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Abstract—Piecewise constant curvature is a popular kinematics
framework for continuum robots. Computing the model param-
eters from the desired end pose, known as the inverse kinematics
problem, is fundamental in manipulation, tracking and planning
tasks. In this paper, we propose an efficient multi-solution solver
to address the inverse kinematics problem of 3-section constant-
curvature robots by bridging both the theoretical reduction and
numerical correction. We derive analytical conditions to simplify
the original problem into a one-dimensional problem. Further,
the equivalence of the two problems is formalised. In addition, we
introduce an approximation with bounded error so that the one
dimension becomes traversable while the remaining parameters
analytically solvable. With the theoretical results, the global
search and numerical correction are employed to implement the
solver. The experiments validate the better efficiency and higher
success rate of our solver than the numerical methods when one
solution is required, and demonstrate the ability of obtaining
multiple solutions with optimal path planning in a space with
obstacles.

I. INTRODUCTION

Continuum robots are able to band, elongate or twist
when actuated [1, 2], granting applications in various tasks
like bioinspired grasping [3] and minimally invasive surgery
[4, 5, 6]. The piecewise constant curvature is a well-known
kinematic framework by modelling the robot with concate-
nated constant-curvature arcs [7]. In manipulation [8], tracking
[9, 10], and planning tasks [11], the set of model parameters
should be computed from the desired end pose to guide the
motion, which is the inverse kinematics problem [12]. Since
many continuum robots composed of an inextensible central
backbone have fixed section lengths [9, 13, 14], they need
at least 3 sections to reach a specified end pose using the
piecewise constant curvature model. Nevertheless, the multi-
section inverse kinematics remains an open problem.

An analytical method for the inverse kinematics is always
preferred because it is fast and able to find all solutions. In
[15], a closed-form geometric method is proposed for specified
end translations, but it does not consider the tip orientations.
Explicit analytical expressions for 2 extensible sections are
derived in [16]. However, This method cannot be directly
generalised to robots with inextensible sections [16].

The inverse kinematics is often formulated as a local
optimisation problem over model parameters when analytical
expressions are absent, such as the Newton-Raphson method
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Fig. 1. We achieve the optimal RSS-shaped path planning in the parameter
space with our multi-solution inverse kinematics solver. The solid line
indicates the resultant motion after dynamic programming, while the dashed
line indicates the multiple solutions. Collisions are painted yellow.

[10] and damped least square method [17]. Control schemes
can also be implemented to drive the parameters until the tip
arrives at the target position [9]. However, numerical inverse
kinematics is to find only one solution close to the initial value
and, additionally, its iteration process depends sensitively on
the initial guess, causing inefficient performance [18].

In this paper, we propose an efficient multi-solution solver to
address the inverse kinematics problem of 3-section constant-
curvature robots. The idea is to simplify the numerical search
by theoretical reduction. Specifically, in a theoretical aspect,
we derive the analytical conditions to reduce the dimensional-
ity of the 3-section inverse kinematics and finally arrive at an
equivalent one-dimensional problem. By further introducing
an approximation, the only dimension becomes traversable
and the remaining parameters are derived analytically. We
show that there exists an error bound of the approximation.
In a numerical aspect, we employ a global search on the
one dimension to ensure the resolution completeness of the
approximated problem without hurting the efficiency. With a
few steps of numerical iterations, we are able to find multiple
solutions to the original inverse kinematics problem. The
performance in experiments validates the better efficiency and
higher success rate of our solver than the pure numerical
methods when one solution is required. Besides, the ability
to obtain multiple solutions allows us to achieve optimal path
planning in a space with obstacles. As shown in Figure 1,
we solve the configuration at each via point, yielding a path
where we later allocate time. In summary, the contributions
are presented as follows.

1) We propose two analytical conditions for the 2-section
robot when the end rotation or translation is specified.
We further propose the necessary conditions for the 3-
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Fig. 2. The flowchart of this work. Rightwards arrows are the procedures. Leftwards arrows are the theoretical guarantees.

section robot when the end pose is specified.
2) We reduce the dimensionality of the original inverse

kinematics problem from six to one with these conditions.
We formalise the one-dimensional problem and show
their equivalence.

3) We introduce an approximation to bring traversability to
the reduced problem. An error bound is derived for the
approximation.

4) We present the solver, which applies a global search and
a few steps of iterations. The computational efficiency
and multi-solution accessibility are validated by different
tasks in experiments. The code is released.1

II. RELATED WORK

Modelling and Applications. In order to better manoeuvre
a particular continuum manipulator, the strategy employed for
modelling the kinematics is essential, concerning the mechani-
cal design, material properties and geometrical characteristics.
It is also indispensable for fitting sensor observation [19] or
state estimation [20]. Three popular techniques of modelling
include (1) The piecewise constant curvature model (see
Webster III and Jones [21] for a review), (2) The Cosserat
rod model [22, 23, 24], and (3) The finite element model
[25]. Among them, the piecewise constant curvature model
is perhaps the most well-known and widely used kinematic
framework for continuum robots [7, 20, 26]. In practice, many
tasks such as motion planning [11] and trajectory tracking
[9, 10, 13] require the solutions to the inverse kinematics. The
Cosserat rod model and the finite element model solve forward
partial differential equations, considering the mechanics nature
of robots and usually taking seconds to minutes for an accurate
trajectory [26], while the piecewise constant curvature model
is a pure geometric model solving the configuration at each
via point, yielding a path where we should later allocate time
and interpolate. It is usually computed in milliseconds.

Analytical Methods. A closed-form geometric method is
given for multiple sections by treating each section as a
straight rigid link together with a spherical joint and then
using trigonometric relationships [15]. Tip orientations are
not accounted for in this method, and approximations are
unavoidable when robots have fixed section lengths. Applying
the quaternion description yields a simple formulation of the
constant-curvature model, and this leads to explicit analytical
expressions for the inverse kinematics [16]. Unfortunately,
this work is for constant-curvature continuum robots with 2

1Homepage: https://sites.google.com/view/micsolver.

extensible sections and cannot be directly generalised to those
with inextensible sections [16].

Numerical Methods. It is natural to resort to numerical
methods when there are no analytical approaches available.
Nonlinear optimisations can be used to find arc parameters
that minimise the pose error. The Newton-Raphson method
is a common choice with the pseudoinverse of the Jacobian
[10, 17, 27]. Alternatively, the damped least square method is
usually employed for better convergence [17]. However, these
methods are likely to be influenced by the nonlinearity of the
problem, converging to local minima or thrashing about. Mul-
tiple initial guesses are often required to get a solution or try to
find an alternative solution. A solution to the problem can also
be obtained in the sight of control. Recently, a proportional-
integral-derivative control scheme is applied and achieves
accurate tracking [9]. The steady-state values of parameters
are the solution to the inverse kinematics. However, control
constants for each parameter need to be tuned individually
to account for differences in response and steady-state error
caused by coupling effects. Though numerical methods make
it possible to find proper model parameters, they rely on the
selection of initial guesses, require plenty of computations, and
are unable to find multiple solutions. Therefore, a new solver
to handle the inverse kinematics problem of the piecewise
constant-curvature model is desired.

III. INVERSE KINEMATICS OF 3-SECTION CONSTANT-
CURVATURE ROBOTS

Notations. The quaternion algebra H is the four-
dimensional associative algebra over R, and Sn denotes the
n-dimensional unit sphere sitting inside Rn+1 [28]. A unit
quaternion q ∈ S3 ⊂ H can be written as a sum of real and
imaginary parts, i.e.,

q = a+ bi+ cj + dk, (1)

where

a, b, c, d ∈ R,
√
a2 + b2 + c2 + d2 = 1. (2)

The quaternion multiplication is associative,

⊗ : H×H→ H,

q1, q2 ; q1 ⊗ q2.

For a unit quaternion q, the multiplicative inverse q−1 is
identical to its conjugate q∗, which is defined by

q∗ = a− bi− cj − dk. (3)



We use (·)T to denote the transpose operation on matrices.
For a more elaborate elucidation, see Appendix A.

Forward Kinematics of Piecewise Constant-Curvature
Robots. We follow the conventional assumptions of the piece-
wise constant curvature model [21]: (1) sections are modelled
as a series of circular arcs, whose bending directions and
angles are independent; (2) attachments between two adjacent
sections are negligible; (3) adjacent circular arcs are mutually
tangential.

Consider a robot modelled in N arc sections. The Cartesian
coordinate systems are denoted by {F1}, {F2}, . . . , {FN},
respectively, with the origin located at the proximal endpoint
of each arc section. There is also a Cartesian coordinate system
{FN+1} attached to the distal endpoint of the N -th arc. For
λ = 1, . . . , N , the relative rotation and translation from {Fλ}
to {Fλ+1} is denoted by a unit quaternion qλ and a vector
λ+1
λ r = rλ with respect to {Fλ}, and section lengths Lλ is
known. Then the forward kinematics can be written as

q = q1 ⊗ q2 ⊗ · · · ⊗ qN , (4)

r = N+1
1 r, (5)

where the translation r is calculated by

N+1
λ r = λ+1

λ r + qλ ⊗ N+1
λ+1 r ⊗ q∗λ, (6)

for λ from N to 1.
Model Parameterisation. Figure 3 presents the parameteri-

sation of a 1-section robot using the constant curvature model,
where κ1 is the curvature and ϕ1 indicates the bending plane.
Assume κ1L1 ∈ [0, π] and ϕ1 ∈ [0, 2π] because in most cases
a continuum robot is unable to exceed this limitation, and
according to the geometric relationships, we obtain

r1 =
1

κ1

cosϕ1 − cosκ1L1 cosϕ1

sinϕ1 − cosκ1L1 sinϕ1

sinκ1L1

 (7)

Because the rotational axis lies exactly on the (i, j)-plane, the
element in the last dimension of the corresponding quaternion
must be zero. In fact, we have

q1 = cos
κ1L1

2
+ sin

κ1L1

2
(− sinϕ1i+ cosϕ1j) . (8)

Comparing it with (1) we can get

a1 = cos
κ1L1

2
, b1 = − sin

κ1L1

2
sinϕ1,

c1 = sin
κ1L1

2
cosϕ1, d1 = 0.

(9)

We have a1 ≥ 0 since the bending angle κ1L1 ≤ π. From (9)
we can see that

κ1 =
2

L1
arccos a1, ϕ1 = arctan2(−b1, c1). (10)

As a result, the parameters q1, r1 are equivalent to the widely
used arc parameters κ1, ϕ1. Furthermore, we note that

r̂1 = r1/ ∥r1∥ =
(
c1 −b1 a1

)T
, (11)

κ1L1ϕ1

{F1}

{F2}
q1

r1

Fig. 3. Continuum robots modelled in constant curvature kinematics. The
bold line with length L1 indicates the circular backbone curve. The parameters
describe the angle ϕ1 of the bending plane containing the arc, curvature κ1,
end rotation q1 and translation r1.

and

∥r1∥ =
L1

√
1− a21

arccos a1
. (12)

So q1 and r1 can be computed from the three entries of r̂1 and
a constant length L1. Therefore, r̂1 parameterises the 1-section
robot alone. The same argument shows that if r̂λ is known,
then both qλ and rλ are uniquely determined. Consequently,
we use r̂λ as the model parameter.

Problem Statement. Since r̂λ ∈ S2, each section offers
2 degrees of freedom. When N = 2, whether given an
end translation or rotation, the robot will always have one
redundant degree of freedom. When N = 3, the robot
composed of 3 sections offers 6 degrees of freedom at the end.
The number matches that of a pose in the task space, hence
the robot is able to satisfy both rotational and translational
constraints without redundancy. This is the reason that the 3-
section model is widely used. Expand (4) and (5) and we have
the problem of the inverse kinematics of 3-section constant-
curvature robots.

Problem 1 (Inverse Kinematics for 3-Section Robots). Given
the end rotation q =

(
a b c d

)T
and translation r, for

λ = 1, 2, 3, let r̂λ =
(
cλ −bλ aλ

)T
, then qλ and rλ are

determined by r̂λ. Find r̂1, r̂2, r̂3 such that

q = q1 ⊗ q2 ⊗ q3, (13)

r = r1 + q1 ⊗ (r2 + q2 ⊗ r3 ⊗ q∗2)⊗ q∗1 . (14)

IV. THEORETICAL RESULTS AND THE SOLVER

As shown in Figure 2, theoretical results are derived so that
the range of solutions to Problem 1 can be restricted on a one-
dimensional implicit curve (Section IV-A). By approximating
the curve as a circle on the unit sphere with bounded error,
we are able to traverse the circle and solve the remaining
variables analytically (Section IV-B). A traversal on that circle
ensures the resolution completeness. Then numerical correc-
tion is employed to arrive at the more accurate solution to
Problem 1. Bridging the analytical and numerical approaches,
the algorithm of our solver is accomplished (Section IV-C).
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Fig. 4. An illustration of the variables qλ, rλ and coordinate systems {Fλ}
in a robot composed of 3 circular arcs with a total of six degrees of freedom.

A. Dimensionality Reduction

2-Section Robots. We begin from the inverse kinematics of
2-section robots, which is formulated as

q = q1 ⊗ q2, (15)

r = r1 + q1 ⊗ r2 ⊗ q∗1 . (16)

The next lemma gives a property of the 2-section constant
curvature inverse kinematics when the end rotation is specified.

Lemma 1 (Rotational Constraint). Given an end rotation
q =

(
a b c d

)T
, the solutions to (15) are those r̂1 ∈ S2

satisfying a linear constraint

n · r̂1 = 0, (17)

where n =
(
b c d

)T
. When r̂1 is specified, r̂2 can also be

obtained linearly through

r̂2 = Ar̂1, (18)

where

A =

−a −d c
d −a −b
c −b a

 . (19)

Proof: See Appendix B.
Next we analyse the constraint of r̂1 when the end transla-

tion is given. Following (12) we define

ρ (aλ, Lλ) = ∥rλ∥ =
Lλ

√
1− a2λ

arccos aλ
, (20)

then we have the next lemma.

Lemma 2 (Translational Constraint). Given an end translation
r, the solutions to (16) are those r̂1 satisfying the constraint

∥v∥ = ρ

(
u · v
∥v∥

, L2

)
, (21)

where
u =

(
2a1c1 −2a1b1 2a21 − 1

)T
, (22)

and
v = r − ρ (a1, L1) r̂1. (23)
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Fig. 5. With selected end rotation q = cos (α/2)+sin (α/2)ω, where α =

π/10,ω =
(
i− 4

√
6j +

√
3k

)
/10, we have (a) r̂1 satisfies (17), indicated

by the red line (Lemma 1); (b) for these r̂1, end rotations are identical, and the
endpoints fall on the plane (56) (Corollary 1 in Appendix C). With selected
end translation r =

(
1 1 1

)T , we have (c) r̂1 satisfies (21), indicated by
the blue line, and (d) for these r̂1, end translations are identical (Lemma 2).
Black dots on the left and robot configurations on the right are in a one-to-one
correspondence.

After choosing an r̂1, we can calculate r̂2 through

r̂2 =

−1 0 0
0 −1 0
0 0 1


(
2r̂1r̂

T
1 − I

)
v

∥v∥
. (24)

Proof: See Appendix D.
Note that ∥u∥ = 1, if we approximate ρ (a1, L1) ≈ L1 and

ρ
(
uTv/ ∥v∥ , L2

)
≈ L2, then the constraint (21) becomes the

one derived in Neppalli et al. [15].
Illustrative Example. The behaviour of r̂1 that predicted

by Lemma 2, Corollary 1 (in Appendix C), and Lemma 3
are illustrated in Figure 5. When fixing an end rotation q, the
rotational constraint indicates that r̂1 lies on a great circle.
When fixing an end translation r, the translational constraint
shows that r̂1 lies approximately on a circle.

3-Section Robots. We now move to the 3-section inverse
kinematics. Based on our previous results, we find a constraint
for both r̂3 and r̂1, which is formalised in the next lemma.

Lemma 3. Given an end rotation q and translation r, suppose
{r̂1, r̂2, r̂3} is a solution to Problem 1, then for λ = 1, 3, r̂λ
satisfies the constraint

rTBr̂λ − ρ (aλ, Lλ) d = 0. (25)

where

B =

 d a b
−a d c
−b −c d

 . (26)

Proof: See Appendix E.



From (25) we know that r̂1 and r̂3 are restricted to closed
spherical curves with the same form, but no explicit expression
has been found yet due to the nonlinearity. We parameterise the
curve of r̂3 by one variable t formally to help the subsequent
analysis,

r̂3 = r̂3 (t) , t ∈ [0, 1). (27)

For any t, we specify the end rotation and translation of
the first two sections by r̂3 (t), formulating a 2-section robot
inverse kinematics problem,

qe (t) = q ⊗ q−1
3 (t) = q ⊗ q∗3 (t) , (28)

re (t) = r − qe (t)⊗ r3 (t)⊗ q∗e (t) . (29)

We have qe (t) =
(
ae be ce de

)T
and we denote

ne (t) =
(
be ce de

)T
, (30)

and
ve (t) = re (t)− ρ (a1, L1) r̂1. (31)

We now present the main results of this paper: the statement
of the one variable problem and the theorem showing its
equivalence to Problem 1.

Problem 2. Given the end rotation q and translation r, denote
u,ne,ve as in (22), (30), (31), respectively. Let S be the set
of r̂1 ∈ S2 that satisfies

ne(t) · r̂1 = 0, (32)

∥ve(t)∥ = ρ

(
u · ve(t)

∥ve(t)∥
, L2

)
, (33)

Ar̂1 =

−1 0 0
0 −1 0
0 0 1


(
2r̂1r̂

T
1 − I

)
ve

∥ve∥
, (34)

find t that makes S an nonempty set.

Theorem 1. The following statements are equivalent:
(a) Finding r̂λ, λ = 1, 2, 3 in Problem 1.
(b) Finding the one variable t in Problem 2.

Proof: Given q, r. Suppose {r̂1, r̂2, r̂3} is the solution to
Problem 1, then we can first obtain t from the parametrisation,
and according to Lemma 1, 2, 3, this r̂1 satisfies (32)-(34)
simultaneously. Therefore, S is not empty and t is the solution
to Probelm 2. This shows that (a) implies (b). Inversely, if we
know t, then r̂3 is specified, and since S ̸= ∅, we take r̂1 ∈ S.
From (32) and Lemma 1 we can get r̂′2 such that {r̂1, r̂′2, r̂3}
satisfies (13). From (33) and Lemma 2 we can also get r̂′′2
such that {r̂1, r̂′′2 , r̂3} satisfies (14). We have r̂′2 = r̂′′2 :=
r̂2 because of (34). Therefore {r̂1, r̂2, r̂3} is the solution to
Problem 1. This shows that (b) implies (a).

Illustrative Example. In Figure 6, we visualise (25) for
both r̂3 and r̂1 in magenta. When r̂3 is at P1, the rotational
and translational constraints of r̂1 are presented in red and
blue, respectively. In this example, the point P2 is the only
intersection that satisfies all three constraints. Consequently,
we have to check if the condition (34) holds for P1 and P2.
If it does, then by Theorem 1 we have found a solution of
Problem 1, namely, the 3-section inverse kinematics problem.
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Fig. 6. In (a) and (b), the closed spherical curves are visualised in magenta
(Lemma 3). When r̂3 is at the point P1, the rotational constraint of r̂1 is
indicated with the red line in (b), as well as the translational constraint with
the blue line. Three constraints intersect at P2, which is a candidate solution.

B. Approximation

Approximated Constraint of r̂3. The constraint of r̂3 is
given by (25). Let n0 = BTr, and we approximate (25) as

n0 ·
(
r̂
(0)
3 − γL3r0

)
= 0 (35)

by relaxing the second term in (25) to γL3d. It refers to
a circle on the unit sphere so that r̂3 can be analytically
traversed by one variable t. In (35) the factor γ ∈ (0, 1) is a
constant determined later to minimise the approximation error
throughout the domain a3 ∈ [0, 1], and

r0 =
dn0

∥n0∥2
. (36)

Approximated Constraint of r̂1. We have known that r̂1
satisfies (32), which is a linear equation. Since the solution to
Problem 1 satisfies (25) according to Lemma 3, the solution
to Problem 2 must also satisfies (25) by Theorem 1, hence
we make an approximation analogous to (35) and combine it
with (32), which leads to the approximation of r̂1,{

ne · r̂1 = 0,

n0 ·
(
r̂
(0)
1 − γL1r0

)
= 0.

(37)

To evaluate the approximation, we have the following
theorem.

Theorem 2. The error of approximation (35) is bounded, i.e.,∣∣∣n̂0 ·
(
r̂
(0)
3 − r̂3

)∣∣∣ ≤ (π − 2)L3 |d|

2π
∥∥∥BTr

∥∥∥ , (38)

and when ∥r∥ > L1, the error of approximation (37) is also
bounded, i.e.,∥∥∥r̂(0)1 − r̂1

∥∥∥ ≤ arccos
2L1 |d|

π
∥∥∥BTr

∥∥∥ − arccos
L1 |d|∥∥∥BTr

∥∥∥ . (39)

Proof: See Appendix F.
In Figure 7, the black dotted lines show the error bound (38)

when we traverse r̂3 using (35) instead of (25). From (37) we
know that r̂1 is the intersection of two circles on the unit
sphere. We denote the angle between r̂1 and r̂

(0)
1 by β, then

max |β| is an error bound for r̂1, geometrically.
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Fig. 7. The black solid lines suggest the approximation of the magenta lines,
which represent (25) as previously, while the black dotted lines indicate the
error bound. (a) The error is bounded when we traverse r̂3 along the black
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a line of sight that goes along the direction perpendicular to n0, we see that
β is the angle between exact r̂1 and approximated r̂

(0)
1 , so an error bound

can be given by max |β|.

C. Inverse Kinematics Solver

Circular Traversal. To make sure resolution completeness,
we need to go through all possible discretised r̂3. Luckily, the
approximation in the previous subsection allows us to make
an analytical traversal. It follows from (35) that when n0 is
not parallel with the z-axis, we construct

r̂
(0)
3 (t) = γL3r0 +

√
1− ∥γL3r0∥2 · P

sin 2πt
cos 2πt

0

 , (40)

where n̂1 = n̂0 ×
(
0 0 1

)T
, n̂2 = n̂0 × n̂1, and the

orthogonal matrix P =
(
n̂1 n̂2 n̂0

)
.

Error Evaluation. For any t ∈ [0, 1), a unique r̂3 is
specified, then with (37), r̂1 can be found through analytical
expressions when n0 is not parallel with ne. We compute r̂′2
by Lemma 1 and r̂′′2 by Lemma 2. At this point we have two
sets of model parameters {r̂1, r̂′2, r̂3} and {r̂1, r̂′′2 , r̂3}, we
choose the one with a smaller error. To illustrate the calculation
of error, we denote the actual end pose built from r̂λ by T ,
the desired end pose built from q, r by T d. Define a map from
r̂λ ∈ S2 to ξλ ∈ se(3) as

σ : S2 × S2 × S2 → se(3)× se(3)× se(3),

r̂1, r̂2, r̂3 ; ξ1, ξ2, ξ3,

where ξλ = Lλ

(
−κλ sinϕλ κλ cosϕλ 0 0 0 1

)T
is

the twist coordinates [21]. From (10) we know that the map
σ exists. With the product of exponentials formula [29], the
end pose T ∈ SE(3) has the form

T = T (ξ1, ξ2, ξ3) = exp ξ∧1 exp ξ∧2 exp ξ∧3 . (41)

We evaluate the error regarding the norm of the body twist
from T to T d, i.e.,

e = e (ξ1, ξ2, ξ3) =
∥∥∥(logT−1T d

)∨∥∥∥ . (42)

Candidate Selection. By traversing t in [0, 1), we have a
series of model parameter {r̂1, r̂2, r̂3}, for which we can build
an error function e (t). Suppose t̄ is a solution to Problem 2,
then the derivative of the error function at t̄ must be zero, i.e.,
d
dt

∣∣
t=t̄

e (t) = 0. Therefore, when t is being traversed, we can
collect all the local minima by checking

e (t̄) < e (t̄+∆t) , e (t̄) ≥ e (t̄−∆t) . (43)

We calculate the model parameters {r̂1, r̂2, r̂3} from t̄ as
candidate solutions to Problem 1.

Numerical Correction. The exponential coordinates of the
candidates are regarded as the initial values for the optimisa-
tion problem below:

minimise
ξ1,ξ2,ξ3

∥∥∥∥(logT (ξ1, ξ2, ξ3)
−1

T d

)∨
∥∥∥∥2

subject to ξ1, ξ2, ξ3 ∈ se(3).

(44)

We employ the Newton-Raphson or damped least square
method to reach the accurate solution of Problem 1. Filtering
the candidates unable to converge to the accuracy threshold,
we form successful ones as our final result.

Because of the error bound in Theorem 2, the initial values
are actually very close to the real solutions, therefore only a
few steps of iterations are required in the numerical correction.
In summary, we present Algorithm 1.

Algorithm 1 Inverse Kinematics Solver.
Require: q ∈ S3, r ∈ R3, L1, L2, L3 > 0

1: procedure SOLVER(q, r)
2: ∆t← A search resolution
3: for t = 0, t← t+∆t, t < 1 do
4: r̂3, r̂1 ← r̂

(0)
3 (t) , r̂

(0)
1 (t) ▷ (40), (37)

5: r̂′2, r̂
′′
2 ← Compute (18) and (24)

6: e, r̂2 ← min{e(r̂′2), e(r̂
′′
2)} ▷ (42)

7: if t is a local minimum then
8: Collect {r̂1 (t) , r̂2 (t) , r̂3 (t)} in Sc.
9: end if

10: end for
11: for each elements in Sc do
12: if numerical correction converges then
13: output r̂1, r̂2, r̂3
14: end if
15: end for
16: if no solutions are found then
17: goto line 3 with ∆t a finer search resolution
18: end if
19: end procedure



V. SIMULATION RESULTS

We showcase our 3-section inverse kinematics solver in two
scenarios: one collision-free solution for a randomly given
pose in a free task space or with obstacles (Section V-C, V-D),
and path planning under the given sequence of via points
(Section V-E).

A. Setup

The robot used in our experiments is composed of 3 sections
with an identical length 1. The evaluation of benchmark
algorithms and our solver contains the following steps: (1)
Sample random arc parameters {(κλ, ϕλ) : λ = 1, 2, 3.} with
uniform distributions and compute ξ1, ξ2, ξ3. (2) Generate
the desired pose T d using the forward kinematics (41), then
compute q, r from T d. (3) Solve the inverse kinematics
problem with different algorithms. (4) Repeat the above steps
for 2000 times and evaluate the statistics on the results.

For the numerical correction, the criterion of success is
that the error (42) is less than 0.01 and the total number of
iterations does not exceed the maximum allowed value.

Since the overall average runtime is strongly influenced by
the unsuccessful runs that require the maximum number of
iterations, we pick out the successful portion to provide a more
qualitative indicator of the performance for comparison.

The code for simulations is implemented in MATLAB
R2022b and carried on a laptop computer with a 2.10 GHz
Intel Core i7-1260P processor.

B. Benchmarks

As mentioned, solving the inverse kinematics problem al-
ways relies on numerical methods. It is essentially a root-
finding problem for quaternion equations (13) and (14). Espe-
cially, among various root-locating methods, we select several
typically representative ones. The Newton-Raphson method
is commonly used [10, 17, 27], so we choose it as one
of the benchmarks. Additionally, we implement the gradient
descending algorithm for this problem. A built-in MATLAB
optimiser fminsearch, which is a derivative-free method
using the Nelder-Mead simplex algorithm [30], is also adopted
as a benchmark.

Our solver does not require an initial guess, while for bench-
marks we provide random arc parameters as the initial guess
because the straight configuration is essentially a singularity
[31]. The Jacobian matrix in the iterative procedures has been
derived in [32]. We put the expressions in Appendix G.

C. One Solution in the Task Space

Free Space. We start from a free task space. Since the
target pose is computed from the forward kinematics with
random model parameters, the inverse kinematics problem is
ensured to be solvable. Different methods may find either
the parameters generating the desired pose, or an alternative
solution. Regardless of which one, all the methods stop as
soon as one solution is found. The result is shown in Table I.

With Obstacles. Structured obstacles are introduced in this
scenario. The obstacles are spheres with a diameter of 0.4,

and their centre points form a square lattice in the task space
with 0.8 in x- and y-axis, 1.0 in z-axis. In each repeat,
we generate parameters whose corresponding configuration
should be collision-free at the same time, so every inverse
kinematics problem is still solvable here. The methods stop as
soon as one arbitrary collision-free solution is found. For pure
numerical methods that execute only once, the success rate
would definitely decrease due to the influence of obstacles.
So the Newton-Raphson method is allowed to execute for at
most 5 times, labelled as Newton-Raphson (5). The result is
presented in Table II.

Comparison on Efficiency. We judge the computational
efficiency by the runtime. When there are no obstacles, our
solver takes about 15% runtime relative to the Newton-
Raphson method, which is the best among all benchmarks.
Our solver performs additional computations before starting
the numerical correction, which is not needed in benchmark
algorithms. Yet the result shows that the operations benefit the
overall efficiency because the provided initial value decreases
plenty of iterations in the following numerical correction.

When obstacles exist, less than 19% runtime is achieved
relative to the Newton-Raphson (5) method. We note that in
this experiment our solver takes almost double the time. The
increase in runtime is caused by two reasons. On the one hand,
when a solution satisfying the desired pose but colliding with
obstacles is found, the numerical correction is applied to the
next candidate in order to find an alternative collision-free
solution. This proportion is 9.35%. On the other hand, when no
solutions are found, the solver would employ a retraversal with
a finer resolution. The proportion of retraversal is 0.50% in
free space, and increases to 2.90% when considering obstacles.

Notably, with our solver, we observe that some initial
values are directly output as solutions without any iterations.
The proportions are 17.55% and 21.75% in the two exper-
iments, respectively. This strongly reduces the computations
and meanwhile validates our theoretical results.

Comparison on Success Rate. The success rate reflects the
dependency of a numerical algorithm on initial values and the
ability to obtain multiple solutions when obstacles exist. The
derivative-free method and gradient method are more likely
to be trapped by local minima. The Newton-Raphson method
is sometimes able to escape from local minima yet is more
likely to thrash about until running out of all iterations.

Our solver maintains the full percentage of success rate in
both experiments, which owes to the efficient multi-solution
finding. The results validate the resolution completeness for
the approximated problem, as well as the error bound that
allows the numerical correction to converge in a few steps
inside the bound.

D. An Example of Multiple Solutions

We present an example of multiple solution finding of our
solver in a space with obstacles. For a selected end rotation
q and translation r, Figure 8(a) shows the error curve e (t),
t ∈ [0, 1) obtained from traversing r̂3 with a search resolution
∆t = 0.01. We box the local minima as candidates for



TABLE I
PERFORMANCE OF DIFFERENT METHODS FOR SOLVING THE INVERSE

KINEMATICS PROBLEM.

Method Success
Rate (%)

Runtime (ms)

Successful Total

Derivative-free 47.10 59.44 68.16
Gradient 51.05 95.23 178.41
Newton-Raphson 94.20 10.54 12.18
Our Solver 100.00 1.59 1.59

TABLE II
PERFORMANCE OF DIFFERENT METHODS FOR SOLVING THE INVERSE

KINEMATICS PROBLEM WITH LATTICE OBSTACLES.

Method Success
Rate (%)

Runtime (ms)

Successful Total

Derivative-free 40.00 57.28 67.40
Gradient 45.65 95.22 181.11
Newton-Raphson 82.75 10.83 12.09
Newton-Raphson (5) 98.75 16.15 17.00
Our Solver 100.00 3.05 3.05

the following corrections. Finally, a total of 4 candidates all
converge in less than 2 steps of iterations. As a result, our
solver gets 4 multiple solutions for the desired end pose, as
presented in Figure 8(b)-8(e).

Interestingly, 2 to 4 solutions are the most frequently
observed results during our experiments. We speculate that
the number of solutions of the 3-section inverse kinematics
problem belongs to this range.

E. Path Planning

In this scenario, instead of random sampling, we specify
a path composed of a sequence of via points by giving the
position and orientation of each point.

Pentagram-Shaped Path. Figure 9 illustrates the planning
result with 3 different methods. The robot passes through
points P1, P2, . . . , P6 in order. For the gradient method and
Newton-Raphson method, the solution of the current pose
would be used as the initial value for the next pose. For our
solver, with multiple solutions obtained at each point, the one
with minimal cost is chosen greedily. The cost is calculated
by summing up the squared differences of model parameters.

Comparison on Cost and Efficiency. We repeat the ex-
periment with 10 random seeds, and the error bars represent
the 95% Jeffreys confidence intervals [33]. The total cost
of planning varies from different seeds, revealing the degree
of dependency on initial values. Hence the 0 deviation of
cost reports that our algorithm is deterministic. The solver
reduces about 10% of the total cost relative to the gradient
method. In terms of efficiency, the runtime is reduced by about
73% compared with the Newton-Raphson method. Numerical
methods do perform better when the previous solution is used
as the initial value rather than a random one. Nevertheless, the
smaller deviation of runtime reflects that our solver is more
stable.
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Fig. 8. We choose an end rotation q = cos (α/2) + sin (α/2)ω and
translation r =

(
−0.4 1.1 0.8

)T , where α = 15π/16,ω = 0.48i +

0.1
√
3j − 0.86k. With our solver, we obtain (a) the error curve with a

total of 4 equilibria, which are marked in boxes; (b-e) multiple solutions
corresponding to equilibria from left to right. Collisions are painted yellow.

Optimal RSS-Shaped Path. We construct a sequence with
100 via points that form the shape of RSS. The orientations
are all identical, whose x-axis points vertically downwards and
is then rotated by −π/4 radians. A spherical obstacle with a
diameter of 0.8 is placed by the side of the path. While the
solver calculates the solutions at each via point, we discard
those that collide with the obstacle. The cost is the same as
defined in the previous path planning experiment. By applying
dynamic programming, we achieve the optimal path as shown
in Figure 1. For clarity, we plot the solutions every 3 points.

VI. CONCLUSION

In this paper, we present an efficient multi-solution solver
to deal with the inverse kinematics problem of 3-section
constant-curvature robots. Our theory simplifies the problem
to an equivalent one-dimensional problem and gives an error
bound for the following approximation. Furthermore, a circular
traversal is applied to the approximated problem, which brings
the resolution completeness, then through a few steps of
iterations, we arrive at the solution of the inverse kinematics
problem. The experimental results demonstrate a better effi-
ciency and higher success rate of our solver than benchmark
approaches when one solution is required. In addition, the
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Fig. 9. Planning Results of a pentagram-shaped path (P1, P2, . . . , P6) using
(a) the gradient method, (b) the Newton-Raphson method, (c) our solver. The
dashed lines represent the multiple solutions. Using different random seeds,
the runtime and total cost are summarised in (d).

ability of multi-solution finding allows optimal path planning
in a space with obstacles.
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APPENDIX

A. A Catalog of Common Formulae

A unit quaternion q is written as a sum of real and imaginary
parts in (1), but this kind of notation is not always convenient
in our proof. Equivalently, we can also represent the same
quaternion q in the form of a column vector, namely,

q =

(
δ
ε

)
, δ ∈ R, ε ∈ R3,

√
δ2 + ∥ε∥2 = 1. (45)

Then the conjugate of q becomes

q∗ =

(
δ
−ε

)
. (46)

By definition, we compute the multiplication of two quater-
nions q1 and q2 as

q1 ⊗ q2 =

(
δ1δ2 − εT1 ε2

δ1ε2 + δ2ε1 + ε∧1 ε2

)
, (47)

where the wedge operator (·)∧ produces the usual skew-
symmetric matrix,

ε∧ =

 0 −ε3 ε2
ε3 0 −ε1
−ε2 ε1 0

 (48)

Since the quaternion multiplication is non-commutative, we
introduce the left and right compound operators [34, 35] by
defining (·)+ : H→ R4×4 and (·)⊕ : H→ R4×4,

q+1 =

(
δ1 −εT1
ε1 δ1I + ε∧1

)
, q⊕2 =

(
δ2 −εT2
ε2 δ2I − ε∧2

)
, (49)

so that the quaternion multiplication can be expressed in
matrix notations, i.e.,

q1 ⊗ q2 = q+1 q2 = q⊕2 q1. (50)

It can be extended to a vector r ∈ R3 if it is written in the
form of a pure quaternion r = rxi + ryj + rzk, then the
following product represents the rotation of r, namely,

q ⊗ r ⊗ q∗ = q+ (q∗)
⊕
r =

(
εεT + (δI + ε∧)

2
)
r. (51)

B. Proof of Lemma 1

Proof: We first reorder (15) as q2 = q∗1⊗q since q−1
1 = q∗1

for unit quaternions, then apply the matrix notation to get

q2 = q⊕q∗1 , (52)

or 
a2
b2
c2
d2

 =


a −b −c −d
b a d −c
c −d a b
d c −b a




a1
−b1
−c1
−d1

 . (53)

It has already been determined that dλ = 0. So we separate
the last row of (53) from another three to get two independent
constraints. By rearranging the elements in the order of(
cλ −bλ aλ

)T
= r̂λ, we obtain an identity of r̂1 from

the last row, (
b c d

)
r̂1 = 0,

as well as a relationship of r̂1 and r̂2 from another three rows,

Ar̂1 = r̂2.

This shows the necessity.
Geometrically, (17) refers to a plane through the origin in

the space R3 with a normal vector n =
(
b c d

)T
. This

plane intersects the unit sphere in the space since r̂1 ∈ S2 ⊆
R3. The intersection is simply a circle

C (n) = {v ∈ S2 : n · v = 0}. (54)

Next we show the sufficiency to complete this proof. The
proof of necessity is invertible, so we only need to verify that
the solution is feasible by proving r̂2 ∈ AC (n) ⊆ S2. Let
r̂1 =

(
c1 −b1 a1

)T ∈ C (n), then

∥Ar̂1∥2 = r̂T1 A
TAr̂1

=
(
1− b2

)
c21 + 2bcb1c1

+
(
1− c2

)
b21 + 2cda1b1

+
(
1− d2

)
a21 − 2bda1c1

= c21 + b21 + a21 − (bc1 − cb1 + da1)
2
.

(55)

Since r̂1 ∈ C (n), we have ∥r̂1∥ =
√
c21 + b21 + a21 = 1 and

n · r̂1 = bc1 − cb1 + da1 = 0, therefore

∥r̂2∥ = ∥Ar̂1∥ = 1.

This shows the sufficiency.

C. Corollary

We observe a consequence after proving Lemma 1.

Corollary 1. Given an end rotation q =
(
a b c d

)T
, for

those 2-section continuum robots with identical end rotation,
their endpoints fall on the plane passing through the origin
and with a normal vector n =

(
b c d

)T
, i.e.,

n · r = 0. (56)

Proof: Rewrite (16) as

r = ρ (a1, L1) r̂1 + ρ (a2, L2) q1 ⊗ r̂2 ⊗ q∗1

= ρ (a1, L1) r̂1 + ρ (a2, L2) q
+
1 (q∗1)

⊕
r̂2.

(57)

We have known that the 2-section continuum robots with iden-
tical end rotation must all meet the perpendicular constraint
n · r̂1 = 0 referred to in (17). So the first term on the right
side of (57) is perpendicular to n. So does the second term
because if we consider the inner product n · q+1 (q∗1)

⊕
r̂2, then

plug (18) into this expression and it becomes

n · q+1 (q∗1)
⊕
Ar̂1

= ada1 − abc1 + acb1 + 2bdb1 + 2cdc1

+ 2 (abc1 − acb1 − bdb1 − cdc1)
(
a21 + b21 + c21

)
= a (da1 + bc1 − cb1) .

(58)

As we have encountered in the proof of Lemma 1, we get
n ·q+1 (q∗1)

⊕
r̂2 = a ·nT r̂1 = 0. This proves n ·r = 0. Hence,

the endpoint falls on that given plane.



D. Proof of Lemma 2

Proof: Let w2 =
(
−c2 b2 a2

)T
, then by using matrix

notations (49) and (3), we find that

q+1 (q∗1)
⊕
r̂2

=

2c21 − 1 −2b1c1 2a1c1
−2b1c1 2b21 − 1 −2a1b1
2a1c1 −2a1b1 2a21 − 1

−c2b2
a2


= (2r̂1r̂

T
1 − I)w2.

(59)

For the last equality above, we use the fact that r̂T1 r̂1 =
∥r1∥2 = 1. Combine (57) and (59) to get

r − ρ (a1, L1) r̂1 = ρ (a2, L2)
(
2r̂1r̂

T
1 − I

)
w2. (60)

We also notice the matrix 2r̂1r̂
T
1 − I is symmetric and

involutory, namely,(
2r̂1r̂

T
1 − I

)T

=
(
2r̂1r̂

T
1 − I

)
,
(
2r̂1r̂

T
1 − I

)2

= I.

So if we multiply (60) by 2r̂1r̂
T
1 − I and then denote v =

r − ρ (a1, L1) r̂1, we can get(
2r̂1r̂

T
1 − I

)
v = ρ (a2, L2)w2. (61)

This equation is equivalent to (16) because the derivation
above can be inverted. Note that the left side only involves
variables of the first arc section and the right side only of the
second. To make it solvable, a necessary condition is the norm
of both sides are equal. According to the definition of w2, the
norm of w2 equals to the norm of r2, which is exactly 1, so
we must have

∥v∥ = ρ (a2, L2) . (62)

Now a2 can be calculated from the last row (the third
dimension) of (61) by

a2 =
u · v

ρ (a2, L2)
=

u · v
∥v∥

, (63)

where u =
(
2a1c1 −2a1b1 2a21 − 1

)T
is the transpose of

the third row of the matrix 2r̂1r̂
T
1 − I , as defined in (26).

So the inner product u · v extracts the last component of the
vector of the left part of (61).

Substitute (63) into (62) yields (21). Substitute (62) into (61)
and then we can calculate w2 by

w2 =
(
2r1r

T
1 − I

) v

∥v∥
, (64)

so r̂2 can be recovered from w2 using elementary operations.
This shows (24).

E. Proof of Lemma 3

We list some identities before we turn to the proof.

Proposition 1. Let B be defined as (26), and denote m =(
c −b a

)T
, then for λ = 1, 2, 3, we have

(a) r̂TλBr̂λ = r̂TλB
T r̂λ = d.

(b) r̂Tλ

(
BTB +mmT

)
r̂λ = 1.

Proof: The proof of the identities is straightforward
using the fact that q is a unit quaternion and r̂λ is a
unit vector. (a) Expand r̂TλBr̂λ and we have r̂TλBr̂λ =
d
(
a2λ + b2λ + c2λ

)
= d. Since B − BT is antisymmetric, we

have r̂Tλ

(
B −BT

)
r̂λ = 0, so r̂TλBr̂λ = r̂TλB

T r̂λ = d.

(b) Expand the left and we have r̂Tλ

(
BTB +mmT

)
r̂λ =(

a2 + b2 + c2 + d2
) (

a2λ + b2λ + c2λ
)
= 1 · 1 = 1.

Knowing this, the proof of Lemma 3 can be completed.
Proof of Lemma 3: As mentioned, we partition the three

sections into two groups. There are only two ways to make
the partition, namely, {1, 2} ∪ {3} and {1} ∪ {2, 3}. We will
see soon that the former leads to the case λ = 3, and the latter
to the case λ = 1. First we show the case λ = 3. Let

qe = q1 ⊗ q2 = q ⊗ q−1
3 = q ⊗ q∗3 , (65)

then through basic matrix multiplications we find

qe = q+q∗3 =

(
δδ3 + εTε3

δ3ε− δε3 − ε∧ε3

)
=

(
mT r̂3
Br̂3

)
. (66)

Here we keep adopting the symbols m and B defined in
Proposition 1. According to Corollary 1, we know that the
endpoint of the first two arc sections lies on the plane passing
the origin with a normal vector ne =

(
be ce de

)T
= Br̂3.

Denote
re = r − qe ⊗ r3 ⊗ q∗e , (67)

then Lemma 1 tells us that

ne · re = 0. (68)

Replace re in (68) with (67) we get

rTBr̂3 − ρ (a3, L3)ne · qe ⊗ r3 ⊗ q∗e = 0, (69)

which is close to the result we want. It suffices to show that

ne · qe ⊗ r3 ⊗ q∗e = d. (70)

Note that

qe ⊗ r3 ⊗ q∗e

= (Br̂3) (Br̂3)
T
r̂3 +

(
mT r̂3

)2
r̂3

+ 2
(
mT r̂3

)
(Br̂3)

∧
r̂3 + (Br̂3)

∧ (
(Br̂3)

∧
r̂3

)
,

(71)

and therefore we have

(Br̂3) · qe ⊗ r3 ⊗ q∗e

= (Br̂3)
T
(Br̂3)

(
r̂T3 B

T r̂3

)
+

(
mT r̂3

)2 (
r̂T3 B

T r̂3

)
+ 0 + 0

=
(
r̂T3 B

TBr̂3 + r̂T3 mmT r̂3

)(
r̂T3 B

T r̂3

)
= d

(72)
The last equality follows from Proposition 1. So (25) holds
for λ = 3.

The proof of case λ = 1 is simpler. We use the partition
{1} ∪ {2, 3}. Let

q′e = q2 ⊗ q3 = q−1
1 ⊗ q = q∗1 ⊗ q, (73)



and we can find a matrix B′ such that

q′e = (q∗1)
+
q =

(
δ1δ + εT1 ε

δ1ε− δε1 − ε∧1 ε

)
=

(
·

B′r̂1

)
. (74)

Rearrange (14) and we have

q∗1 ⊗ (r − r1)⊗ q1 = r2 + q2 ⊗ r3 ⊗ q∗2 . (75)

Again, Corollary 1 specifies a plane through the origin with
a normal vector n′

e = B′r̂1, and says the vector in R3 to the
left of (75) lies on that plane. If R∗

1 ∈ SO(3) is the rotation
matrix of q∗1 , then we have(

B′r̂1
)
·R∗

1 (r − r1) = 0. (76)

Since (q∗1)
−1

= q1, we know that the corresponding rotatioin
matrix of q1 is R1 = (R∗

1)
−1

= (R∗
1)

T . So we have

(R∗
1)

T
B′r̂1 = R1B

′r̂1 = q1 ⊗
(
B′r̂1

)
⊗ q∗1 . (77)

Using (74) we find that

q1 ⊗
(
B′r̂1

)
⊗ q∗1

=
(
ε1ε

T
1 + (δ1I + ε∧1 )

2
)
(δ1ε− δε1 − ε∧1 ε)

= δ1ε− δε1 − ε∧ε1

= Br̂1.

(78)

So (77) and (78) leads to

(R∗
1)

T
B′r̂1 = Br̂1. (79)

We combine (76) and (79) and apply Proposition 1(a) to
deduce that

0 =
(
B′r̂1

)
·R∗

1 (r − r1)

= rT (R∗
1)

T
B′r̂1 − rT1 (R∗

1)
T
B′r̂1

= rTBr̂1 − ρ (a1, L1) r̂
T
1 Br̂1

= rTBr̂1 − ρ (a1, L1) d.

(80)

Therefore (25) also holds for λ = 1.

F. Proof of Theorem 2

Proof: Exactly, r̂3 satisfies the equation

n0 · r̂3 − ρ (a3, L3) d = 0. (81)

Subtract this from (35) and we have the projection error∣∣∣n̂0 ·
(
r̂
(0)
3 − r̂3

)∣∣∣ = γL3 |d| − ρ (a3, L3) d

∥n0∥

=
L3 |d|∥∥∥BTr

∥∥∥
∣∣∣∣∣γ −

√
1− a23

arccos a3

∣∣∣∣∣ . (82)

We find that

min
γ

{
max

a3∈[0,1]

{∣∣∣∣∣γ −
√
1− a23

arccos a3

∣∣∣∣∣
}}

=
1

2
− 1

π
(83)

when taking γ = 1
2 + 1

π , so we get∣∣∣n̂0 ·
(
r̂
(0)
3 − r̂3

)∣∣∣ ≤ (π − 2)L3 |d|

2π
∥∥∥BTr

∥∥∥ . (84)

Next we turn to find the bound of the approximation of r1.
The exact equation is{

ne · r̂1 = 0,

n0 · r̂1 − ρ (a1, L1) d = 0,
(85)

where ne = Br̂3,n0 = BTr. Since both r̂
(0)
1 and r̂1 are

elements in S2 and perpendicular with ne, we assume

r̂1 = exp (n∧
e β) r̂

(0)
1 , (86)

and therefore, ∥∥∥r̂(0)1 − r̂1

∥∥∥ ≤ |β| . (87)

By following the pattern of proving (84), we have the similar
bounded projection error for r̂1∣∣∣n̂0 ·

(
r̂
(0)
1 − r̂1

)∣∣∣ ≤ (π − 2)L1 |d|

2π
∥∥∥BTr

∥∥∥ . (88)

According to Figure 7(c), we have

|β| = arccos

∥γL1r0∥ −
(π − 2)L1 |d|

2π
∥∥∥BTr

∥∥∥


− arccosmin

1, ∥γL1r0∥+
(π − 2)L1 |d|

2π
∥∥∥BTr

∥∥∥
 .

(89)

If we assume the distance of translation r is larger than the
length of the first section L1, i.e., ∥r∥ > L1, then we have∥∥∥BTr

∥∥∥ =

√
∥r∥2 d2 + (·)2 + (·)2 + (·)2

≥ ∥r∥ |d| > L1 |d| .
(90)

Thus, combining (87), (89) and (90) we know that the error
of r̂1 is also bounded, namely,∥∥∥r̂(0)1 − r̂1

∥∥∥ ≤ arccos
2L1 |d|

π
∥∥∥BTr

∥∥∥ − arccos
L1 |d|∥∥∥BTr

∥∥∥ . (91)

G. Jacobian Matrix

According to [32], the left Jacobian and the right Jacobian
for SO(3) are computed as

J l (ω) = I +
1− cos ∥ω∥
∥ω∥2

ω∧ +
∥ω∥ − sin ∥ω∥
∥ω∥3

(ω∧)
2
,

Jr (ω) = JT
l (ω) .

(92)
Hence the right Jacobian for SE(3) is

J (ξ) =

(
Jr (ω) 03×3

exp (−ω∧) ∂
∂ω (J l (ω)v) Jr (ω)

)
. (93)
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