05, RADIUS has a
crash rate that is smaller than 5%. This occurs because even
though RADIUS has a significantly tighter over-approximation
than the comparison methods, it still over-approximates the
true risk of collision. This difference in the over-approximation
and the true risk of collision can be attributed to: (1) the

Method Success Crash Safely Solve Time [s]
[%] [%] Stop [%] (Mean, Max.)

RADIUS 80.3 0.8 18.9 (0.412, 0.683)
CCPBA 44.5 0.4 55.1 (0.291, 0.417)

Cantelli MPC 25.6 74.4 0.0 (0.743, 3.921)
REFINE 61.0 0.0 39.0 (0.341, 0.562)

TABLE II: Simulation results comparing RADIUS to CCPBA, Cantelli MPC
and REFINE on a 1000[m] stretch of dense highway. A successful trial means
the ego vehicle was able to successfully travel 1000[m] without crashing or
coming to a stop.

multiple relaxations made to compute the closed-form over-
approximation highlighted in Section VI-A, and (2) the over-
approximation of the actual ego vehicle location within the
j-th time interval with the collection of maps introduced in
Assumption 9. Future work will explore the contribution of
each of these relaxations to the extent of over-approximation.
Note that despite this over-approximation, RADIUS is still
significantly less conservative than deterministic algorithms
like REFINE as seen in Table II.

2) Left Turning

The aim of this experiment is to evaluate how different al-
lowable risk thresholds (ϵ) affect the behavior and performance
of RADIUS over a single planning iteration, and unprotected
left turns are ideal scenarios for this task. In these scenarios,
being less conservative has a large effect on the ability of
the ego vehicle to complete the left turn faster by navigating
through tight windows in the traffic of oncoming vehicles. In
this experiment, the risk threshold is set to 0.01, 0.05, 0.10, 0.20



Speed = 0.0 [m/s], time = 0.0 [s] Speed = 10.0 [m/s], time = 4.0 [s]

4

1

21

235

4

6

7
8 9

5
6

7
8 9

Fig. 4: Example of a simulated unguarded left turning trial where the ego
vehicle (black) navigates through a gap in the oncoming traffic to successfully
execute the unguarded left turn. Forward reachable sets are shown in green.
Obstacles are shown in white and are marked by their indices to make them
trackable among different time instances. Probability distributions are illustrated
as purple and blue ellipses where the probability density from low to high is
illustrated from blue to purple.

ϵ Success [%] Crash[%] ATTG [s] MTTG [s]
0.01 100.0 0.0 8.868 13.500
0.05 99.9 0.1 8.752 13.500
0.10 99.5 0.5 8.187 13.400
0.20 98.7 1.3 6.085 10.200
0.50 95.6 4.4 5.891 10.000

TABLE III: Simulation results over a single planning iteration for RADIUS
executing a left turn at different risk thresholds. Average Time To Goal (ATTG)
and Maximum Time To Goal (MTTG) are only taken over successful trials.

and 0.50, and the ego vehicle is tasked with navigating through
100 randomly generated unprotected left turning scenarios.
Each scenario is simulated for 10 trials, where in each trial the
obstacle trajectories are varied in the same way as mentioned
in Section VII-B1. In each scenario, the ego vehicle is tasked
with executing an unprotected left turn across two oncoming
lanes at a 4-way intersection as depicted in Figure 4. Each
scenario contains between 4 to 6 static obstacles occupying
the horizontal lanes of the intersection and up to 4 dynamic
obstacles that drive through the intersection in the vertical
lanes, where the number of static and dynamic obstacles are
randomly selected for each scenario. The starting lanes and
initial positions of the dynamic obstacles are also randomly
selected for each scenario. The initial speeds of the dynamic
obstacles are randomly sampled from between 12[m/s] and
17[m/s]. Similar to Section VII-B1, qi,j is chosen to describe an
obstacle’s location during Tj as a Gaussian for all (i.j) ∈ I×J .

Table III summarizes the results of the left turning exper-
iment. As the allowable risk threshold ϵ increases, we see a
reduction in the Average Time To Goal (ATTG) and Maximum
Time To Goal (MTTG) as the ego vehicle is less conservative
with higher ϵ and thus executes the unprotected left turns more
quickly. Additionally, as ϵ increases, the rate of collision also
increases.

C. Hardware

To illustrate the capabilities of RADIUS, we also tested it on
a 1

10 th-scale All-Wheel-Drive car-like robot, Rover, based on
a Traxxas RC platform. The first experiment shows RADIUS

executing a lane change to overtake an obstacle Rover amidst
uncertainty in the obstacle’s location with varying risk thresh-
olds. At lower risk thresholds RADIUS is more conservative
and is not able to execute the lane change, whereas at higher
thresholds RADIUS allows the ego Rover to aggressively
overtake the obstacle Rover. The second experiment illustrates
a scenario where the obstacle Rover is driven laterally into the
path of the ego Rover and it must generate a trajectory with a
less than ϵ risk of collision into the obstacle Rover. At lower risk
thresholds, RADIUS chooses to be conservative and triggers
its contingency braking maneuver before it intersects with the
obstacle Rover, unable to reach the set waypoint. However, at
higher risk thresholds RADIUS is more aggressive and executes
an aggressive lane change in order to get to the waypoint.

VIII. EXTENSIONS TO OTHER SYSTEMS

The proposed algorithm, RADIUS, can generalize to robotic
systems other than the vehicle model highlighted in this work,
including manipulators and quadrotors. Specifically, RADIUS
can be applied to any system that satisfies the following
assumptions: 1) The system dynamics must have bounded
modeling error (Assumption 2); 2) The system must be able
to generate a motion plan in tplan seconds (Assumption 3); 3)
The given system must have a large enough sensor radius as
described in Assumption 6; 4) Obstacles must be represented as
twice-differentiable probability density functions (Assumption
7); 5) There must exist a set of over-approximative zonotope
reachable sets of a parameterized dynamical model for the
system (Assumption 9). Note that this last assumption is a criti-
cal, robot-specific assumption for RADIUS. However, zonotope
reachable sets satisfying Assumption 9 have been constructed
for a number of robotic systems including autonomous vehicles
[2], manipulators [28] and quadrotors [29].

IX. CONCLUSION

This work proposes RADIUS as a real-time, risk-aware
trajectory planner for autonomous vehicles operating in uncer-
tain and dynamic environments. The method proposes a novel
method for computing a tight, differentiable, closed-form over-
approximation of the risk of collision with an obstacle. Given
some allowable risk threshold (ϵ), RADIUS uses this over-
approximation conjunction with reachability-based methods to
generate motion plans that have a no greater than ϵ risk of
collision with any obstacles for the duration of the planned
trajectory. Furthermore, RADIUS is able to outperform the
existing state-of-the-art chance-constrained and deterministic
approaches in a variety of driving scenarios while achieving
real-time performance.

REFERENCES

[1] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R.
Vasudevan, “Bridging the gap between safety and real-time
performance in receding-horizon trajectory design for mo-
bile robots,” The International Journal of Robotics Research,
vol. 39, no. 12, pp. 1419–1469, 2020.



[2] J. Liu, Y. Shao, L. Lymburner, et al., “Refine: Reachability-
based trajectory design using robust feedback linearization and
zonotopes,” arXiv preprint arXiv:2211.11997, 2022.

[3] L. Janson, E. Schmerling, and M. Pavone, “Monte carlo motion
planning for robot trajectory optimization under uncertainty,”
in Robotics Research, Springer, 2018, pp. 343–361.

[4] S. Asmussen and P. W. Glynn, Stochastic simulation: algo-
rithms and analysis. Springer, 2007, vol. 57.

[5] A. Wang, A. Jasour, and B. C. Williams, “Non-gaussian
chance-constrained trajectory planning for autonomous vehi-
cles under agent uncertainty,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 6041–6048, 2020.

[6] A. Wang, X. Huang, A. Jasour, and B. C. Williams, “Fast risk
assessment for autonomous vehicles using learned models of
agent futures,” Robotics: Science and Systems, vol. 2, p. 10,
2020.

[7] F. P. Cantelli, “Sui confini della probabilita,” in Atti del
Congresso Internazionale dei Matematici: Bologna del 3 al
10 de settembre di 1928, 1929, pp. 47–60.

[8] A. Hakobyan, G. C. Kim, and I. Yang, “Risk-aware motion
planning and control using cvar-constrained optimization,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3924–
3931, 2019.

[9] M. Ahmadi, X. Xiong, and A. D. Ames, “Risk-averse control
via cvar barrier functions: Application to bipedal robot loco-
motion,” IEEE Control Systems Letters, vol. 6, pp. 878–883,
2021.

[10] A. Dixit, M. Ahmadi, and J. W. Burdick, “Risk-sensitive mo-
tion planning using entropic value-at-risk,” in 2021 European
Control Conference (ECC), IEEE, 2021, pp. 1726–1732.

[11] S. Vaskov, “Fast and Safe Trajectory Optimization for Au-
tonomous Mobile Robots using Reachability Analysis,” PhD
Thesis, 2020.

[12] T. D. Gillespie, “Fundamentals of vehicle dynamics,” SAE
Technical Paper, Tech. Rep., 1992.

[13] S Dieter, M Hiller, and R Baradini, Vehicle dynamics: Modeling
and simulation, 2018.

[14] T.-Y. Kim, S. Jung, and W.-S. Yoo, “Advanced slip ratio for
ensuring numerical stability of low-speed driving simulation:
Part ii—lateral slip ratio,” Proceedings of the Institution of Me-
chanical Engineers, Part D: Journal of automobile engineering,
vol. 233, no. 11, pp. 2903–2911, 2019.

[15] J. Lunze and F. Lamnabhi-Lagarrigue, Handbook of hybrid sys-
tems control: theory, tools, applications. Cambridge University
Press, 2009.

[16] S. Vaskov, S. Kousik, H. Larson, et al., “Towards provably
not-at-fault control of autonomous robots in arbitrary dynamic
environments,”

[17] M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson,
“Occlusion-aware risk assessment for autonomous driving in
urban environments,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 2235–2241, 2019.

[18] M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson, “Risk
assessment and planning with bidirectional reachability for au-
tonomous driving,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2020, pp. 5363–5369.

[19] “Real-time ego-motion estimation using lidar and a vehicle
model based extended kalman filter,” in 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC),
2014, pp. 431–438.

[20] J. Almeida and V. M. Santos, “Real time egomotion of a
nonholonomic vehicle using lidar measurements,” Journal of
Field Robotics, vol. 30, no. 1, pp. 129–141, 2013.

[21] J. F. Fisac, A. Bajcsy, S. L. Herbert, et al., “Probabilistically
safe robot planning with confidence-based human predictions,”
arXiv preprint arXiv:1806.00109, 2018.

[22] L. J. Guibas, A. T. Nguyen, and L. Zhang, “Zonotopes as
bounding volumes.,” in SODA, vol. 3, 2003, pp. 803–812.

[23] M. Althoff, “An introduction to cora 2015,” in Proc. of the
Workshop on Applied Verification for Continuous and Hybrid
Systems, 2015.

[24] T. Hickey, Q. Ju, and M. H. Van Emden, “Interval arithmetic:
From principles to implementation,” Journal of the ACM
(JACM), vol. 48, no. 5, pp. 1038–1068, 2001.

[25] J. B. Lasserre, “Simple formula for integration of polynomials
on a simplex,” BIT Numerical Mathematics, vol. 61, no. 2,
pp. 523–533, 2021.

[26] R. E. Caflisch, “Monte carlo and quasi-monte carlo methods,”
Acta numerica, vol. 7, pp. 1–49, 1998.

[27] I. Olkin and T. A. Trikalinos, “Constructions for a bivariate beta
distribution,” Statistics & Probability Letters, vol. 96, pp. 54–
60, 2015.

[28] J. Michaux, P. Holmes, B. Zhang, et al., “Can’t touch this:
Real-time, safe motion planning and control for manipulators
under uncertainty,” Jan. 2023.

[29] S. Kousik, P. Holmes, and R. Vasudevan, “Technical report:
Safe, aggressive quadrotor flight via reachability-based trajec-
tory design,” arXiv preprint arXiv:1904.05728, 2019.

[30] P. Sahoo and T. Riedel, Mean value theorems and functional
equations. World Scientific, 1998.

[31] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Transactions
on Intelligent Vehicles, vol. 6, no. 2, pp. 232–248, 2020.



APPENDIX A
PROOF OF LEMMA 12

Proof: To relax the integrand qi,j , we start by computing
the 2nd-order Taylor Expansion of qi,j centered at wctr

T + Ajp
and applying Mean Value Theorem (MVT) [30, Theorem 4.1]
to eliminate higher order terms in the Taylor Expansion as:

qi,j(w) =qi,j(w
ctr
S +Ajp) +

∂qi,j
∂w

(wctr
S +Ajp)·

· (w − wctr
S −Ajp) +

1

2
(w − wctr

S −Ajp)
⊤·

· Hessqi,j (w
′) · (w − wctr

S −Ajp)

(25)

where w′ ∈ S+Ajp is some point on the line segment joining
points wctr

S + Ajp and w in S + Ajp, and Hessqi,j gives the
Hessian of qi,j . Because MVT does not provide w′ in a closed-
form, we then drop the dependency of w′ in (25) by bounding
the Hessian of qi,j as a matrix HS ∈ R2×2 where HS is
generated by taking element-wise supremum of Hessqi,j over
S ⊕AjP using Interval Arithmetic [24]. Note by construction
of S and wctr

S , it is guaranteed that either w ≥ wctr
S + Ajp for

all w ∈ S + Ajp or w ≤ wctr
S + Ajp for all w ∈ S + Ajp,

thus by definition of HS the desired inequality holds for all
w ∈ S +Ajp.

APPENDIX B
ADDITIONAL DETAILS

Specifications of the full-size FWD vehicle and the Rover
robot used in this work can be found in [2, Section IX], from
which we also adapt control gains and zonotope reachable sets.

A. Desired Trajectories

In this work we select 4 families of desired trajectories for
driving maneuvers often observed during daily driving: speed
changes, direction changes, lane changes and left turning. Each
desired trajectory is the concatenation of a driving maneuver
and a contingency braking maneuver. Note that the duration tm
of driving maneuvers remains constant within each trajectory
family, but can vary among different trajectory families. Each
desired trajectory is parameterized by p = [pu, py]

⊤ ∈ P ⊂ R2

where pu and py decide desired longitudinal speed and lateral
displacement respectively. The trajectory families associated
with speed change, direction change and lane change are de-
tailed in [2, Section IX-A], thus we describe desired trajectories
that achieve left turning here.

To achieve a left turning maneuver, we set the desired
trajectory for longitudinal speed as

udes(t, p) =



11

2
t, if 0 ≤ t <

1

4
tm and

11

8
tm < pu

pu, if 0 ≤ t <
1

4
tm and

11

8
tm ≥ pu

pu, if
1

4
tm ≤ t < tm

ubrake(t, p), if t ≥ tm
(26)

where ubrake : [tm, tf ]×P → R describes the desired trajectory
of longitudinal speed during contingency braking and shares

the same formulation with the other 3 trajectory families. The
desired trajectory of the yaw rate is as follows:

rdes(t, p) =



1

2
py

(
1− cos

(
4π

tm
t

))
, if 0 ≤ t <

1

4
tm

py, if
1

4
tm ≤ t <

3

4
tm

1

2
py

(
1− cos

(
4π

tm
t

))
, if

3

4
tm ≤ t < tm

0, if t ≥ tm
(27)

And desired trajectory of heading is set as hdes(t, p) = h0 +∫ t

0
rdes(τ, p) dτ for any t ∈ [0, tf ] and p ∈ P , where h0 ∈

[−π, π] is the initial heading of the ego vehicle at time 0.
The duration tm of driving maneuvers for every trajectory

family is 3[s] for speed change, 3[s] for direction change, 6[s]
for lane change, and 4[s] for left change. Because we do not
know which desired trajectory ensures not-at-fault a priori, to
guarantee real-time performance, tplan should be no greater than
the smallest duration of a driving maneuver. Therefore in this
work we set tplan = 3[s].

B. Computational Efficiency of Risk Approximation

In this section we add to the evaluation presented in Section
VII-A of the main text. We compare the computation times of
the proposed method’s approximation of the risk of collision
against the Cantelli inequality, and the Chance-Constrained Par-
allel Bernstein Algorithm (CCPBA) on the same 3000 randomly
generated test cases. In each test case, (i, j, z0, p) is randomly
chosen from I×J×Z0×P . Table IV summarizes the computa-
tion times for generating the risk of collision by approximating
the following the integral:

∫
ξj(z0,p)⊕<0, Gobs>

qi,j(w) dw when
qi,j is modeled as a Gaussian. Table IV shows that RADIUS
is able to compute the approximation of the risk of collision
about 60% faster than CCPBA, but not as fast as evaluating the
Cantelli inequality.

Method Mean Maximum
Solve Time [ms] Solve Time [ms]

RADIUS 0.4372 2.3150
Cantelli 0.0181 2.5223
CCPBA 1.1012 3.5820

TABLE IV: Results comparing the computation times for generating an
approximation for the risk of collision using RADIUS, CCPBA, and the
Cantelli Inequality when the obstacle uncertainty is represented as a Gaussian
distribution.

C. Additional Simulation details

We discuss more in detail the experimental setup for the
simulation experiments discussed in Section VII-B. In both
the 3-lane highway and left turning scenarios, the uncertainty
in the locations and predictions of obstacle motions for each
obstacle is represented as a Gaussian distribution qi,j for the
stochastic methods for any (i, j) ∈ I×J . More exactly, qi,j is a
Gaussian distribution that represents the possible location of the
i-th obstacle during the j-th time interval Tj , and is constructed
such that its mean, µi,j , is at the center of a lane for all Tj . As



time increases we translate this uncertain region forward at a
constant speed while keeping it centered in the lane. In other
words, µi,j − µi,j−1 is constant for all j > 1 in J . Recall,
from Definition 4, that L and W are the length and width of
each obstacle, respectively. Then for any (i, j) ∈ I × J , the
standard deviation σi,j of qi,j is chosen such that the 3σi,j-
region of the Gaussian distribution covers the area of width
3.7−W and length L+ui(0) ·∆t, where ui(0) is the speed of
the i-th obstacle at time 0 and ∆t is the time interval defined
in Section III-D. Note the choice of width 3.7 − W ensures
that the footprint of the obstacle always stays inside the lane.

To capture the stochastic nature of each scenario, we simulate
each scenario for 10 trials. For each given scenario and for any
i ∈ I, the i-th obstacle is always initialized with the same state,
but follows different trajectories among different trials of this
scenario. These trajectories are selected such that the locations
of the i-th obstacle during the j-th time interval Tj are randomly
sampled from qi,j for each trial, where qi,j is kept constant for
all trials of the same scenario for any (i, j) ∈ I × J . This
variability in the trajectories allows us to capture trials where a
specific obstacle trajectory may cause a crash, whereas in other
trials of the same scenario, different trajectories do not cause
crashes.

Because REFINE is a deterministic motion planning algo-
rithm, it assumes perfect knowledge of the locations of obsta-
cles. In scenarios where there is uncertainty in the location of
obstacles, deterministic algorithms like REFINE often generate
motion plans to avoid the entire uncertain region. However,
because Gaussian distributions have non-trivial probability den-
sity over the entire space W , applying REFINE naively would
require avoiding the entire world space. As such, we require
REFINE to avoid a box that over approximates the 5-σi,j region
of the Gaussian distribution for any (i, j) ∈ I × J as shown
in Figure 3d. Note such 5-σi,j region accounts for 99.99999%
of the probability mass.

APPENDIX C
ADDITIONAL EXPERIMENTS

In addition to the experiments reported in the main body of
this work, we perform two additional experiments to evaluate
the proposed method.

A. Single Planning Horizon 3-Lane Highway Environment

This experiment compares the performance of RADIUS to
CCPBA, Cantelli MPC, and REFINE in a 3-lane highway
driving scenario in simulation over 10 randomly generated
scenarios. The aim of this experiment is to see how RADIUS
performs in comparison to the other methods when trying
to execute a single lane change in a small stretch of dense
highway. Each scenario contains 1 static obstacle and between 4
to 9 dynamic obstacles, where the number of dynamic obstacles
was randomly selected for each scenario. It is important to
note that in these scenarios, since it was only over a single
planning iteration, these obstacles were all spawned within a
100[m] radius of the ego vehicle. This resulted in scenarios that

Method Success Crash Other
[%] [%] Action [%]

RADIUS 81.8 0.0 18.2
CCPBA 55.2 0.0 44.8

Cantelli MPC 9.1 35.4 55.5
REFINE 21.2 0.0 78.8

TABLE V: Single planning iteration results using RADIUS, CCPBA and
Cantelli MPC. “Success” encompasses the trials where each method was able
to successfully execute the lane change. “Other Action” encompasses the trials
where a method did not complete the lane change maneuver, but instead either
executed a safe stop maneuver or decided to keep driving in lane.

are denser than the situations typically encountered in the 3-
lane experiment described in Section VII-B1. The initial speeds
of all dynamic obstacles are also randomly sampled from
between 15[m/s] to 20[m/s] in each scenario. In each of these
scenarios, the ego vehicle is randomly initialized in a lane, and
is commanded to get as close as possible to a given waypoint
in a different lane. The ego vehicle is expected to achieve the
task in a single planning iteration with allowable risk threshold
ϵ = 0.05 and tplan = 3[sec]. Success in this experiment is
characterized by being able to find a feasible lane change
maneuver during the planning time and execute it without
crashing. Each scenario is simulated for 200 trials, resulting
in a total of 2000 simulation cases. The obstacle uncertainties
for the stochastic methods and REFINE are represented in the
same way as in Section VII-B1. Table V summarizes RADIUS,
CCPBA, Cantelli MPC, and REFINE’s performance on the 3-
lane single planning iteration scenarios. In this experiment we
see that RADIUS was able to successfully execute this lane
change maneuver more often than the comparisons.

B. Ablation Study

This section performs an ablation study to evaluate the
effectiveness of each component of RADIUS. In this ablation
study, we examine the performance of 3 algorithms, each of
which has a certain aspect of RADIUS removed. Namely, the
3 algorithms are: RADIUS (No Analytical Gradient), Monte-
Carlo RTD (Discrete) and Monte-Carlo RTD (Continuous). For
RADIUS (No Analytical Gradient), we examine the perfor-
mance of RADIUS without providing the constraint gradient
described in Section VI-C. Instead, we allow IPOPT to compute
a numerical gradient during the optimization. In the other 2
algorithms, instead of leveraging our over-approximation to the
risk of collision from Section VI, we instead replace this with
a Monte Carlo style sampling method to estimate the risk of
collision as defined in (14). For Monte-Carlo RTD (Discrete),
to find a viable control parameter, we sample discrete points
from the control parameter space P in a similar fashion to
[31]. To approximate the risk of collision in a Monte-Carlo
fashion, we sample 100 points from qi,j and count the number
of points that fall in the zonotope ξj(z0, p) ⊕ <0, Gobs> for
any (i, j) ∈ I × J , where p corresponds to a sampled control
parameter. We then sum up these integrals over all i ∈ I and
j ∈ J to estimate the risk of collision with (14). Monte-Carlo
RTD (Continuous) estimates the risk of collision in the same
way as Monte-Carlo RTD (Discrete), however it searches for



Algorithm Success Crash Other Solve
[%] [%] Action [%] Time [s]

MCRTD(D) 59.0 0.0 41.0 4.781
MCRTD(C) 60.0 0.0 40.0 3.334

RADIUS(NAG) 80.0 0.0 20.0 4.931
RADIUS 80.0 0.0 20.0 0.412

TABLE VI: Single planning iteration results using the RADIUS variants
considered in the ablation study. “Other Action” encompasses the trials where
each method did not complete the lane change maneuver, but instead either
executed a safe stop maneuver or decided to keep driving in the lane. RADIUS
(No Analytical Gradient) is abbreviated as RADIUS (NAG), Monte-Carlo RTD
(Discrete) is abbreviated as MCRTD(D) and Monte-Carlo RTD (Continuous)
is abbreviated as MCRTD(C).

feasible not-at-fault plans over the continuous control parameter
space P and requires IPOPT to compute a numerical gradient
during only planning.

We evaluate these algorithms in another set of 10 randomly
generated 3-lane highway scenarios, with the same experimen-
tal setup from C-A. Each scenario is simulated for 50 trials
resulting in a total of 500 test cases. The results of the ablation
study can be found in Table VI. From the ablation study, it is
evident that replacing the closed-form over-approximation with
Monte-Carlo sampling methods causes an 8-10× increase in the
solve time due to a longer risk of collision estimation time.
Additionally, both Monte-Carlo methods achieve a roughly
20% lower success rate than RADIUS, which is too slow to be
able to achieve real-time performance. We note that increasing
the number of samples from 100 would likely increase the
success rate as the estimation of the risk of collision would
get more accurate. However, this increase in the number of
samples will cause the solve time to be even slower. Without the
analytical gradients being provided, RADIUS(NAG) requires an
average time of about 10× slower than RADIUS. It is evident
from these results that both the analytical gradient and the
closed-form over-approximation play important roles in being
able to generate motion plans in real time.


	Introduction
	Notation
	Preliminaries
	Open Loop Vehicle Dynamics
	High-Speed Model
	Low-Speed Model

	Trajectory Parameterization
	Closed Loop Vehicle Dynamics
	Ego Vehicle, Environment, and Sensing

	Online Planning Under Uncertainty
	Obstacle Uncertainty
	Risk-Aware Vehicle Safety
	Online Optimization

	Offline Reachability Analysis
	An Implementable Alternative to (Opt)
	Chance Constraint Relaxation
	PDF Integration
	Domain Relaxation
	Integrand Relaxation
	Closed-form Computation

	Tractable Online Optimization
	Constraint Gradient and Parallelization
	Online Operation

	Experiments and Results
	Tightness and Generality of Risk Approximation
	Simulations
	3-Lane Highway
	Left Turning

	Hardware

	Extensions To Other Systems
	Conclusion
	Appendix A: Proof of Lemma 12
	Appendix B: Additional Details
	Desired Trajectories
	Computational Efficiency of Risk Approximation
	Additional Simulation details

	Appendix C: Additional Experiments
	Single Planning Horizon 3-Lane Highway Environment
	Ablation Study


