
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Bridging Active Exploration and Uncertainty-Aware
Deployment Using Probabilistic Ensemble Neural

Network Dynamics
Taekyung Kim∗, Jungwi Mun∗, Junwon Seo, Beomsu Kim, and Seongil Hong

AI Autonomy Technology Center, Agency for Defense Development

Fig. 1: Overview diagram of our unified model-based reinforcement learning framework with dynamics learning. In exploration
phase, a parallelized ensemble neural network serves as the robot dynamics and outputs the estimated posterior distribution of the
next state. To enable active exploration, we quantify epistemic uncertainty by measuring the ensemble disagreement via Jensen-
Rényi Divergence. In deployment phase, the neural network dynamics trained during the active exploration phase is applied
directly to perform uncertainty-aware control. We transfer the neural network dynamics for uncertainty-aware deployment with
minimal modification. Project page: https://taekyung.me/rss2023-bridging

Abstract—In recent years, learning-based control in robotics
has gained significant attention due to its capability to address
complex tasks in real-world environments. With the advances
in machine learning algorithms and computational capabilities,
this approach is becoming increasingly important for solving
challenging control problems in robotics by learning unknown
or partially known robot dynamics. Active exploration, in which
a robot directs itself to states that yield the highest information
gain, is essential for efficient data collection and minimizing
human supervision. Similarly, uncertainty-aware deployment has
been a growing concern in robotic control, as uncertain actions
informed by the learned model can lead to unstable motions
or failure. However, active exploration and uncertainty-aware
deployment have been studied independently, and there is limited

∗These authors contributed equally to this work

literature that seamlessly integrates them. This paper presents
a unified model-based reinforcement learning framework that
bridges these two tasks in the robotics control domain. Our
framework uses a probabilistic ensemble neural network for
dynamics learning, allowing the quantification of epistemic un-
certainty via Jensen-Rényi Divergence. The two opposing tasks
of exploration and deployment are optimized through state-of-
the-art sampling-based MPC, resulting in efficient collection of
training data and successful avoidance of uncertain state-action
spaces. We conduct experiments on both autonomous vehicles and
wheeled robots, showing promising results for both exploration
and deployment.

I. INTRODUCTION

Learning-based robotic control has been an increasingly
active research topic in recent decades, pushing the boundary

https://taekyung.me/rss2023-bridging

of robotic control tasks with new capabilities through model-
free reinforcement learning [1, 2, 3, 4], model-based rein-
forcement learning [5, 6, 7, 8, 9, 10, 11], and robot dynamics
learning [12, 13, 14, 15]. There are two key aspects that are
commonly taken into account while deploying an intelligent
robot. The first is to assure safety, and the second, if at all
possible, is to achieve maximum performance.

Model-based methods have been regarded as being advan-
tageous in robotic applications over pure model-free strategies
for various reasons. Firstly, sample efficiency is essential since
real-world samples are highly expensive in terms of time,
labor, and finances [16]. Secondly, humans are primarily more
intuitive about how to incorporate prior knowledge into a
model compared to a policy or value function [14, 17]. Lastly,
models are task-agnostic and may thus be utilized to optimize
arbitrary cost functions, whereas the majority of model-free
policies are bounded to a specific task.

These benefits have led to recent control paradigms that
include dynamics learning into a model-based control frame-
work, outperforming the conventional methods that rely
on manually tuned models based on human insights into
physics [10, 18, 19]. This scheme may also be described as
a model-based reinforcement learning problem, as the model
is continuously trained to provide a more accurate represen-
tation of the system, while an optimization-based controller
serves as the policy. Such a control framework possesses the
inherent flexibility to dynamically adjust during execution,
for instance, to changing target speeds or actuator limits.
Gaussian Process (GP) is a typical regression method in model
learning problems due to its advantageous features, such as
the ability to cope with small data samples and incorporate
prior knowledge [6, 20]. However, it does not scale well to
large datasets and to high-dimensional systems. To mitigate
this issue, recent robotics studies have benefited from neural
networks owing to their universal function approximation
properties with high model capacity.

The limitation of these model-based control frameworks is
that the accuracy of the learned model drastically affects the
control performance [21]. However, the real-world is fraught
with uncertainty, making the model learning problem complex
and challenging. There are two primary viewpoints within
the robotics community that tackle inevitable uncertainty in
opposing ways.

A spontaneous solution would be to prevent the robot
from entering uncertain state-action spaces to evade unpre-
dictable motions. This is a straightforward strategy, given
that an inaccurate prediction of the dynamics model might
result in substantial losses in control performance and, in
the worst case, instability. We refer to such an uncertainty-
averse strategy as uncertainty-aware deployment (or safety-
aware deployment), and it is usually applied during execution
after completing the robot’s training.

The exact opposite of the above strategy is to deliberately
visit unexplored state-action spaces that provide high uncer-
tainty. The hypothesis is that by trying to explore uncertain
segments of the learned model, it can learn more precise

representation of the system with fewer samples and discover
behaviors with higher performance. Such uncertainty-seeking
strategy is known as active exploration, and it is considered
during the early phase of training data exploration.

We argue that these opposite yet analogous strategies
addressing uncertainty must be entailed concurrently in a
learning-based control framework. No matter how much data
is gathered through active exploration, the uncertainty that
eventually has not been eliminated needs to be monitored
and avoided throughout robot deployment. Conversely, when
we take the model uncertainties for risk-averse planning, they
are only meaningful if the model is trained with the right
data; otherwise, the controller will produce erroneous motions.
Nevertheless, these two approaches have largely been studied
independently, and there is little literature that integrates them
in a seamless manner.

This paper introduces a unified model-based reinforcement
learning framework in a robot dynamics learning setting,
seamlessly bridging active exploration and uncertainty-aware
deployment to fulfill both safety and maximum performance.
Fig. 1 shows that the proposed framework consists of two
phases. In exploration phase, a parallelized ensemble neural
network serves as the robot dynamics and outputs the esti-
mated posterior distribution of the next state. In deployment
phase, the neural network dynamics trained during the active
exploration phase is applied directly to perform uncertainty-
aware control. Both tasks are optimized using the state-of-the-
art sampling-based Model Predictive Contorl (MPC), which,
owing to its property, allows the insertion of arbitrary cost
functions after training.

In summary, the contributions of this paper are as follows:
• We introduce a fully parallelized probabilistic ensemble

neural network that is sensitive to uncertainty in order to
learn robot dynamics.

• We separate epistemic uncertainty from model disagree-
ment for active exploration.

• We transfer the neural network dynamics for uncertainty-
aware deployment with minimal modification.

• We conduct extensive experiments with our framework
on both autonomous vehicles and wheeled robots, out-
performing the compared methods by a large margin.

II. RELATED WORKS

A. Model Learning with Uncertainty

A regression model capable of accurately capturing the
nonlinear dynamics is essential for model-based control in
uncertain environments with nonlinearity. Data-driven models
approximating the robot’s forward dynamics have been exten-
sively studied in numerous prior research, including GP [6,
20], time-varying linear models [22], set-membership identifi-
cation [23, 24], locally weighted projection regression [25, 26],
etc. GP has long been favored in dynamics learning given its
simplicity and its inherent nature to account for both types of
uncertainty: aleatoric uncertainty and epistemic uncertainty.

Aleatoric uncertainty arises from intrinsic stochasticities
present in a system, such as observation noise and process

noise. Epistemic uncertainty, however, originates from a lack
of sufficient data to uniquely determine the underlying char-
acteristics of the target system in an approximated model. An
ideal model trained with an infinite number of data may have
zero epistemic uncertainty, but it is not feasible to eradicate it
completely in a realistic setting.

Neural networks are known for being tractable to large
training datasets while assuring constant-time inference and
having the potential to learn highly complex and even non-
smooth robot dynamics. The recent breakthrough in the field
of dynamics learning is that neural networks may also capture
both types of uncertainty by using an ensemble of probabilistic
neural networks [27]. Vlastelica et al. [28] proposed to quan-
tify epistemic uncertainty by taking empirical variances over
the means and variances of the propagated posterior distribu-
tion of each ensemble. We investigate further to determine a
more exact epistemic uncertainty in order to provide a better
exploration bonus (which is discussed in Section IV-A).

B. Active Exploration

Human-supervised data collection is time-consuming and
can be biased by the fact that manual control of the robot
may not encompass all of its possible motions. As a remedy,
it was suggested that the agent should plan exploration by
directing itself to the states that yield the largest information
gain, therefore performing active exploration [29]. In general,
the measured model uncertainty is leveraged as the explo-
ration motivation to minimize the required amount of data to
gather [30].

We argue that the exploration strategy should be imaginary
and online. If the agent is reactive to immediate curiosity [31],
which is the opposite to being imaginary, it disregards the
long-term effects of control actions to the system. Conse-
quently, it must struggle in realms of underactuated continuous
control [32]. In addition, since most robotic systems are
intrinsically stochastic, the real trajectories would quickly
diverge from the planned ones. Therefore, it is desirable to
plan future trajectory online at every time step, rather than
relying on the optimized trajectory found offline as in [32].

Several studies address model-based active exploration
based on the above hypothesis. Examples of this line of
research include the work in [33, 34, 35], in which model-free
policies are employed to maximize expected information gain
in a specific task. In [36], GP is used for model learning, while
a gradient-based MPC handles the information gain acquired
from the GP model. In this work, we adopt sampling-based
MPC as a policy and demonstrate that it is scalable to handle
uncertainty derived from neural networks.

C. Safe Deployment

Uncertainty-averse deployment has been addressed as a
major concern throughout robotic control history, and there is
a growing interest in its application to model-based reinforce-
ment learning. The uncertain actions informed by the learned
model may result in unstable motions or even catastrophic
failure.

Kahn et al. [9] incorporated the estimated uncertainty as
a cost to learn collision avoidance. Yu et al. [37] penalized
uncertainty of the dynamics in an offline reinforcement learn-
ing setting to resolve the distributional shift issue. Wang et
al. [38] treated trajectories having greater uncertainty than a
certain threshold as constraint conditions in an application
of rough terrain navigation. Similar to [38], we penalize
uncertainty with both soft and hard costs to maximize the
control performance while ensuring safety.

III. METHODS

A. Probabilistic Ensemble Neural Network

Consider a general continuous time system dynamics
ẋt+1 = F(xt,ut) where F is a nonlinear function, xt ∈ Rn

and ut ∈ Rm are the observed state vector and applied action
input at time t, respectively. To account for both aleatoric and
epistemic uncertainty, we use Probabilistic Ensemble Neural
Network (PENN) to approximate the unknown dynamics F
via data-driven manner [27, 39].

Each neural network predictive model Eb of the ensemble
members outputs a Gaussian distribution conditioned on the
model input:

Eb(xt,ut; θb) = N (µθb
(xt,ut),Σθb(xt,ut)) , (1)

where µ and Σ are the mean and the diagonal covariance
parameterized by the model parameter θb. Given a collected
dataset of transitions D ≜ {(xt,ut, ẋt+1)}N−1

t=0 with the size
of N , the probabilistic model can be trained with the Gaussian
Negative Log-Likelihood (NLL) loss function:

Ltrain(θb) =

N−1∑
t=0

[
µθb

− ẋt+1

]⊤
Σ−1

θb

[
µθb

− ẋt+1

]
+ log [detΣθb] .

(2)

Note that random initialization is applied individually to each
ensemble member, resulting in mutually independent initial
weights. Consequently, the only difference between the en-
semble members is their initial model parameters.

Consequently, the stochastic dynamics function predicting
the next state can be interpreted as a Gaussian Mixture
Model (GMM) of the B ensemble members:

F(θ1:B) =

B∑
b=1

πbEb(xt,ut; θb) , 0 ≤ πb ≤ 1 . (3)

Here, we simply use equal weights ∀πb =
1
B . Then, the next

state of the system during iterative trajectory rollouts can be
defined as:

xt+1 = xt + E [Eb(xt,ut; θb)]∆t , b ∼ {1, . . . , B} . (4)

B. Model Predictive Active Exploration

To boost the model learning process, we introduce an active
exploration strategy in the training phase. We encourage the
robot to seek automatically to visit currently unforeseen state-
action pairs for training data. To this end, ensemble model
disagreement D can be used as exploration bonuses [33]. One

possible solution is to measure the empirical variance over the
predictive samples ˜̇xt+1 from the posterior distribution of each
ensemble member:

U(xt,ut) = Var

({
˜̇xt+1 ∼ Eb(xt,ut)

}B

b=1

)
, (5)

which is referred as uncertainty sampling. However, this
method cannot distinguish epistemic uncertainty from aleatoric
uncertainty. Importantly, the robot should only be inquisi-
tive about the epistemic uncertainty and not the aleatoric
uncertainty; otherwise, it will be obscure if this exploration
bonus resulted from a lack of knowledge or from inherent
and irreducible system stochasticity, such as model ambiguity
or sensor noise [32].

Kullback–Leibler (KL) divergence is the most well-known
metric for measuring the disagreement between distributions
to obtain epistemic uncertainty. However, KL divergence is
asymmetric and can only be used to determine the distance
between two distributions. Therefore, we employ Jensen-Rényi
Divergence (JRD)

JRD (E1:B ;α) ≜ Hα

(
B∑

b=1

πbEb

)
−

B∑
b=1

πbHα (Eb) , (6)

where the Rényi entropy [40] of a random variable X and its
corresponding density function p(x) is defined as:

Hα(X | x ∈ X) =
1

1− α
log

∫
p(x)αdx . (7)

While an approximation of the JRD can be obtained
via Monte-Carlo sampling, it is computationally expensive,
thereby precluding real-time implementation. To circumvent
this problem, Wang et al. [41] introduce a closed-form JRD
with quadratic entropy (α = 2) for analytical measurement of
the divergence of a GMM:

D(xt,ut;E1:B) = − log

[
1

B2

B∑
i,j

D (Ei,Ej)

]
+

1

B

B∑
i

log [D (Ei,Ei)] ,

(8)

where

D (Ei,Ej) =
1

|Φ| 12
exp

(
−1

2
∆⊤Φ−1∆

)
, (9)

Φ = Σθi +Σθj and ∆ = µθi − µθi .
Using this metric, Shyam et al. [33] presented a novel active

exploration strategy by measuring the ensemble model dis-
agreement along the future predictions. The proposed method
trained a model-free policy to harness this time-varying and
intricate exploration bonus. However, due to the sample in-
efficiency and the inability to adjust the trained policy to
achieve modified task-specific objectives, this method has
difficulty being used to robotic applications. To make these
limitations tractable, we here employ Model Predictive Path
Integral (MPPI) control [8] as a policy.

MPPI is the state-of-the-art sampling-based MPC that en-
ables real-time implementation with the aid of Graphic Pro-
cessing Units (GPUs) due to its parallelizable structure [18].
Denoting by U = {u0, . . . ,uT−1} with a fixed time hori-
zon T , the MPPI algorithm seeks an optimal control se-
quence U∗ such that:

U∗ = argmin
U

E

[
ϕ(xT) +

T−1∑
t=0

L (xt,ut)

]
, (10)

where ϕ (·) is a state-dependent terminal cost. In general,
the running cost with the quadratic control cost with control
weight matrix R takes the form:

L (xt,ut) = q (xt) +
1

2
u⊤
t Rut . (11)

Note that the state-dependent running cost q (·) can be arbi-
trary functions, allowed by the sampling-based optimization
scheme that is capable of solving non-convex problems. Con-
sequently, we can include the information gain obtained from
the model disagreement (8) into the controller’s objective (11)
in order to jointly achieve task-dependent cost optimization
and active exploration:

Lactive (xt,ut) = q (xt) +
1

2
u⊤
t Rut − wD D(xt,ut) , (12)

where wD > 0 is a weighting constant. As a result, the
robot is encouraged to choose behaviors that lead to exploring
uncertain state-action spaces of the dynamic model, while still
attempting to minimize the task-specific error.

The above characteristic facilitates the robotics applications
of this method in three ways. First, the controller actively seeks
states and actions having high epistemic uncertainty, i.e., for
which there are little training data, in the vicinity of the set
task objective. Thus, the trained model is completely tailored
for instantaneous deployment. Second, it is conceivable to
determine when the exploration phase may be terminated;
specifically, it is when the robot optimizes mostly for the task
cost. As training data accumulate, the ensemble models will
gradually converge toward increasingly similar predictions,
resulting in a progressive decrease in model disagreement.
Finally, the robot will be able to adapt to the changes in task
costs and to solve the modified tasks without re-training.

C. Uncertainty-Aware Deployment

After sufficient training time, the robot may be deployed
to perform some designated tasks. In the deployment phase,
we generally regard that there are no human supervisors and
no further dynamics update. Recent research has shown that
parallel ensemble neural networks are capable of learning
dynamics online [42]. However it is orthogonal to the goal
of this paper, and our method also can benefit from this
consideration. For successful operations, the robot must avoid
unpredictable situations, which can be accomplished by incor-
porating uncertainty into safety violations, regardless of the
source of uncertainty. For instance, a data point may have
no disagreement across ensembles due to sufficient training

data (low epistemic uncertainty), but we must still avoid this
point if the variance of the predicted posterior distribution is
high (high aleatoric uncertainty).

In this phase, we use a variant of the MPPI algorithm
called Smooth MPPI (SMPPI) [43]. SMPPI shares the same
information-theoretic roots as MPPI, and it also benefits from
the structure of parallel trajectory evaluation. However, SMPPI
lifts the control variables as derivative actions, so that the
noisy sampling is performed on a higher order domain U̇ =
{u̇0, . . . , u̇T−1}. Let us denote the resulting optimal control
trajectory after the optimization process as U̇∗

i+1 at MPC
iteration step i. Then, the optimal action trajectory U∗

i+1, which
will be used as the actual commands sent to the robot, is
obtained by the integral with respect to the MPC iteration
horizon: U∗

i+1 = U∗
i + U̇∗

i+1∆i, where ∆i represents the
control updating period of MPC and is commonly equal
to ∆t. This new action trajectory update law allows the
controller to rapidly respond to changing environments while
using significantly lower sampling variance, thus alleviating
the chattering in resulting commands. Furthermore, we can
apply an extra action smoothing cost Ω(U) along trajectory
rollouts:

Ω(U) =

T−1∑
t=1

(ut − ut−1)
⊤ω (ut − ut−1), (13)

where ω ∈ Rm×m is the weighting parameter. Such action
cost was not eligible in the MPPI baseline with non-affine
dynamics because it violates the information theoretic deriva-
tion [43]. As a result of these smoothing effects, SMPPI is
not suitable for rapid exploration in underactuated continuous
control systems but is beneficial for deployment.

To achieve risk-averse planning, taking into account both
aleatoric and epistemic uncertainty, we employ the results
of uncertainty sampling (5) as uncertainty measurements.
A simple addition of the quantified uncertainty to the cost
function would make the controller uncertainty-aware, as the
following form:

Lnaive (xt, u̇t,ut) = q (xt) +
1

2
u̇⊤
t Ru̇t + w1U(xt,ut), (14)

where w1 > 0 is a weighting constant. It is important to
point out that the measured uncertainty through sampling is
not differentiable with respect to state and action. Sampling-
based MPC is capable of optimizing any arbitrarily crafted
cost functions, making such a form of uncertainty tractable.
Similarly, we take use of this trait by imposing an impulse-like
penalty where uncertainty exceeds a threshold ξ:

Lhybrid (xt, u̇t,ut) = q (xt) +
1

2
u̇⊤
t Ru̇t + w1U(xt,ut)+

w2 I
({∣∣∣U(xt,ut)

∣∣∣ > ξ
})

,

(15)
where w2 ≫ w1 is a weighting constant and I is an indicator
function. It is an intuitive consideration because we never
want to allow the robot to take actions that are completely
unpredictable.

Following is the final objective function of SMPPI:

U̇∗ = argmin
U̇

E

[
ϕ(xT)+Ω(U + U̇∆i)

+

T−1∑
t=0

Lhybrid (xt, u̇t,ut)

]
.

(16)

D. Implementing Neural Network Vehicle Dynamics

Given that we have made no assumption on the specific
robotic platform in our framework, we argue that it is appli-
cable to any kind of robotic system. In this work, we focus on
autonomous vehicle and wheeled robot applications to validate
our idea. We choose the robot’s state and action input based on
the dynamic bicycle model since it provides a good trade-off
between model accuracy and simplicity for real-time imple-
mentation [13]. The dynamic state variable x = (vx, vy, r)

⊤

consists of longitudinal velocity, lateral velocity, and yaw rate.
These states can be easily measured by using GPS and IMU
sensors. The action input u = (δ, vdes)

⊤ consists of the
steering angle and desired speed. The desired speed is sent
to the low-level Proportional-Integral (PI) controller, which
determines the throttle and brake.

Since these state and action variables are simplified repre-
sentations of the full robot dynamics, there exists irreducible
model ambiguity. For example, the roll and pitch motions are
not considered in the bicycle model. Automatic gear shifting
encompasses non-smooth and time-varying dynamics charac-
teristics, hence increasing the lower bound of model bias.
We alleviate this problem by providing the history of state-
action pairs to the neural network input so that it can extract
contextual information [44, 45]. The history length H must
be carefully determined, because as H increases, the state-
action space that has to be discovered becomes exponentially
larger, making the exploration problem more difficult. We
select H = 4 in this work through an ablation study in the
history length (see Section VI-A). Although LSTM [46] and
GRU [47] show slightly better prediction performances than
Multi-Layer Perceptron (MLP) (see Section VI-A), we choose
MLP since its operations are fully parallelizable.

We take the parallel ensemble MLP implementation by
philipjball [48] and adapt it for our task. Let us denote the
weight and the bias of a layer of an ensemble model Eb

as Wb and bb, respectively. Then, the parameters of all
ensemble models can be represented in the form of batches of
matrices: W = [W⊤

1 , . . . ,W
⊤
B]

⊤, b = [b1, . . . ,bB]
⊤. First,

we initialize the parameters of each ensemble model according
to the size of the layer input nin:

Wb, bb ∼ U
(
−
√

1

nin
,+

√
1

nin

)
,∀b ∈ {1, . . . , B}, (17)

where U is uniform distribution. While training the model
with collected data, the forward propagation of each ensemble
model is computed through

ob = W⊤
b z+ bb, ∀b ∈ {1, . . . , B}, (18)

where z and o are the input and the output of the layer, respec-
tively. The gradients of the Gaussian NLL loss function (2)
can be obtained through automatic differentiation packages
such as Pytorch autograd [49]. This process is identical
to the common way we use MLP. While using the model as
the dynamics of the robot, on the other hand, the forward
propagation of the entire ensemble model is defined as batch
matrix-matrix multiplication and addition:

[o1, . . . ,oB]
⊤ = W⊤ ⊙ [z, . . . , z]⊤ ⊕ b, (19)

where ⊙ and ⊕ are element-wise operations. This parallelized
forward propagation (19) can be implemented using Pytorch
baddbmm function. Therefore, with the aid of sufficient GPU
resources, we can simultaneously predict the next state and
obtain uncertainty using PENN dynamics in a fixed-time
duration regardless of the number of ensembles. This strat-
egy maximizes the benefits of the parallel sample evaluation
property of the MPPI framework.

IV. EXPERIMENTS

Our experimental evaluations address the following key
questions: (Q1) Can our method explore the state-action space
with sufficient sample efficiency (see Section IV-A)? (Q2)
Can the PENN taught with active exploration be used for
long horizon planning, even if the task objective has been
modified after training (see Section IV-B)? (Q3) Can our
method be turned directly into an uncertainty-aware controller
with minimal modification (see Section IV-C)? (Q4) Is our
method scalable to other robot platforms (see Section IV-D)?

We evaluate Q1-Q3 in a high-fidelity vehicle dynamics
simulator - IPG CarMaker. We build the modeling and simu-
lation system by integrating the algorithms using ROS 2 [50].
A Land Rover Defender 110 is used as the control vehicle.
The low-level PI controller runs at 100 Hz, and the control
parameters KP,KI are set to {0.35, 1.0} for throttle and {0.18,
0.3} for brake. To simulate sensor noise, we add 10% of
i.i.d. Gaussian noise to each dynamic state observation in
x. MPPI is used in the active exploration experiments (Q1),
and SMPPI is used in the deployment experiments (Q2-Q3).
Table I lists the parameters of two controllers, while the
remaining parameters not specified in this paper are taken from
the SMPPI implementation [43].

TABLE I: Control parameters of MPPI and SMPPI. Note that
the action smoothing cost with ω only applies to SMPPI.

Parameters MPPI [18] SMPPI [43]
∆t 0.1 s 0.1 s
∆i 0.1 s 0.1 s
K 5,000 5,000
T 10 35

Sampling Variance Diag(4.0, 3.0) Diag(1.6, 0.4)
ω N/A Diag(0.4, 0.1)

We use a four-layer MLP with the hidden layer sizes {40,
80, 120, 40} throughout all experiments. Rectified Linear

Unit (ReLU) [51] is used as activation functions. Similar to
[27], we use five ensembles (B = 5) for real-time implemen-
tation.

A. Model Predictive Active Exploration

Experimental Setup. In this experiment, we evaluate the
effectiveness of the active exploration strategy (Q1). We let
the robot seek for training data on a large flat ground with
0.7 friction coefficient. The task objective is to maintain the
50 km/h target speed (vtarget) while staying inside the space
boundary. Accordingly, the task-dependent running cost q(xt)
is defined as follows:

q(xt) = α1Track(xt) + α2Speed(xt) ,

Track(xt) = (0.9)t 10000M(px, py) ,

Speed(xt) =

(√
vx2 + vy2 − vtarget

)2

.

(20)

α(·) are empirically tuned weighting constants. The track cost
imposes a hard penalty to prevent collisions. The given map M
indicates whether the robot position (px, py) is at the outside
of the space boundary.

We assume that there are human monitors who supervise
the exploration phase. They disengage the robot’s autonomy
before the robot reaches the space boundary or before the robot
enters dangerous situations. We empirically assume this period
as 30 s. While the human supervisors setting up the robot for a
new trial, the PENN is trained with the collected data offline.
We refer to this process as one iteration for exploration.

Methods Evaluated. We evaluate the following methods
including ours:

1) Ours: a model predictive active exploration strategy,
which optimizes the objective function of (12). The epistemic
uncertainty measured by JRD (8) serves as the information
gain. We set the information gain weighting constant wD as
100.

2) Uncertainty Sampling (US): an uncertainty sampling
counter-part of our method, which uses the uncertainty quan-
tified through sampling over each ensemble posterior distribu-
tion as the information gain. The substitution of JRD (8) with
uncertainty sampling (5) in (12) is used as its running cost.
We use the same weighting wD = 100 as our method since
the quantified information gain in both methods is of similar
magnitude in our implementation.

3) Jensen-Rényi Divergence Reactive Exploration (JDRX):
a reactive counter-part of our method [33]. We simply imple-
ment this based on our method by setting the planning horizon
to T = 1, which explores greedily without planning based on
the experience collected so far.

4) Random Noise (RN): a random exploration strategy,
which injects noise in the action input. Its objective function
is (11) and there is no information gain. We sample random
noise from the Gaussian distribution with the same variances
as the sampling distribution used by MPPI.

All the compared methods are evaluated with the same
control parameters and the same model training setting with
a fixed random seed. While training the model offline, we

randomly split the collected data D into the training and test
sets with a 7:3 ratio. The PENN is trained using the Adam
optimizer with a learning rate of 0.001. We save the model that
shows the best test sets performance during 10 epochs, and use
this model as the robot dynamics F in the next iteration.

Fig. 2: The volumes of the
convex hulls along exploration
iterations.

Experimental Results.
We first evaluate how
much of the state-action
space each method has
covered. We compute the
convex hull [52] with the
collected state and action
data {xt,ut}N−1

t=0 at each
iteration, and analyze the
volume enlargement of
the convex hulls [53] (see
Fig. 2). The results indicate
that JDRX cannot explore
the state-action space
efficiently. Also, the
volumes of ours and RN show comparable magnitudes while
consistently exceeding those of US.

We further analyze the collected data points in detail.
Similar to as Spielberg et al. [54], we focus on the state
envelope of sideslip β and yaw rate r, since precise motion
predictions with large sideslip angles and rotational speed are
crucial to the success of high-speed driving on sharp curves.
The results are shown in Fig 3. JDRX is not able to collect
driving data with high yaw rates. This is because it reacts
immediately to the trivial information gain near the current
state and is unable to plan for higher information gain in
the future. On the other hand, ours always covers the largest
state space among the compared methods. This is because
ours can plan over a longer horizon to gather drifting data by
ignoring the aleatoric uncertainty exudes from plain driving.
Our method has collected a substantial amount of data with
β around 0.2 rad (approximately 11.5 ◦), and even data with
β around 0.3 rad (approximately 17.2 ◦). Lastly, we stress
that the data collected by RN is not helpful for achieving the
driving tasks, despite it showing a similar enlargement in the
convex hull to our method. We will further discuss this in
Section IV-B.

B. Direct Deployment

Experimental Setup. We take the resulted PENNs of active
exploration as the robot dynamics and directly evaluate their
performances in long horizon planning (Q2). We load the best
models at each iteration and monitor the control performance
improvements of the PENNs of the compared methods. The
performances are evaluated in a race track with three moderate
curves and five sharp curves (see Fig. 4a). We set the friction
coefficient of the track to 0.7.

In this experiment, the objective of the robot is to drive
through the race track at a speed as close to vtarget as pos-
sible, while staying inside of the track. We modify the task-

dependent cost q(xt) as follows:

q(xt) = α1Track(xt) + α2Speed(xt) + α3Stable(xt). (21)

The track cost and the speed cost are nearly identical to
those in the exploration phase. The given map M is modified
accordingly to the new race track. The target speed vtarget is
adjusted to 45 km/h. We add the stabilizing cost that imposes
a hard penalty on large sideslip angles β to prevent the robot
from losing its stability:

Stable(xt) = 10000 I ({|β| > 0.3}) ,

β = −arctan
(

vy
∥vx∥

)
.

(22)

We set the planning horizon to T = 35, which is 3.5 s, to
compare the performances in long horizon planning. Note that
no information gain is provided to the objective function, so
the controllers are uncertainty-neutral.

Experimental Results. The results are shown in Fig. 4. At
the sharpest corners of #3, #7, and #8, in order to drive
through them without losing significant speed, the vehicle
should gently slow down before entering the corners and drift
continuously. If the vehicle cannot perform drifting maneuvers,
it will nearly stop in the middle of the corners or even collide
with the track boundary. Moreover, if the predictions of the
dynamics are not accurate, the vehicle may enter a saturated
drifting region and become uncontrollable.

First, we count the number of times that each method
completes the whole track without driving outside of the given
boundary (see Fig. 4b). JDRX is not able to complete the
whole lap. Reactive exploration limits the robot to acquiring
only insignificant information gain in the vicinity of the current
state. As a result, it fails to collect high-speed driving data
for training and to produce accurate predictions in states with
high speeds. RN shows improvement as it collects more data
through repeated iterations. However, it only relies on coinci-
dental actions that lead to collecting novel data. Our method
achieves the best results among the compared methods, and
its performance steadily improves as more data is collected.

Interestingly, the performance of US improves in the early
stages, but after 100 iterations, its performance continuously
decreases. It implies that collecting more data does not
necessarily improve the prediction performance. Since US
cannot separate the source of uncertainty, it may repeatedly
collect the same data showing naive motions. Therefore, the
model is trained to make increasingly better predictions on
these superfluous data while neglecting the data representing
important driving characteristics.

We also analyze the control performance in terms of
speed (see Fig. 4c) and stability (see Fig. 4d) during each
trial. Our method has effectively regulated the speed cost
compared to the other methods. The results also show that RN
violates the stabilizing constraints far more frequently than our
method. It demonstrates that the collected data from RN do
not effectively contribute to achieving the given task, since
they omit crucial training data such as high-speed drifting

Fig. 3: The scatter plots of collected data during active exploration. The data are from 10, 30, 100, and 300 iterations,
respectively. During all iterations, ours using JRD information gain covers the largest state spaces of sideslip angle and yaw
rate compared to other methods.

maneuvers. Only our method successfully drives through the
race track at high speeds without losing stability.

C. Uncertainty-Aware Deployment

Experimental Setup. We assumed that the exploration
phase was performed in a large open space under human
supervision. However, in deployment phase, there is no such
monitoring to guarantee safety. In this experiment, we validate
that our active exploration policy can be transferred to an
uncertainty-aware controller with minimal modification.

To highlight the influence of the uncertainty-aware control
strategy, we augment the dynamics to be terrain-aware by
feeding the elevation map to the neural network. We assume
that a 2.5D elevation map with a 0.1 m grid size is provided
by one of the existing methods that can generate these maps
from raw sensor input in real time [55, 56]. The map encoder
network consists of an 8-channel convolutional layer and a 4-
channel convolutional layer, both with a kernel size of 3 and
a stride of 2 [57]. The output of the encoder is concatenated
with the history of state-action pairs and fed into the original
MLP model that had been used throughout the previous
experiments. We use the data collected by our method, which
shows the best performance in direct deployment experiments,
to train the augmented dynamics. During training, the elevation
map is randomly generated from the Gaussian distribution of
N (0, 0.2).

Following our prior work [58], we design a realistic off-
road environment with various components including large
bumps and randomly patterned rough terrains (see Fig. 5).
We also add non-traversable elements such as trees, bushes,
and wooden pillars, and they are included in the given map M
for collision avoidance.

Methods Evaluated. We take the same task-dependent cost
function (21) used in the direct deployment experiments. The
target speed vtarget is adjusted to 30 km/h. The key difference
between these two deployment tasks is that we here include
uncertainty in the control objective. We evaluate the following
uncertainty-averse strategies:

1) Uncertainty-Neutral (UN): a uncertainty neutral strategy
that does not take uncertainty into account while planning. It

uses the same objective function as the one used in direct
deployment experiments.

2) Naive Penalty (NP): a simple uncertainty-aware strategy
that penalizes a linear cost on quantified uncertainty. It uses
(14) as the objective function with w1 = 1000.

3) Hybrid: an uncertainty-aware strategy that has both soft
and hard costs. It uses (15) as the objective function with
w1 = 1000, w2 = 10000, and ξ = 0.15. Note that the hard
cost penalizes states that are estimated to have uncertainty
greater than ξ with the same magnitude as a collision with the
track boundary.

4) Conservative: a conservative strategy that controls the
vehicle as stable as possible. It uses (15) as the objective
function with w1 = 0, w2 = 10000, and ξ = 0.02.

Experimental Results. We visualize the trajectories taken
by the compared methods in Fig. 5. To illustrate the vehicle’s
stability, we display the rotational impacts exerted on the
vehicle during driving onto the trajectories. We simply use
angular momentum, obtained by the squared sum of roll
rate and pitch rate. We normalize the angular momentum
by the maximum angular momentum value across all trials.
Therefore, a trajectory with a darker color represents that the
vehicle is more unstable. The angular and vertical motions
of the vehicle during experiments are shown in Table II for
quantitative evaluation.

Although UN can control the vehicle at the reference speed
while avoiding collisions with obstacles and staying on track,
it fails to circumvent uncertain regions because it is blind
to uncertainty. It drives over the bumps at Scenario #1 and
Scenario #5, eventually resulting in overturning. NP has opted
for terrain with less uncertainty and, as a result, has chosen
moderate terrain rather than the high bumps (see Scenario #1
and Scenario #5). However, it fails to circumvent the largest
bump at Scenario #3. On the other hand, Hybrid decides
to slow down before the bump and take a detour to satisfy
the safety criteria, despite the speed penalty. Conservative
is a reasonable option in practical applications because it
minimizes the damage to the robot. It takes the most secure
trajectory as can be seen at Scenario #4 and Scenario #5
due to the low uncertainty threshold. The trajectory taken by

(a) (b)

(c) (d)

Fig. 4: (a) The race track designed in the IPG CarMaker simulator for direct deployment experiments. We visualize the vehicle
trajectory taken by our method at 300 iterations for driving 10 laps in a counter-clockwise direction. (b) The number of times
that each method completes the whole lap during every 50 iterations. (c) The average speed cost for each saved model along
exploration iterations. The shaded areas denote a 95% confidence interval. (d) The number of trials of each method that violates
the stabilizing constraints at least once, i.e., having larger sideslip angles than 0.3 rad, during every 50 iterations.

TABLE II: The average and maximum motions of the vehicle across all trials. The vertical motions include vertical velocity
and vertical acceleration. The angular motions include velocities and accelerations of roll and pitch, respectively. Hybrid and
Conservative experience lower terrain impacts than UN and NP by a large margin.

Method Vertical Vel. [m/s] Vertical Acc. [m/s2] Roll Rate [rad/s] Pitch Rate [rad/s] Roll Acc. [rad/s2] Pitch Acc. [rad/s2]

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

1 Uncertainty-Neutral (UN) 2.07 28.23 0.13 1.09 0.28 2.46 0.43 1.10 2.22 30.67 1.64 12.78
2 Naive Penalty (NP) 1.97 23.30 0.05 0.38 0.33 2.06 0.44 2.22 2.73 33.97 1.80 8.02

3 Hybrid 1.42 9.37 0.04 0.20 0.21 1.56 0.39 1.15 1.85 18.37 1.28 5.91
4 Conservative 1.40 10.60 0.04 0.22 0.14 1.60 0.42 1.11 1.16 22.23 1.46 6.93

Conservative also shows that the vehicle rarely experienced
terrain impacts except at the inevitable bump at Scenario #2.
Hybrid shows a good balance between safety and agility. It
avoids regions with high degrees of uncertainty, which might
irreversibly damage or destroy the vehicle, while navigating
the terrains with low levels of uncertainty at the desired speed.
Table II demonstrates that the methods with hard uncertainty
penalty show a significantly lower degree of undesirable
vertical motions and angular motions compared to the other
methods.

D. Experiments on Wheeled Robots

In this section, we conduct a sanity check to ensure that
our framework is scalable to other types of robot platforms.

We use a 1:5 scale wheeled robotics testbed as the novel
target system. We examine our framework in two robotics
simulators: Gazebo [59] and Nvidia Isaac Sim [60]. In each
simulator, we conduct the active exploration experiments (Q1)
and direct deployment experiments (Q2) with the best per-
forming exploration strategy. Note that we do not modify any
settings in our framework except for adjusting the target speed
according to the robot’s specifications (vtarget = 15 km/h) in
both exploration and deployment phases. Other experimental
settings are identical to those described in previous sections,
including parameters of neural networks, controllers, and
objective functions. Fig. 6 shows the simulated environments
and the resulting trajectories in deployment tests taken by

Fig. 5: Visualization of uncertainty-aware navigation results on the vehicle simulator. We display the rotational impacts exerted
on the vehicle onto the trajectories. The maximum value of rotational impact during a three-second window is used for visual
clarity.

the robots. The results suggest that our framework has the
potential to be applied to other robot platforms with continuous
state and action space, actively exploring training data, and
safely controlling the robot.

V. CONCLUSION

In this paper, we presented a unified model-based reinforce-
ment learning framework with dynamics learning that bridges
active exploration and uncertainty-aware deployment in the
robotics control domain. The dynamics is learned using a
fully parallelized probabilistic ensemble neural network that is
sensitive to uncertainty. For active exploration, the epistemic
uncertainty can be quantified by measuring the ensemble
disagreement via Jensen-Rényi Divergence. Two opposing task
objectives for exploration and deployment can be optimized
by the state-of-the-art sampling-based MPC. Our extensive
experiments demonstrate that the unified framework can be
applied to both autonomous vehicles and wheeled robots.
Our framework shows promising results for both exploration
and deployment, in that the robot efficiently collects useful
training data samples that are essential to achieving the task,
and successfully avoids uncertain regions by imposing an
uncertainty penalty. We hope that this work will serve as a
stepping stone towards more general learning-based robotic
applications under uncertainty.

VI. APPENDIX

A. Additional Details for Learned Dynamics

To perform an ablation study on the neural network dynam-
ics, we collect a human-controlled driving dataset. We build a
race track in the IPG CarMaker simulator, modeled after a kart

circuit located in Kirchlengern, Germany [43]. The length of
the track is 1016 m and it has two moderate curves and four
sharp curves. The overall structure of the track is similar to
that in Fig. 6c. The driving data collected on the track consists
of 1) zig-zag driving at low speeds, 2) high-speed driving, and
3) sliding maneuvers, in both clockwise and counter-clockwise
directions. We collected a total of 70 minutes of data at a
rate of 10 Hz. We split the data into 70% for training and
30% for testing after randomizing the data to remove temporal
correlations.

We evaluate the test performance of the compared models
with respect to each state variable in x = (vx, vy, r)

⊤, which
are the longitudinal velocity vx, the lateral velocity vy , and
the yaw rate r. We use the Root Mean Square Error (RMSE)
as the performance metric. We also display the average test
RMSE for the convenience of comparison.

Model Comparison. First, we compare the pure MLP
model and the Recurrent Neural Network (RNN) model.
In this experiment, we use a deterministic model without
ensemble and use L2 loss function. The other parameters of
the MLP model follow those mentioned in Section IV. In
RNN models, we replace the first layer of the MLP model as
GRU [47] and LSTM [46], respectively, with the same hidden
layer size as the MLP model. The best test performances
of each model during 1000 epochs are shown in Table III.
The RNN models show slightly better performances than the
MLP model. However, we choose MLP to benefit from the
parallelizable structure of the ensemble MLP model.

History Comparison. In this experiment, we use PENN
model as described in Section III-D. We evaluate the perfor-

(a) (b) (c)

(d) (e) (f)

Fig. 6: Additional experiments using a 1:5 scale wheeled robotics testbed in (a)-(c) Gazebo and (d)-(f) Nvidia Isaac Sim.
(a),(d) The simulated environments during the exploration phase. (b),(e) The simulated environments during the deployment
phase. (c),(f) The vehicle trajectories taken by the robot at 300 iterations for driving 10 laps in a counter-clockwise direction.

TABLE III: A comparison between the MLP model and the
RNN models. The prediction performance on the test set is
evaluated with the RMSE.

Model MLP GRU [47] LSTM [46]

Total 0.0802 0.0721 0.0701
vx [m/s] 0.0990 0.0861 0.0843
vy [m/s] 0.06510 0.0587 0.0576
r [rad/s] 0.0707 0.0660 0.0647

mances of the PENNs with different lengths of state-action
history H . The results are shown in Table IV. The lengths
of 3, 4, and 5 produce the best results among the compared
models. When the history length exceeds 5, the prediction
performance generally decreases. In accordance with prior
literature employing the same strategy [44, 45, 54, 61], we
determine the history length to be 4.

B. Sim-to-Real Transfer

We successfully transferred our algorithm to real-world
settings for uncertainty-aware deployment tasks. We inte-
grated our algorithm with global path planning and online
traversability map generation using a LiDAR sensor. These
experiments were conducted on our off-road testbeds. The
experimental results can be found on our project page: https:
//taekyung.me/rss2023-bridging.

VII. ACKNOWLEDGMENT

This work was supported by the Korean Government (2023).

REFERENCES

[1] J. Morimoto and K. Doya, “Acquisition of stand-up
behavior by a real robot using hierarchical reinforcement
learning,” Robotics and Autonomous Systems, vol. 36,
no. 1, pp. 37–51, 2001. ii

[2] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne,
“DeepLoco: dynamic locomotion skills using hierarchi-
cal deep reinforcement learning,” ACM Transactions on
Graphics, vol. 36, no. 4, pp. 41:1–41:13, 2017. ii

[3] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso,
V. Tsounis, V. Koltun, and M. Hutter, “Learning agile
and dynamic motor skills for legged robots,” Science
Robotics, vol. 4, no. 26, p. eaau5872, 2019. ii

[4] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid
motor adaptation for legged robots,” in Robotics: Science
and Systems (RSS), 2021. ii

[5] P. Abbeel, A. Coates, M. Quigley, and A. Ng, “An
application of reinforcement learning to aerobatic heli-
copter flight,” in Neural Information Processing Systems
(NeurIPS), 2007, pp. 1–8. ii

[6] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-
based and data-efficient approach to policy search,” in
International Conference on Machine Learning (ICML),
2011, pp. 465–472. ii

[7] P. Englert, A. Paraschos, J. Peters, and M. P. Deisen-
roth, “Model-based imitation learning by probabilistic
trajectory matching,” in IEEE International Conference
on Robotics and Automation (ICRA), 2013, pp. 1922–
1927. ii

[8] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M.
Rehg, B. Boots, and E. A. Theodorou, “Information
theoretic MPC for model-based reinforcement learning,”

https://taekyung.me/rss2023-bridging
https://taekyung.me/rss2023-bridging
https://www.sciencedirect.com/science/article/pii/S0921889001001130?casa_token=IRnZQS3A96oAAAAA:qxQQm_LLlQvVgWFi-8W_KDg0Ji0Aga_ZgIPHyFZfzVMSt6XRMmhtFwjvXao1CsaJ9EcxApnZxF4U
https://www.sciencedirect.com/science/article/pii/S0921889001001130?casa_token=IRnZQS3A96oAAAAA:qxQQm_LLlQvVgWFi-8W_KDg0Ji0Aga_ZgIPHyFZfzVMSt6XRMmhtFwjvXao1CsaJ9EcxApnZxF4U
https://www.sciencedirect.com/science/article/pii/S0921889001001130?casa_token=IRnZQS3A96oAAAAA:qxQQm_LLlQvVgWFi-8W_KDg0Ji0Aga_ZgIPHyFZfzVMSt6XRMmhtFwjvXao1CsaJ9EcxApnZxF4U
https://dl.acm.org/doi/abs/10.1145/3072959.3073602?casa_token=qgV1_frTLfcAAAAA:rMTwN6L0EslOPBMmA5VeoR4K5rCJbaIst0wO8BHWJ9pmCxsr3owetVkQWhKZcTU5ZmlooQaupQQ2Krk
https://dl.acm.org/doi/abs/10.1145/3072959.3073602?casa_token=qgV1_frTLfcAAAAA:rMTwN6L0EslOPBMmA5VeoR4K5rCJbaIst0wO8BHWJ9pmCxsr3owetVkQWhKZcTU5ZmlooQaupQQ2Krk
https://www.science.org/doi/abs/10.1126/scirobotics.aau5872
https://www.science.org/doi/abs/10.1126/scirobotics.aau5872
https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/2107.04034
https://proceedings.neurips.cc/paper/2006/hash/98c39996bf1543e974747a2549b3107c-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/98c39996bf1543e974747a2549b3107c-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/98c39996bf1543e974747a2549b3107c-Abstract.html
https://www.cs.utexas.edu/users/sniekum/classes/RLFD-F15/papers/Deisenroth11.pdf
https://www.cs.utexas.edu/users/sniekum/classes/RLFD-F15/papers/Deisenroth11.pdf
https://ieeexplore.ieee.org/abstract/document/6630832
https://ieeexplore.ieee.org/abstract/document/6630832
https://ieeexplore.ieee.org/document/7989202
https://ieeexplore.ieee.org/document/7989202

TABLE IV: A comparison between different lengths of state-action history H . The prediction performance on the test set is
evaluated with the RMSE.

History Length 1 2 3 4 5 6 7 8 9 10

Total 0.0623 0.0589 0.0423 0.0453 0.0437 0.0667 0.0852 0.0528 0.0523 0.0511
vx [m/s] 0.0779 0.0662 0.0548 0.0610 0.0593 0.0826 0.0982 0.0734 0.0742 0.0709
vy [m/s] 0.0637 0.0691 0.0373 0.0389 0.0373 0.0701 0.1024 0.0429 0.0408 0.0419
r [rad/s] 0.0389 0.0357 0.0319 0.0305 0.0284 0.0399 0.0404 0.0336 0.0321 0.0327

in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2017, pp. 1714–1721. ii, iv

[9] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine,
“Uncertainty-Aware Reinforcement Learning for Colli-
sion Avoidance,” in arXiv preprint arXiv:1702.01182,
2017. ii, iii

[10] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar,
“Deep dynamics models for learning dexterous manipu-
lation,” in Conference on Robot Learning (CoRL), 2019,
pp. 1101–1112. ii

[11] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and
P. Abbeel, “DayDreamer: World Models for Physical
Robot Learning,” in Conference on Robot Learning
(CoRL), 2022. ii

[12] D. Nguyen-Tuong and J. Peters, “Using model knowl-
edge for learning inverse dynamics,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
2010, pp. 2677–2682. ii

[13] J. Kabzan, L. Hewing, A. Liniger, and M. N.
Zeilinger, “Learning-based model predictive control for
autonomous racing,” IEEE Robotics and Automation Let-
ters, vol. 4, no. 4, pp. 3363–3370, 2019. ii, v

[14] M. Lutter, C. Ritter, and J. Peters, “Deep Lagrangian Net-
works: Using Physics as Model Prior for Deep Learning,”
in International Conference on Learning Representations
(ICLR), 2019. ii

[15] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli,
A. Anandkumar, Y. Yue, and S.-J. Chung, “Neural-Fly
enables rapid learning for agile flight in strong winds,”
Science Robotics, vol. 7, no. 66, p. eabm6597, 2022. ii

[16] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement
learning in robotics: A survey,” The International Journal
of Robotics Research, vol. 32, no. 11, pp. 1238–1274,
2013. ii

[17] T. Kim, H. Lee, and W. Lee, “Physics Embedded Neu-
ral Network Vehicle Model and Applications in Risk-
Aware Autonomous Driving Using Latent Features,” in
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2022, pp. 4182–4189. ii

[18] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and
E. A. Theodorou, “Information-theoretic model predic-
tive control: Theory and applications to autonomous
driving,” IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1603–1622, 2018. ii, iv, vi

[19] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and

V. Sindhwani, “Data Efficient Reinforcement Learning
for Legged Robots,” in Conference on Robot Learning
(CoRL), 2019, pp. 1–10. ii

[20] C. Williams and C. Rasmussen, “Gaussian Processes for
Regression,” in Neural Information Processing Systems
(NeurIPS), vol. 8. MIT Press, 1995. ii

[21] D. Nguyen-Tuong and J. Peters, “Model learning for
robot control: a survey,” Cognitive Processing, vol. 12,
no. 4, pp. 319–340, 2011. ii

[22] S. Levine and P. Abbeel, “Learning Neural Network
Policies with Guided Policy Search under Unknown
Dynamics,” in Neural Information Processing Systems
(NeurIPS), vol. 27, 2014. ii

[23] M. Milanese and A. Vicino, “Optimal estimation theory
for dynamic systems with set membership uncertainty:
An overview,” Automatica, vol. 27, no. 6, pp. 997–1009,
1991. ii

[24] A. Parsi, A. Iannelli, and R. S. Smith, “Active exploration
in adaptive model predictive control,” in IEEE Confer-
ence on Decision and Control (CDC), 2020, pp. 6186–
6191. ii

[25] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental
online learning in high dimensions,” Neural Computa-
tion, vol. 17, no. 12, pp. 2602–2634, 2005. ii

[26] G. R. Williams, B. Goldfain, K. Lee, J. Gibson, J. M.
Rehg, and E. A. Theodorou, “Locally Weighted Regres-
sion Pseudo-Rehearsal for Adaptive Model Predictive
Control,” in Conference on Robot Learning (CoRL),
2019, pp. 969–978. ii

[27] K. Chua, R. Calandra, R. McAllister, and S. Levine,
“Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models,” in Neural Infor-
mation Processing Systems (NeurIPS), 2018. iii, vi

[28] M. Vlastelica, S. Blaes, C. Pinneri, and G. Martius,
“Risk-Averse Zero-Order Trajectory Optimization,” in
Conference on Robot Learning (CoRL), 2021. iii

[29] S. Thrun, “Efficient Exploration In Reinforcement Learn-
ing,” Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU-CS-92-102, January 1992. iii

[30] R. Martinez-Cantin, M. Lopes, and L. Montesano, “Body
schema acquisition through active learning,” in IEEE
International Conference on Robotics and Automation
(ICRA), 2010, pp. 1860–1866. iii

[31] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell,
“Curiosity-driven Exploration by Self-supervised Predic-

https://arxiv.org/abs/1702.01182
https://arxiv.org/abs/1702.01182
https://proceedings.mlr.press/v100/nagabandi20a.html
https://proceedings.mlr.press/v100/nagabandi20a.html
https://openreview.net/forum?id=3RBY8fKjHeu
https://openreview.net/forum?id=3RBY8fKjHeu
https://ieeexplore.ieee.org/document/5509858
https://ieeexplore.ieee.org/document/5509858
https://ieeexplore.ieee.org/document/8754713
https://ieeexplore.ieee.org/document/8754713
https://arxiv.org/abs/1907.04490
https://arxiv.org/abs/1907.04490
https://www.science.org/doi/abs/10.1126/scirobotics.abm6597
https://www.science.org/doi/abs/10.1126/scirobotics.abm6597
https://journals.sagepub.com/doi/pdf/10.1177/0278364913495721?casa_token=OECKb5H95RcAAAAA:2YoaUeD8glkCc1m7ARPHHBZU3uKmhs2dWHpSyyEBvqwvYUMuAwzUikqfgFCVENB_WCtfw4_XhPQrOZI
https://journals.sagepub.com/doi/pdf/10.1177/0278364913495721?casa_token=OECKb5H95RcAAAAA:2YoaUeD8glkCc1m7ARPHHBZU3uKmhs2dWHpSyyEBvqwvYUMuAwzUikqfgFCVENB_WCtfw4_XhPQrOZI
https://ieeexplore.ieee.org/document/9981303
https://ieeexplore.ieee.org/document/9981303
https://ieeexplore.ieee.org/document/9981303
https://ieeexplore.ieee.org/document/8558663
https://ieeexplore.ieee.org/document/8558663
https://ieeexplore.ieee.org/document/8558663
http://proceedings.mlr.press/v100/yang20a.html
http://proceedings.mlr.press/v100/yang20a.html
https://proceedings.neurips.cc/paper/1995/hash/7cce53cf90577442771720a370c3c723-Abstract.html
https://proceedings.neurips.cc/paper/1995/hash/7cce53cf90577442771720a370c3c723-Abstract.html
https://link.springer.com/article/10.1007/s10339-011-0404-1
https://link.springer.com/article/10.1007/s10339-011-0404-1
https://proceedings.neurips.cc/paper/2014/hash/6766aa2750c19aad2fa1b32f36ed4aee-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/6766aa2750c19aad2fa1b32f36ed4aee-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/6766aa2750c19aad2fa1b32f36ed4aee-Abstract.html
https://www.sciencedirect.com/science/article/abs/pii/000510989190134N
https://www.sciencedirect.com/science/article/abs/pii/000510989190134N
https://www.sciencedirect.com/science/article/abs/pii/000510989190134N
https://ieeexplore.ieee.org/document/9304303
https://ieeexplore.ieee.org/document/9304303
https://ieeexplore.ieee.org/document/6790347
https://ieeexplore.ieee.org/document/6790347
https://proceedings.mlr.press/v100/williams20a.html
https://proceedings.mlr.press/v100/williams20a.html
https://proceedings.mlr.press/v100/williams20a.html
https://proceedings.neurips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
https://openreview.net/forum?id=WqUl7sNkDre
https://www.ri.cmu.edu/publications/efficient-exploration-in-reinforcement-learning/
https://www.ri.cmu.edu/publications/efficient-exploration-in-reinforcement-learning/
https://ieeexplore.ieee.org/document/5509406
https://ieeexplore.ieee.org/document/5509406
https://proceedings.mlr.press/v70/pathak17a.html?ref=https://githubhelp.com

tion,” in International Conference on Machine Learning
(ICML), 2017, pp. 2778–2787. iii

[32] M. Schultheis, B. Belousov, H. Abdulsamad, and J. Pe-
ters, “Receding Horizon Curiosity,” in Conference on
Robot Learning (CoRL), 2019, pp. 1278–1288. iii, iv

[33] P. Shyam, W. Jaśkowski, and F. Gomez, “Model-based
active exploration,” in International Conference on Ma-
chine Learning (ICML), 2019, pp. 5779–5788. iii, iv,
vi

[34] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner,
and D. Pathak, “Planning to explore via self-supervised
world models,” in International Conference on Machine
Learning (ICML), 2020, pp. 8583–8592. iii

[35] B. Bucher, K. Schmeckpeper, N. Matni, and K. Dani-
ilidis, “An Adversarial Objective for Scalable Explo-
ration,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2021, pp. 2670–2677.
iii

[36] S. Bechtle, Y. Lin, A. Rai, L. Righetti, and F. Meier,
“Curious iLQR: Resolving Uncertainty in Model-based
RL,” in Conference on Robot Learning (CoRL), 2019,
pp. 162–171. iii

[37] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine,
C. Finn, and T. Ma, “MOPO: Model-based Offline Policy
Optimization,” in Neural Information Processing Systems
(NeurIPS), 2020. iii

[38] S. J. Wang, S. Triest, W. Wang, S. Scherer, and A. John-
son, “Rough Terrain Navigation Using Divergence Con-
strained Model-Based Reinforcement Learning,” in Con-
ference on Robot Learning (CoRL), 2021. iii

[39] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and
H. Lee, “Sample-Efficient Reinforcement Learning with
Stochastic Ensemble Value Expansion,” in Neural Infor-
mation Processing Systems (NeurIPS), 2018. iii

[40] A. Rényi, “On measures of entropy and information,”
in Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, 1961, pp. 547–
562. iv

[41] F. Wang, T. Syeda-Mahmood, B. C. Vemuri, D. Beymer,
and A. Rangarajan, “Closed-Form Jensen-Renyi Diver-
gence for Mixture of Gaussians and Applications to
Group-Wise Shape Registration,” in International Con-
ference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), vol. 5761, 2009, pp.
648–655. iv

[42] T. Z. Jiahao, K. Y. Chee, and M. A. Hsieh, “Online
Dynamics Learning for Predictive Control with an Ap-
plication to Aerial Robots,” in Conference on Robot
Learning (CoRL), 2022. iv

[43] T. Kim, G. Park, K. Kwak, J. Bae, and W. Lee, “Smooth
Model Predictive Path Integral Control Without Smooth-
ing,” IEEE Robotics and Automation Letters, vol. 7,
no. 4, pp. 10 406–10 413, 2022. v, vi, x

[44] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegel-
man, and J. C. Gerdes, “Neural network vehicle mod-
els for high-performance automated driving,” Science

Robotics, vol. 4, no. 28, 2019. v, xi
[45] T. Kim, H. Lee, S. Hong, and W. Lee, “TOAST: Tra-

jectory Optimization and Simultaneous Tracking Using
Shared Neural Network Dynamics,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 9747–9754, 2022.
v, xi

[46] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997. v, x, xi

[47] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Ben-
gio, “On the Properties of Neural Machine Transla-
tion: Encoder-Decoder Approaches,” in arXiv preprint
arXiv:1409.1259, 2014. v, x, xi

[48] “Implement truly parallel ensemble layers by philipjball.”
[Online]. Available: https://github.com/pytorch/pytorch/
issues/54147 v

[49] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in PyTorch,” 2017.
vi

[50] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and
W. Woodall, “Robot Operating System 2: Design, archi-
tecture, and uses in the wild,” Science Robotics, vol. 7,
no. 66, p. eabm6074, 2022. vi

[51] V. Nair and G. E. Hinton, “Rectified Linear Units Im-
prove Restricted Boltzmann Machines,” in International
Conference on Machine Learning (ICML), 2010. vi

[52] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The
quickhull algorithm for convex hulls,” ACM Transactions
on Mathematical Software, vol. 22, no. 4, pp. 469–483,
1996. vii

[53] X. Liu, H. Jia, Y. Wen, Y. Hu, Y. Chen, C. Fan,
Z. HU, and Y. Yang, “Towards Unifying Behavioral and
Response Diversity for Open-ended Learning in Zero-
sum Games,” in Neural Information Processing Systems
(NeurIPS), vol. 34, 2021, pp. 941–952. vii

[54] N. A. Spielberg, M. Brown, and J. C. Gerdes, “Neu-
ral Network Model Predictive Motion Control Applied
to Automated Driving With Unknown Friction,” IEEE
Transactions on Control Systems Technology, vol. 30,
no. 5, pp. 1934–1945, 2022. vii, xi

[55] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic
Terrain Mapping for Mobile Robots With Uncertain
Localization,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3019–3026, 2018. viii

[56] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten,
T. Homberger, and M. Hutter, “Elevation Mapping for
Locomotion and Navigation using GPU,” in IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), 2022, pp. 2273–2280. viii

[57] H. Karnan, K. S. Sikand, P. Atreya, S. Rabiee, X. Xiao,
G. Warnell, P. Stone, and J. Biswas, “VI-IKD: High-
Speed Accurate Off-Road Navigation using Learned
Visual-Inertial Inverse Kinodynamics,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 2022, pp. 3294–3301. viii

https://proceedings.mlr.press/v70/pathak17a.html?ref=https://githubhelp.com
http://proceedings.mlr.press/v100/schultheis20a.html
https://proceedings.mlr.press/v97/shyam19a.html
https://proceedings.mlr.press/v97/shyam19a.html
http://proceedings.mlr.press/v119/sekar20a.html
http://proceedings.mlr.press/v119/sekar20a.html
https://ieeexplore.ieee.org/document/9636298
https://ieeexplore.ieee.org/document/9636298
http://proceedings.mlr.press/v100/bechtle20a.html
http://proceedings.mlr.press/v100/bechtle20a.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://openreview.net/forum?id=Wt3GLZYFvEQ
https://openreview.net/forum?id=Wt3GLZYFvEQ
https://proceedings.neurips.cc/paper/2018/hash/f02208a057804ee16ac72ff4d3cec53b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f02208a057804ee16ac72ff4d3cec53b-Abstract.html
https://static.renyi.hu/renyi_cikkek/1961_on_measures_of_entropy_and_information.pdf
https://link.springer.com/chapter/10.1007/978-3-642-04268-3_80
https://link.springer.com/chapter/10.1007/978-3-642-04268-3_80
https://link.springer.com/chapter/10.1007/978-3-642-04268-3_80
https://openreview.net/forum?id=8-8e18idYLD
https://openreview.net/forum?id=8-8e18idYLD
https://openreview.net/forum?id=8-8e18idYLD
https://ieeexplore.ieee.org/document/9835021
https://ieeexplore.ieee.org/document/9835021
https://ieeexplore.ieee.org/document/9835021
https://www.science.org/doi/abs/10.1126/scirobotics.aaw1975
https://www.science.org/doi/abs/10.1126/scirobotics.aaw1975
https://ieeexplore.ieee.org/document/9801632
https://ieeexplore.ieee.org/document/9801632
https://ieeexplore.ieee.org/document/9801632
https://ieeexplore.ieee.org/abstract/document/6795963
https://ieeexplore.ieee.org/abstract/document/6795963
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1409.1259
https://github.com/pytorch/pytorch/issues/54147
https://github.com/pytorch/pytorch/issues/54147
https://github.com/pytorch/pytorch/issues/54147
https://openreview.net/forum?id=BJJsrmfCZ
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://proceedings.neurips.cc/paper/2021/hash/07bba581a2dd8d098a3be0f683560643-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/07bba581a2dd8d098a3be0f683560643-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/07bba581a2dd8d098a3be0f683560643-Abstract.html
https://ieeexplore.ieee.org/document/9638389
https://ieeexplore.ieee.org/document/9638389
https://ieeexplore.ieee.org/document/9638389
https://ieeexplore.ieee.org/document/8392399
https://ieeexplore.ieee.org/document/8392399
https://ieeexplore.ieee.org/document/8392399
https://ieeexplore.ieee.org/document/9981507
https://ieeexplore.ieee.org/document/9981507
https://ieeexplore.ieee.org/document/9982060
https://ieeexplore.ieee.org/document/9982060
https://ieeexplore.ieee.org/document/9982060

[58] J. Seo, T. Kim, K. Kwak, J. Min, and I. Shim, “ScaTE:
A Scalable Framework for Self- Supervised Traversabil-
ity Estimation in Unstructured Environments,” IEEE
Robotics and Automation Letters, vol. 8, no. 2, pp. 888–
895, 2023. viii

[59] N. Koenig and A. Howard, “Design and use paradigms
for Gazebo, an open-source multi-robot simulator,” in
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), vol. 3, 2004, pp. 2149–2154. ix

[60] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu,
K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire,
A. Handa, and G. State, “Isaac Gym: High Performance
GPU-Based Physics Simulation For Robot Learning,” in
arXiv preprint arXiv:2108.10470, 2021. ix

[61] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine,
R. Calandra, and K. S. J. Pister, “Low-Level Control
of a Quadrotor With Deep Model-Based Reinforcement
Learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4224–4230, 2019. xi

https://ieeexplore.ieee.org/document/10007922
https://ieeexplore.ieee.org/document/10007922
https://ieeexplore.ieee.org/document/10007922
https://ieeexplore.ieee.org/document/1389727
https://ieeexplore.ieee.org/document/1389727
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://ieeexplore.ieee.org/abstract/document/8769882
https://ieeexplore.ieee.org/abstract/document/8769882
https://ieeexplore.ieee.org/abstract/document/8769882

