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Abstract—Tasks for autonomous robotic systems commonly
require stabilization to a desired region while maintaining safety
specifications. However, solving this multi-objective problem
is challenging when the dynamics are nonlinear and high-
dimensional, as traditional methods do not scale well and are
often limited to specific problem structures. To address this issue,
we propose a novel approach to solve the stabilize-avoid problem
via the solution of an infinite-horizon constrained optimal control
problem (OCP). We transform the constrained OCP into epigraph
form and obtain a two-stage optimization problem that optimizes
over the policy in the inner problem and over an auxiliary
variable in the outer problem. We then propose a new method for
this formulation that combines an on-policy deep reinforcement
learning algorithm with neural network regression. Our method
yields better stability during training, avoids instabilities caused by
saddle-point finding, and is not restricted to specific requirements
on the problem structure compared to more traditional methods.
We validate our approach on different benchmark tasks, ranging
from low-dimensional toy examples to an F16 fighter jet with
a 17-dimensional state space. Simulation results show that our
approach consistently yields controllers that match or exceed the
safety of existing methods while providing ten-fold increases in
stability performance from larger regions of attraction.

I. INTRODUCTION

Autonomous systems are becoming increasingly prevalent
in our lives in recent years; however, designing controllers
for complex dynamics systems is difficult. For example, an
unmanned aerial vehicle may be required to to observe a
target location while maintaining line of sight to a base station
[53]. Another example is the problem of satellite docking that
requires approaching a target satellite from a specific direction
[23]. Robot control tasks often involve both stability and safety
requirements, where the controller must both drive the system
towards and remain stable within some goal region while
avoiding unsafe regions. We denote this as the stabilize-avoid
problem. However, synthesizing a policy that achieves both
tasks in the presence of input constraints is challenging as
these objectives can often be contradictory [22].
Reach-Avoid. Reachability analysis and the reach-avoid
problem [50] are very closely related to the stabilize-avoid
problem that we tackle in this paper. Given a dynamical
system, the reach-avoid problem aims to solve for the set
of initial conditions and the appropriate control policy to drive
a system to a desired goal set while avoiding undesirable
states. Hamilton-Jacobi analysis [27] provides a methodology
for computing the solution to reach-avoid problems, and is
conventionally solved via numerical partial differential equation

Fig. 1: Visualization of F16 ground collision avoidance within
a low-altitude flight corridor using EFPPO. The system is
required to stabilize to a target altitude near the ground (in
green), avoid collision with the ground and stay within the
flight corridor defined by the two walls and the ceiling.

(PDE) techniques that use state space discretization. These
methods are limited in practice to systems with up to 5
continuous state variables [30]. Recent works have applied
Deep Reinforcement Learning (DeepRL) to solve reach-avoid
problems for higher dimensional systems (e.g., 6-dimensional
system in [21]). While reaching a goal set is related to
stabilization to a goal set, the two objectives have important
differences. The goal of the stabilizing controller is to induce
stability of the system within a subset of the goal set. This
need not be true for the reach controller, where the goal set
may not contain any equilibrium point at all. In the worst case,
unwanted oscillations could be introduced into the system.
We discuss the relationship between the two formulations in
Section II-A.

Constrained Reinforcement Learning. Works that address
the problem of task completion with safety constraints from
the reinforcement learning community usually do so from the
constrained Markov Decision Process (CMDP) [5] framework.
Many of these works adopt techniques from constrained
optimization to handle the additional safety constraints, of
which the use of Lagrangian duality is popular due to its
simplicity [1, 25, 26, 48]. However, the CMDP formulation
considers the discounted sum over constraints instead of
enforcing the constraint at each state. This allows the additional
constraint terms to be treated in the same way as the objective



function at the expense of allowing constraint violations. While
we can modify the CMDP formulation to disallow all constraint
violations, this can lead to an ill-conditioned problems. The
relationship between our work and the CMDP setting is
discussed in Section IV-D.
Lyapunov Methods. Lyapunov theory provides an attractive
option for synthesizing safe, stabilizing controllers by using
control Lyapunov functions (CLFs) [7, 43] and control barrier
functions (CBFs) [6, 52]. CLFs and CBFs provide conditions
for synthesizing controllers that are certified to be stable
and safe respectively. However, they are difficult to construct
analytically for general nonlinear systems [16]. CLFs / CBFs
can be synthesized via convex optimization (e.g., sum-of-
squares programming [2, 12, 47]). However, such approaches
are limited to systems with polynomial dynamics and rely on
the use of solvers for semidefinite programs which can face
numerical difficulties [32]. Alternatively, neural networks can
be used to synthesize these certificate functions [11, 13, 34].
However, one problem that remains is that CLFs and CBFs
cannot be easily combined to yield combined safety and
stability guarantees when the set of feasible controls induced
by the CLF and CBF do not intersect, forcing the controller
to pick one and sacrifice either safety or stability. This can
lead to the presence of unwanted local minima [36]. Although
this can be resolved by learning a joint Control Lyapunov
Barrier Function (CLBF) [14, 37], the training process requires
the ability to sample from the control-invariant set, which is
difficult in the case of complex nonlinear dynamics where
the control-invariant set is not known. Our experiments show
that this method is difficult to apply in practice. We provide
discussions on this in Section VII.
Model Predictive Control. Online optimization-based control
methods such as model predictive control (MPC) have become
increasingly popular for general-purpose control synthesis with
the increase in computational power available for robotic
systems. Moreover, they can be viewed as a finite-horizon
approximation to an infinite horizon optimal control problem
(OCP), which is closely linked to Lyapunov stability [18].
However, the constrained OCPs that need to be solved online
are computationally expensive, making it difficult to achieve
high frequency control updates in practice [35]. Moreover,
accurate gradient information is typically necessary for solving
nonlinear OCPs quickly, making it further difficult to use
with dynamics that have expensive gradients or are non-
differentiable. Finally, guaranteeing the recursive feasibility
of MPC for general nonlinear systems is challenging [28], and
in many cases, requires the solution (or approximation) of a
control invariant set which can be difficult to find.
Continuous-Time Constrained OCP. In addition to the
discrete-time formulation used MPC, there exists a number
of methods that investigate the problem of constrained OCP
in continuous time. Works within this area mainly focus on
investigating theoretical properties of the value function for
the finite and infinite horizon problems [4, 10, 24, 29, 41, 42].
We note similarities of our problem formulation to the one
discussed in [4], where the continuous-time constrained optimal

control problem is solved via transformation into epigraph
form. An associated Hamilton-Jacobi PDE and its properties
are investigated and used as the basis of a numerical PDE
solver for a two-dimensional finite-horizon problem. To the
best of our knowledge, the transformation of the infinite-horizon
constrained OCP problem into epigraph form for discrete-time
problems has not been proposed before in literature.

In this work, we solve the stabilize-avoid problem by
formulating an infinite-horizon constrained OCP, inspired by
the global asymptotic stability guarantees in the unconstrained
case [33]. Our method for solving the constrained OCP departs
from traditional Lagrangian duality based methods and uses
an epigraph form which we denote as the Epigraph Form
Constrained Optimal Control Problem (EF-COCP). We then
solve the EF-COCP using DeepRL by deriving a corresponding
policy gradient theorem and applying the proximal policy
optimization (PPO) algorithm [39]. This allows us to tackle a
wider range of systems compared to non-RL-based methods and
handle general nonlinear non-differentiable black box dynamics
with minimal computational cost online.
Contributions. We summarize our contributions below.

• We propose a new formulation of the safety-constrained
OCP via an epigraphic reformulation (EF-COCP) which
is easier to interpret and avoids the optimization instability
of existing Lagrangian duality methods.

• We derive a policy-gradient theorem for the inner problem
of EF-COCP and propose the EFPPO algorithm for solving
the stabilize-avoid problem using DeepRL.

• The proposed EFPPO method is validated on a range of
challenging systems, yielding promising empirical results
on complex systems such as a 17-dimensional F16 fighter
jet, visualized in Figure 1.

II. THE STABILIZE-AVOID PROBLEM

We consider arbitrary nonlinear discrete-time dynamical
systems of the form

xk+1 = f(xk, uk) (1)

where x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu and f : X × U → X .
In this paper, we consider the following control synthesis
problem.

Problem 1 (Stabilize-Avoid Problem). Given a nonlinear
system with a goal set G ⊂ X and avoid set A ⊂ X , find
a control policy u = π(x) that maximizes the size of the set
R ⊂ X defined as the set of initial states x0 such that all
trajectories started from x0 evolving under the dynamics

xk+1 = f(xk, π(xk)), x0 ∈ R, (2)

also satisfy the following two properties.

Stabilize: lim sup
k→∞

min
y∈G

∥xk − y∥ = 0,

Avoid: xk ̸∈ A for all k ≥ 0.
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Fig. 2: Trajectory and value functions comparing a solution to
the stabilize and reach objectives of the double integrator in
1D. The reach controller can reach the goal region at p = 1
(red line) faster than stabilize (compare magenta triangles), but
the controller never stabilizes to G and induces a periodic orbit.
The stable controller reaches G slower but remains in the set.

In short, the objective is to reach and (asymptotically) stabilize
to a goal set G while avoiding the set of unsafe states A.

A. Relationship with the Reach-Avoid Problem

Note that we use lim sup when defining stabilize instead of
minimizing over time as in the reach formulation

min
k

min
y∈G

∥xk − y∥ = 0. (3)

A system that enters but then subsequently exits the goal set G
will satisfy the reach-avoid problem but not the stabilize-avoid
problem, as we illustrate in the following example.

Example 1 (Stabilize vs Reach). Consider a double-integrator
with states x = [p, v] ∈ R2, control u ∈ R1, and the following
task specification:

Constraints Goal
|u| ≤ 1, A := ∅ G := { x | p = 1.0 }

One solution to the reach problem (minimizing the first hitting
time) yields a controller with periodic orbits, while minimizing
the stabilize objective yields a globally stabilizing controller
on G (Figure 2).

We note that both formulations yield similar results when G
consists only of equilibrium points. However, the specifications
for G may include non-equilibrium points. Applying reach
to this problem to obtain stability would require the set of
equilibrium points for arbitrary nonlinear dynamics, which is
a challenging task in itself to find and may not even exist. In
this work, we consider dynamics for which such a set is not
known a priori. Hence, applying reach-avoid methods to the
stabilize-avoid problem may not give desireable results.

III. STABILIZE-AVOID AS INFINITE-HORIZON
CONSTRAINED OPTIMAL CONTROL PROBLEM

We tackle Problem 1 by solving an infinite-horizon con-
strained OCP. To motivate this problem formulation, let
l : X → R≥0 denote a non-negative cost function that takes
zero value on G and is positive outside G, and define the

infinite-horizon undiscounted policy value function V l,π for
an arbitrary policy π as

V l,π(x0) :=

∞∑

k=0

l(xk), xk+1 = f
(
xk, π(xk)

)
. (4)

Since l is non-negative, V l,π is also non-negative. Using
dynamic programming principles, we obtain

V l,π(xk) = l(xk) + V l,π
(
f(xk, π(xk))

)
. (5)

The above equations are very close to satisfying the conditions
for a discrete-time Lyapunov function [18]. By imposing
additional assumptions on l, we can show that V l,π is a
Lyapunov function. We leave the proof in the Appendix A1
for conciseness. Note that, for a given π, the set over which
stability holds may be very small or even empty. This motivates
us to ask whether this set can be maximized. The answer is
affirmative here: solving the undiscounted infinite-horizon OCP

min
π

∞∑

k=0

l(xk) (6a)

s.t. xk+1 = f(xk, π(xk)), (6b)

gives a globally asymptotically stabilizing controller under
some mild assumptions on the cost function and the control-
lability of the dynamics [33]. This provides an answer to
Problem 1 when safety constraints are not considered.

However, solving an unconstrained infinite-horizon OCP
does not guarantee satisfaction of the safety constraints xk ̸∈ A.
Hence, we consider solving a constrained infinite-horizon OCP
to obtain a policy that is safe by construction. Let the superlevel
set of h : X → R describes the avoid set

A := { x : h(x) > 0 } . (7)

We then solve the following constrained infinite-horizon OCP

min
π

∞∑

k=0

l(xk) (8a)

s.t. xk+1 = f(xk, π(xk)), (8b)
h(xk) ≤ 0, k ≥ 0. (8c)

In the constrained setting, the proof from [33] that the optimal
policy is globally asymptotically stabilizing is not applicable
here. However, the proof can be extended to handle this case
under certain conditions, which we leave as future work.

IV. SAFETY CONSTRAINED OPTIMAL CONTROL VIA
EPIGRAPHIC REFORMULATION

The previous section describes how solving the stabilize-
avoid problem (Problem 1) can be cast as solving an infinite-
horizon constrained OCP (6). In this section, we propose
solving the constrained OCP by reformulating the problem
into its epigraph form and then solving the resulting two-stage
optimization problem.



A. Epigraph Form

For any optimization problem of the form

min
x

J(x) (9a)

s.t. h(x) ≤ 0, (9b)

the epigraph form [8, pp 134] of the above (9) is the
optimization problem

min
x, z

z (10a)

s.t. h(x) ≤ 0, (10b)
J(x) ≤ z. (10c)

where z ∈ R is an auxiliary optimization variable. It is a
standard result in optimization [8, pp 134] that (9) and (10) are
equivalent. Now, observe that the constraints (10b) and (10c)
can be combined to yield the following:

min
x, z

z (11a)

s.t. max{h(x), J(x)− z} ≤ 0. (11b)

We can further move the minimization of the x variable into
the constraint (11b) (see Appendix A2 for proof) to yield

min
z

z (12a)

s.t. min
x

max{h(x), J(x)− z} ≤ 0. (12b)

This form allows us to convert the original constrained problem
(9) into an unconstrained inner problem over x (12b) and a
constrained outer problem (12) over the scalar decision variable
z. At the optimal point (x∗, z∗), optimality conditions imply
that z∗ = J(x∗). Solving for z∗ can thus be thought of as
solving for the cost J at the optimal solution. Consequently,
if we can bound the value of J(x∗), then z∗ will lie within
the same bound. This facilitates treating z as a “cost budget”
(with units of J) for satisfying h. As z → ∞ (i.e., the “cost
budget” for J(x) increases), h(x) will dominate the max, and
x∗ will focus on minimizing h more. On the other hand, as
z → −∞ (i.e., the “cost budget” for J(x) decreases), J(x)−z
will dominate the max, and x∗ will focus on minimizing J .

B. Epigraph Form Constrained OCP

We now apply this to the constrained OCP (8). First, we
express the safety constraint (8c) equivalently as

max
k≥0

h(xk) ≤ 0. (13)

Using this, the epigraph form of the constrained OCP (8) reads

min
z

z (14a)

s.t. Ṽ (x0, z) ≤ 0, (14b)

where the auxiliary value function Ṽ is the OCP analogue of
the LHS of (12b)

Ṽ (x0, z) := min
π

J̃π(x0, z)

s.t. xk+1 = f(xk, π(xk)),
(15)

with J̃π defined as

J̃π(x0, z) := max

{
max
k≥0

h(xk),

∞∑

k=0

l(xk)− z

}
. (16)

We denote this the epigraph form constrained OCP (EF-COCP).

C. Dynamic Programming for EF-COCP

Note that (16) has both a maximization and a sum and
hence has a different structure compared to the single sum in
the objective function of the typical OCP. Consequently, the
Bellman equation cannot be used in this case. We derive the
corresponding dynamic programming equations below as

Ṽ (xk, zk) = min
uk

max
{
h(xk), V

(
xk+1, zk+1

)}
, (17)

where zk+1 has the following “dynamics”

zk+1 = zk − l(xk). (18)

This can again be understood from the intuition of z as a “cost
budget” in J for satisfying the constraints h. Moving from
timestep k to k + 1 incurs the cost l(xk), which is subtracted
from the current “budget” zk to yield the next budget zk+1. If
the “budget” zk falls low enough, the cost term in (16) will
dominate the max, and we will have “run out of budget” to
focus on constraint satisfaction.

D. Relationship with Lagrangian Duality

The epigraph form (11a) shares some similarities with the La-
grangian duality formulation commonly used in (undiscounted)
constrained MDPs

max
λ≥0

min
π

∞∑

k=0

l(xk) + λ

∞∑

k=0

[h(xk)]
+

︸ ︷︷ ︸
:=L(π,λ)

, (19)

where [·]+ = max(0, ·), is used to disallow constraints viola-
tion. Both formulations (19), (14) are two-stage optimization
problems, where the outer problem consists of an extra
scalar variable (z, λ respectively) while the inner problem
optimizes with respect to the policy. The inner problem for
both formulations is shown in Figure 3. We note the following
two differences.
Optimization Stability. Due to the [·]+ in (19), gradients of the
inner problem with respect to λ will always be non-negative.
Consequently, as long as the constraints are not satisfied, λ will
continue to increase. However, large values of λ are problematic
when constraints are not satisfied, since the gradients ∇xL
with respect to x scale linearly in λ. In [45], a solution to this
problem is proposed by rescaling L by 1/(1 + λ). However,
when λ is large, the gradients for the l terms will instead vanish.
Moreover, since λ is a non-decreasing function of the number
of optimization iterations, this problem will only become worse
as optimization proceeds.

In contrast, since z is additive within the max, the scale
of gradients is not altered. Consequently, EF-COCP does not
suffer from this issue of optimization instability.
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Fig. 3: Comparison of the inner subproblem for the Lagrangian dual formulation used in CMDP (left) and the epigraphic
formulation (right) for the problem minx J(x) s.t. h(x) ≤ 0. Note that the gradients of the full objective (purple) scale with λ
(left) but are unaffected in scale by z (right).

Intuition. The auxiliary variable z in the epigraph form is in
units of cost and represents a cost budget, as shown earlier. On
the other hand, the Lagrange multiplier λ is a ratio representing
the cost per unit constraint, but this is harder to interpret when
cost and constraints cannot be easily compared. Consequently,
it is much easier to estimate upper bounds for z. We take
advantage of this to bound the range of z used for solving the
inner problem, which we discuss in the next section.

V. SOLVING EF-COCP WITH DEEP REINFORCEMENT
LEARNING

The previous section introduces a new epigraph form of the
constrained optimal control problem, but does not provide
a method of solving this formulation. In this section, we
tackle this problem via reinforcement learning and introduce
a framework for learning controllers for complex, nonlinear,
potentially non-smooth dynamics.

Given that the inner optimization problem of the epigraph
form (15) still retains many similarities with the original
problem, we choose to solve for the policy and the value
function using reinforcement learning. Specifically, we use
Proximal Policy Optimization (PPO) [39] but with modified
definitions of the value function, advantage functions, returns,
and generalized advantage estimator (GAE) [38].

While we have treated the policy π as a deterministic
function, we will use a stochastic π for the purpose of
improved exploration while performing Deep RL, where π(u|x)
now defines a distribution over controls. However, while
E[a + b] = E[a] + E[b], the same does not hold over the
max operator used to define J̃π in (16). Consequently, we
need to be careful when defining Ṽ π for a stochastic policy
such that an analogous dynamic programming equation to the
deterministic case (17) can be applied. Consider the following
nested expectation form of an OCP policy value function:

V π(x0)

= lim
K→∞

E0:K

[
K∑

k=0

lk

]
, (20a)

= lim
K→∞

E0

[
l0 + · · ·+ EK−1

[
lK−1 + EK [lK ]

]]
, (20b)

= E0[l0 + V π(x1)], (20c)

where, for conciseness, we denote

Ek := Euk|xk
, Ek:t := Euk,...ut|xk

, lk := l(xk). (21)

Note how the nested expectations of (20b) lends itself to
the dynamic programming equations of (20c). In the case of
EF-COCP, we define Ṽ π analogously to obtain

Ṽ π(x0, z0) (22a)

= lim
K→∞

E0

[
h0 ∨ · · · ∨ EK−1

[
hK−1 ∨ EK [hK ∨

K∑

k=0

lk − z0]
]]

,

(22b)

= E0

[
h0 ∨ Ṽ π(x1, z1)

]
, (22c)

where we have used a ∨ b := max(a, b) for conciseness and
where xk, zk follow the dynamics (1) and (18). We also define
the action-value function Q̃π : X × R× U → R≥0 as

Q̃π(xk, zk, uk) = max
(
h(xk), Ṽ

π(xk+1, zk+1)
)
, (23)

such that Ṽ π(xk, zk) = Euk

[
Q̃π(xk, zk, uk)

]
. We can now de-

rive a policy gradient theorem for the inner problem.

Theorem 1 (Policy Gradient Theorem). The gradient of the
policy value function Ṽ πθ (22) for the inner subproblem
satisfies

∇θṼ
πθ (x0, z0)

∝ E(x,z,u)1:k∼πθ

[
Q̃πθ (xk, zk, uk)∇θ lnπθ(uk|xk, zk)

∣∣∣ξ = 1
]
,

(24)

where the binary random variable ξk is defined to be equal to
1 when h(xt) ≤ Ṽ πθ (xt+1, zt+1) is true for all t = 0, . . . , k.

Proof: The proof follows from the proof of the normal
policy gradient theorem [46], differing only in the expression
for ∇θQ̃

πθ . In the normal setting [46], (20c) gives

∇θQ
πθ (xk, uk) = ∇θ

(
l(xk)+V πθ (xk+1)

)
= ∇θV

πθ (xk+1).

(25)
In the case of EF-OCP with (22c),

∇θQ̃
πθ (xk, uk) = ∇θ max

{
h(xk), Ṽ

πθ (xk+1, zk+1)
}
, (26)

= 1h(xk)≤Ṽ πθ (xk+1,zk+1)
∇θṼ

πθ (xk+1, zk+1).

(27)
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Fig. 4: Summary of the EFPPO algorithm. First, reinforcement learning is used to solve the inner problem (15) and learn
Ṽ (x, z) and π(x, z) over the entire state space. Then, the optimal z∗ which solves the outer problem (14) is regressed.

Following the rest of the normal proof [46] then yields (24)

From Theorem 1, we can construct a basic on-policy DeepRL
algorithm to solve the inner problem (15) over all states x
parametrized by a range of z, yielding a learned (stochastic)
controller πθ(x, z). However, we can do better by performing
variance reduction via subtracting the baseline Ṽ πθ (x, z) to
get the advantage Ãπθ (x, z, u) := Q̃πθ (x, z, u) − Ṽ (x, z), as
Eπθ

[∇θ lnπθ] = 0. Following PPO, we also apply the GAE
estimate [38], perform clipped importance sampling and add in
an entropy bonus to arrive at an algorithm that is very similar
to PPO [39] but with Q̃π and Ṽ π defined as above.
Stochastic policy considerations: While we have performed
the above developments using a stochastic policy and derived a
stochastic policy gradient theorem, our desired solution to the
inner optimization problem is a deterministic controller. Hence,
we only take the mode of the learned policy, and treat the
stochasticity purely as a means of performing exploration,
discouraging premature convergence to local minima and
smoothing the optimization landscape [3, 19, 31]. We also
fine-tune the learned value function at the end of the DeepRL
training by freezing the obtained deterministic policy and
performing policy evaluation.

It can be appealing to consider using a deterministic
policy and apply a deterministic policy gradient theorem [40].
However, the proof of this theorem requires the transition
distribution p(xt+1|xt, ut) to be continuous [40]. This does
not hold in our problem since the transition distribution
is degenerate (and hence discontinuous) due to the use of
deterministic dynamics, i.e.,

p(xt+1|xt, ut) = δ
(
xt+1 − f(xt, ut)

)
, (28)

preventing the use of deterministic policy gradient in this case.
After obtaining Ṽ π and π for the deterministic policy, we

now turn to the outer problem (14). Since the outer optimization
problem is only 1 dimensional, we can solve for z∗ easily via
classical scalar optimization methods such as the bisection
method which run quickly. Instead of running bisection online,
however, we choose to learn the optimal z∗ : X → R offline
by using the result of bisection as the label for a regression
problem. This gives us z∗(x), which in turn provides the
optimal policy for the original constrained optimal control
problem.

Algorithm 1 EFPPO Inner Problem
input: Estimate of maximum cost upper bound zmax

repeat
if reset environments then

Sample random x0 ∈ X and z0 ∈ [0, zmax]
end if
Run policy π in environments for T timesteps
Compute advantage estimates Aπ with GAE
Update policy π and baseline Ṽ π with PPO clipping and entropy

until converged
Fine-tune Ṽ π using the mode of π via policy evaluation.

Algorithm 2 EFPPO Outer Problem
input: Estimate of maximum cost upper bound zmax

Sample dataset of x randomly from the state space
Bisect Ṽ π(x, ·) over [0, zmax] to obtain labels z∗ for each x

repeat
Train network z̃∗(x) to predict z∗ given x via regression

until converged

The proposed EFPPO algorithm is summarized in Algo-
rithms 1 and 2 and illustrated in Figure 4. EFPPO solves the
two-stage optimization problem of EF-COCP (14a) sequen-
tially. The inner problem Equation (15) is solved via policy
gradient using Theorem 1 for a range of z values and uses
the improvements in PPO such as GAE estimates, clipped
importance sampling, and an entropy bonus. Next, we extract
the mode of the stochastic π and fine-tune Ṽ π. Then, we fix
the value function Ṽ π and the deterministic policy π(x, z) and
learn z∗(x) by randomly sampling states in the state space
and minimizing the residual to the analytical solution of (14)
found by applying the bisection method. Since this is a 1D
optimization problem, the bisection method converges to almost
machine precision within tens of iterations. The final policy is
then obtained as π(x, z∗(x)). When solving the inner problem,
we randomly sample states from the state space and random
sample z within the range [0, zmax], where zmax is an upper-
bound estimate of the total cost

∑∞
k=0 l(xk). To prevent using

zmax = ∞ since this term may be unbounded, we introduce a
small discount factor only in the total costs. More details on
the effect of discounting are available in the Appendix C.



VI. EXPERIMENTS

To evaluate the performance of the proposed EFPPO al-
gorithm, we compare EFPPO against related algorithms on
simulated stabilize-avoid problems with increasing complexity.
The last problem involves a non-differentiable, nonconvex,
non-control-affine system and demonstrates the ability of our
approach to both maintain safety and successfully stabilize
the system within the goal region even in nontrivial high-
dimensional environments. We compare EFPPO against the
following baselines methods.

• PPO [39], a popular on-policy unconstrained DeepRL
method. Despite its unconstrained nature, it is common to
apply “soft constraints” in the form of penalties incurred
when an undesirable state is reached [9, 51]. Unlike
constrained methods such as EFPPO, the scale of the
penalties is a hyperparameter that must be tuned to trade-
off between constraint violation and training stability. We
denote by PPO(λ) the family of methods where λ denotes
the penalty scale of the modified cost function l̃, i.e.,

l̃(x) = l(x) + λ[h(x)]+, (29)

where PPO(0) solves the unconstrained problem.
• CPPO [45], a representative algorithm among the family

of constrained DeepRL methods which use Lagrangian
duality, and is an improvement on PPO-Lagrangian from
[1]. As noted in Section IV-D, the constrained MDP
formulation allows constraint violations up to a cost thresh-
old. To learn policies that strictly satisfy the constraints,
we set the cost threshold to 0. We perform a manual
hyperparameter search to select the PID parameters.

• PPO-SIS [26], a constrained RL method that applies the
safety constraint at each state instead of in expectation as
in CMDP. Moreover, a safety certificate is learned jointly
to improve the safety of the learned policy.

• CLBF1 [14], which learns a Lyapunov function using
a neural network via losses which penalize violations
of the Lyapunov conditions. Safety can be guaranteed
by enforcing that a sublevel set of the learned neural
Lyapunov function lies outside the avoid set. Given a
learned CLBF, we consider two methods for synthesizing
the controller: (1) CLBF(QP) solves the CLBF-QP using
the CLBF as a constraint; (2) CLBF(Opt) applies the
(bang-bang) control that minimizes V̇ .

As noted previously, while the reach-avoid problem is closely
related to the stabilize-avoid problem considered in this work,
the policies obtained from reach-avoid do not induce stability
when the goal set is not an equilibrium point (see Section II-A).

For a fair comparison, a feedforward neural network with
tanh activations is used for both the policy (if used) and value
functions. Additional networks are also defined using the same
architecture above but with modified final activation function
(e.g., softplus) when used in the original implementation.

1While the original work considers CLBFs that are robust to parametric
uncertainties, the problems we consider here do not have parameters.

Safety
Rate ↑

Cost ↓ Stabilize
Rate ↑

PPO(0) 0.55 1.251 1.0
PPO(1) 0.61 1.283 1.0
PPO(10) 1.0 1.299 1.0

CPPO [45] 1.0 1.314 1.0
PPO-SIS [26] 1.0 2.227 0.182
CLBF(QP) [14] 0.96 3.042 0.180
CLBF(Opt) [14] 0.99 3.180 0.035

EFPPO (Ours) 1.0 1.285 1.0

TABLE I: Comparison of controller performance on the double
integrator example. Metrics are computed from states randomly
sampled from the control-invariant set.

To compare each method, we use the safety rate, cost and
stabilize rate metrics computed by rolling out the learned policy
on randomly sampled initial states. When the true control-
invariant set that can guarantee safety is analytically known,
the sampled states are sampled from the control-invariant set.
However, for systems with complex dynamics where such a
set cannot be found analytically, we sample from a crude box
estimate. The safety rate and stabilize rate are defined as the
fraction of trajectories that satisfy the safety constraints and
can reach and stay within the goal set for the last 50 timesteps
respectively. The top method for each metric is shown in bold.
For the cost, we only highlight the best performing method
among the methods that handle constraints (i.e., unconstrained
PPO is not taken into account).

More details regarding the specific dynamics and constraints
for each task are provided in the Appendix D for brevity.

A. 1D Double-Integrator

We first consider a simple double-integrator dynamics in 1D,
where the optimal policy and corresponding optimal control-
invariant region for the problem can be computed. Given states
[p, v] ∈ R2, controls u = a ∈ R the task here is to stabilize to
the region pgoal := [0.65, 0.85] while satisfying box constraints
on both states and controls

|p| ≤ 1, |v| ≤ 1, |u| ≤ 1. (30)

While all constrained methods are able to maintain safety for
all states within the control-invariant region, only EFPPO is
able to also stabilize all trajectories to the goal set G with a
cost similar to the unconstrained solution from PPO(0) (see
Table I). PPO-SIS has regions of the state space outside G
which are equilibrium points (see Figure 5), while CPPO has
a much larger cost compared to the unconstrained solution.

The unconstrained PPO(λ) methods require the penalty
weight λ to be large enough for a safe policy, but this trade-off
comes at the cost of the policy’s performance and requires
careful tuning of the penalty weight λ. In contrast, EFPPO
is able to synthesizes a performant safe controller without
requiring any cost function tuning.



PPO(0) PPO(1) PPO(10) CPPO SIS CLBF(QP) EFPPO

Fig. 5: Trajectory rollouts (• → •) on the double-integrator system with box constraints on both position and velocity (shown
in grey) for the avoid set. Unsafe trajectories are shown in red. For CLBF(QP), a contour plot of the learned CLBF is shown
with red regions denoting higher values and the safe level set shown as the blue region. Due to control constraints |u| ≤ 1, the
control-invariant region is smaller than the complement of the avoid set.

PPO(0) PPO(1) PPO(10) CPPO SIS CLBF EFPPO

Fig. 6: Trajectory rollouts (• → •) on the single-integrator system in 2D with sector constraints. For CLBF, a contour plot of
the learned CLBF is shown.

Safety
Rate ↑

Cost ↓ Stabilize
Rate ↑

PPO(0) 1.0 0.363 1.0
PPO(1) 1.0 0.364 1.0
PPO(10) 1.0 0.459 1.0

CPPO [45] 1.0 0.365 1.0
PPO-SIS [26] 1.0 2.626 0.0
CLBF(QP) [14] 1.0 12.613 0.0
CLBF(Opt) [14] 1.0 1.308 0.0

EFPPO (Ours) 1.0 0.363 1.0

TABLE II: Comparison of controller performance on the 2D
single integrator with sector obstacles. Metrics are computed
from states randomly sampled from the control-invariant set.

B. 2D Single-Integrator with Sector Obstacle

Next, we consider a single-integrator in 2D where the avoid
set is defined as a sector of the circle and the goal set defined
in the center. The state is defined as the positions [px, py] ∈ R2

with controls denoting the velocities [vn, vt] ∈ [−1, 1]2 ⊂ R2,
where vn and vt denote the normal and tangent components
of the velocity vector to the center of the circle.

Table II summarizes the results in this task. Due to the
control parametrization and the shape of the avoid set, the
optimal control at all states is the constant vector [1, 0]. Of
the constrained methods, only EFPPO is able to learn this,
with other methods learning suboptimal versions of the optimal
policy. Note that the rollouts for CLBF [14] actually move
away from the center when starting near the sector obstacle
on the right (see Figure 6). This is because the CLBF learns
a distorted metric near the obstacles (as seen from the value
function) to ensure the level-set is contained within the control-
invariant set. Moreover, we see that SIS also fails to reliably

stabilize on this simple example. The safety index used in SIS
[26] is taken from [54] and consists of only three parameters.
We suspect that this is insufficient for tasks where the avoid set
A is relatively complex. Finally, we see that PPO(10) learns a
particularly poor performing controller due to the large penalty
weights. In particular, the difference in scales between the
large costs in the unsafe regions and the small costs near
the goal set poses a challenge for learning the value function
accurately, resulting in the learned policy putting more weight
on constraint satisfaction.

C. Hopper Stabilization

The preceding benchmarks are low-dimensional toy-
examples that provide intuition on how the different methods be-
have for simple linear systems. Our next example demonstrates
the ability of EFPPO to stabilize to goal sets while maintaining
safety for more complex dynamics. We consider the hopper in
the Brax simulator [15], a nonlinear non-differentiable system
with a 12 dimensional state space and a 3 dimensional control
space. Note that the original dynamics only consider a 11
dimensional state space as they discard the x-coordinate, which
we keep. The goal set G in this task is defined as

G := { x | px ∈ [2.8, 3.0] } , (31)

while the constraints limit the height and rotation of the
hopper’s torso

pz ≥ 0.7, |θ| ≤ 0.2. (32)

Unlike the normal setup for Hopper, stabilization to G requires
keeping track of the x-position. Consequently, the optimal
policy is no longer a limit-cycle and even requires the hopper
to move backwards for some initial states. We report our
results in Table III. On this problem, we see that both CPPO



(a) PPO(0) (b) PPO(1) (c) PPO(10) (d) EFPPO (e) CPPO

Fig. 7: The hopper task asks for stabilization of the hopper’s torso to the set px ∈ [2.8, 3.0] (dashed green lines, drawn when
the hopper does not reach the goal set). Two rollouts are shown starting from px = 1.0 (blue) and px = 4.0 (red) respectively,
with time progressing from opaque to transparent. Only EFPPO safely stabilizes the system to the goal set in these two rollouts.

Safety
Rate ↑

Cost ↓ Stabilize
Rate ↑Safe All

PPO(0) 0.000 1.360 0.893
PPO(1) 0.676 2.986 3.806 0.661
PPO(10) 0.037 15.193 15.503 0.087

CPPO [45] 0.724 8.353 9.458 0.087
PPO-SIS [26] 0.000 9.703 0.084

EFPPO (Ours) 0.833 1.568 3.695 0.843

TABLE III: Comparison of controller performance on the
Hopper system on a set of random initial states that may
lie outside the (unknown) optimal control-invariant set.

and EFPPO achieve high safety rates, while PPO-SIS fails to
stabilize. We see the same trend of PPO(λ) presenting a trade-
off between stability and safety, except for PPO(10) which
is more unsafe than PPO(1). We suspect this is due to larger
costs destabilizing training.

D. F16 Ground Collision Avoidance In a Low Altitude Flight
Corridor

Finally, we showcase the scalability of our method on a
ground collision avoidance example involving the F16 fighter
jet [20]. This system is non control-affine, non-smooth and
involve lookup tables, making this a challenging system to
solve stabilize-avoid on in addition to the high 17-dimensional
state space and 4-dimensional control space. The task here
is to stabilize the F16 to a target altitude defined by the set
[50, 150]ft under box control constraints while staying within
a flight corridor heading North (box constraints on the East-Up
plane). For positions (pE , pN , pU ), this corresponds to

−200 ft ≤ pE ≤ 200 ft, 0 ft ≤ pU ≤ 1000 ft. (33)

The results are summarized in Table IV and Figure 8. Following
the trend from before, we see that CPPO is able to achieve
high safety rates at the expense of being unable to stabilize to
the goal set. In contrast, EFPPO using the optimal z∗ achieves
similar safety rates as CPPO but has a 70-fold increase in the
stabilize rate. Moreover, note that EFPPO(0) and EFPPO(1.8)
denote using a constant value of z for the policies from the inner
EF-COCP problem (15). As expected, using a larger value of z
results in improved constraint satisfaction at the cost of a lower
stabilize rate. By using the optimal value of z∗, EFPPO(z∗)
is able to achieve the high stabilize rate of EFPPO(0) while

Safety
Rate ↑

Cost ↓ Stabilize
Rate ↑Safe All

PPO(0) 0.000 0.843 0.917
PPO(1) 0.657 0.639 1.025 0.742
PPO(10) 0.000 4.032 0.092

CPPO [45] 0.827 4.874 4.822 0.012

EFPPO(0) (Ours) 0.792 0.735 1.102 0.837
EFPPO(1.8) (Ours) 0.856 2.806 2.945 0.022
EFPPO(z∗) (Ours) 0.823 0.724 1.139 0.843

TABLE IV: Comparison of controller performance on the F16
system on a set of random initial states that may lie outside
the (unknown) optimal control-invariant set.

maintaining the high safety rates of EFPPO(1.8). However, note
that the safety rate of EFPPO(z∗) is actually slightly lower
than that of EFPPO(1.8). This is because z∗ is approximated
via a neural network which may have small approximation
errors. We also see the same trends for PPO(λ) from Hopper
carry over to this task.

VII. DISCUSSION

Many Lagrangian duality-based methods suffer from fo-
cusing too much on satisfying the safety constraints and
consequently suffer in terms of their stability. As noted in
Section IV-D, the non-negative gradients of the Lagrange
multipliers λ means that they will continue to increase as
long as constraints are not being satisfied. However, a large λ
causes the optimization problem to become badly conditioned,
hindering the performance of these algorithms. Moreover, in
systems with complex dynamics where the control-invariant set
is not known, it may be impossible for constraints satisfaction
to occur in all states. In this case, λ will grow unbounded
until either the training algorithm becomes unstable or it hits
a user-defined maximum limit. This is a failure that the PID
mechanism in CPPO does not fix, as λ does not oscillate. We
found all three coefficients of the PID played a similar role
in adjusting the rate at which λ (monotonically) increases and
eventually destabilizes training. Although the CMDP problem
formulation can be adapted to solve stabilize-avoid problems,
these methods are a poor fit.

Additionally, we observe that the CLBF performs poorly
even on both toy examples. We believe there are two reasons
for this.
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Fig. 8: Ground collision avoidance and stabilization to a low altitude flight corridor for the F16 fighter jet system.

1) Learning of the CLBF assumes that the control-invariant
set is known (or can be sampled from) a-priori. However,
in the experiments considered in this work, we do not
assume knowledge of these sets. While we do give CLBF
a small region around the equilibrium subset of the
goal region, information that was not available to other
algorithms, this was not enough for CLBFs to perform
well.

2) The learning problem formulated in [14] is under-
parametrized. More specifically, given any CLBF V which
satisfies the CLBF conditions, αV will induce the same
set of feasible constraints and will perform identically to
V . However, if V does not satisfy the CLBF conditions,
the violation error can be reduced arbitrarily by taking
α → 0. This yields a value function where regions close
to the goal set have near-zero gradients which may violate
the CLBF conditions and compromise the controller’s
performance, which we have observed empirically in our
experiments.

In contrast, the proposed EFPPO algorithm can perform
well even when large areas of the state space are not control-
invariant as in our experiments. This is due to two reasons: (a)
z does not affect the magnitude of the gradients directly, unlike
λ which scales the gradients of the constraint (and also the cost,
if the reweighing scheme from [45] is used). Consequently,
while z → ∞ will make no difference to EFPPO (if the z
feature variable is normalized correctly), taking λ → ∞ will
cause the Lagrangian to diverge and cause training instabilities.
(b) Since z can be interpreted as a “cost budget” and it is easier
to estimate an upper-bound on costs, we can afford to solve
the two-stage optimization problem sequentially. In contrast, it
is much harder to bound the optimal λ since the units of “cost
to constraint ratio” is more difficult to reason about.

VIII. CONCLUSION

We present a new method for synthesizing nonlinear feedback
controllers for performing stabilization while maintaining

safety under control constraints. By formulating the stabilize-
avoid problem as an infinite-horizon epigraph-form constrained
optimal control problem and applying deep reinforcement
learning, our approach is able to sidestep numerical challenges
that other methods face and achieve vastly larger regions of
attraction while still maintaining safety for high dimensional
complex systems.
Limitations and future work: The EFPPO algorithm currently
splits the task of learning V, π and z∗ into separate stages
of optimization, and relies on random sampling of z in
the first stage to cover the state-space. However, given the
structure of the epigraph form constrained OCP, it should be
possible to perform both optimizations simultaneously such
that only a single stage of optimization is required. Moreover,
the current method does not account for model errors and
parametric uncertainties which may compromise the safety
and stability of the learned controllers. An extension of the
current method to consider this would allow for more robustness
when deploying such a controller to the hardware systems
in the real world. Additionally, PPO is an on-policy online
reinforcement learning algorithm. Consequently, a simulator
of the dynamics is necessary to solve the EF-COCP problem.
Extending this work to off-policy offline reinforcement learning
setting will allow our method to be applied to settings when a
dynamics simulator is not available. Finally, it is difficult to
provide useful statements about the convergence of practical
DeepRL algorithms. Nevertheless, it is important to understand
properties of the learned policy, especially as violations of
safety constraints are serious and undesirable in any system.
We leave this as future work.
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