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Abstract—As much as place recognition is crucial for navi-
gation, mapping and collecting training ground truth, namely
sensor data pairs across different locations, are costly and time-
consuming. This paper tackles these by learning lidar place
recognition on public overhead imagery and in a self-supervised
fashion, with no need for paired lidar and overhead imagery data.
We learn the cross-modal data comparison between lidar and
overhead imagery with a multi-step framework. First, images are
transformed into synthetic lidar data and a latent projection is
learned. Next, we discover pseudo pairs of lidar and satellite data
from unpaired and asynchronous sequences, and use them for
training a final embedding space projection in a cross-modality
place recognition framework. We train and test our approach
on real data from various environments and show performances
approaching a supervised method using paired data.

I. INTRODUCTION

Lidar is widely considered an ideal sensor for outdoor
operation, as it provides a long sensing range, 360◦ field-
of-view (FOV), invariance to lighting, and robustness against
weather conditions. For this reason, place recognition, also
known as topological localisation, has been extensively re-
searched for lidar [5, 13, 26, 18, 7, 38, 59]. Existing methods
require lidar data to have been previously recorded in the
places of operation, either as an aggregated point-cloud map or
individual scans. When previously recorded sensory data are
unreliable or unavailable, off-the-shelf overhead imagery, such
as Google satellite images, can be used as an alternative map
data source for place recognition. Even under normal operat-
ing conditions, overhead imagery can serve as an additional
information source for redundancy.

When projected to the x-y plane and expressed as a 2-
D scan image, lidars capture geometric features also visible
from bird’s-eye view aerial photos, providing useful signals
for cross-comparison. Nevertheless, localising a lidar in a
satellite image map remains challenging, as aerial imagery and
range sensor scans are severely different. Recent works were
proposed on pose estimation [54, 55] and place recognition
[56] of radar and lidar using aerial images. Typically, learning
place recognition requires paired data to form positive pairs in
metric learning as in [56]. This, in turn, relies on accurate time-
synced ground truth to query for a satellite image centred at
the true centre position of each lidar scan, forming geometric
one-to-one correspondences. In practice, collecting and post-
processing time-synced GPS and inertial data for ground truth
can require substantial cost and time. When live and map
data are from the same sensor type, self-supervised learning
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Fig. 1: An overview of the proposed framework: starting from unpaired lidar
and satellite data, we first create synthetic lidar data from satellite images. An
affinity matrix is built from real and synthetic lidar data, which is de-aliased
using a novel learned method. We then discover pseudo pairs of satellite and
lidar images with sequence alignment, used to learn a final embedding space
for place recognition. Lidar and satellite images have arbitrary heading offsets,
but here they are aligned in heading for visualisation purposes.

lidar frame satellite image

Fig. 2: Different satellite imagery collection strategies: here lidar data are
collected at a certain frequency as a vehicle travels along a route. Left: in
the supervised case, a satellite image is queried at the centre position of each
lidar scan, forming corresponding one-to-one pairs. Middle: satellite images
are sampled uniformly along the route, resulting in unpaired data. Right:
satellite images are sampled based on asynchronous, previously recorded
position measurements, resulting in unpaired data.

with artificial paired data can be done by data augmentation
[41, 16]. However, self-supervised metric learning is largely
unsolved between cross-sensory data without known pairs.

We present a self-supervised method for learning lidar place
recognition in overhead images from unpaired data, with an
overview in Figure 1. Suppose a lidar-equipped vehicle travels
along a known but never traversed route, we can, for example,
sample satellite images uniformly along the route, forming a
set of lidar and satellite data without geometric one-to-one
correspondences (Figure 2 Middle). Our method learns from
unpaired data, relaxing the need for on-board ground truth to
collect time-synced, paired lidar and aerial data. Alternatively,
if the route has been previously driven by a vehicle with an
on-board GPS/INS, then asynchronous position measurements
collected on GPS/INS timestamps from the prior drive can also
be used to query for satellite images along the route (Figure 2



Right), rather than sampling uniformly. This also mitigates the
need for an always-present on-board GPS to collect training
data. Figure 2 illustrate the difference between paired and
unpaired data under the context of our problem set-up.

To learn from unpaired, cross-sensory data, we first address
the sensory difference by utilising existing work on unpaired
image-to-image translation. Our method then mines pseudo
positive pairs with sequence alignment, where we propose a
simple yet effective self-supervised learning strategy to de-
alias the noisy affinity matrix resulting from the modality gap.
We demonstrate on public datasets that the performance of
our method is approaching a supervised approach trained with
paired data when tested on unseen places.

II. RELATED WORK

A. Deep Learning for Range Sensor Place Recognition

Neural networks for range sensor place recognition can
operate directly on point data or 2-D scan images.

1) Point-based: Early work by Uy and Lee [57] utilises
NetVLAD [2] after a PointNet [45] backbone to learn a global
descriptor for retrieval. A common strategy utilised by recent
methods seeks to learn per-point local descriptors first and then
aggregate them into a global descriptor for place recognition
using pooling [35, 28], normalisation [60], learned layers [35,
63, 12], or bag of words (BoW) [9].

2) Image-based: Sun et al. [53] expressed lidar data as
bird’s-eye view images and directly learns a global pose, which
is used to seed a Monte Carlo Localiser for pose refinement.
Saftescu et al. [46] expressed radar data as images in po-
lar coordinates and learned rotation-invariant embeddings for
place recognition via circular padding. Barnes and Posner [3]
predicted keypoints and pixel-level local descriptors from radar
images and aggregated them to a per-image global descriptor
via pooling for place recognition. OverlapNet [7] uses 2-
D range, normal, intensity, and semantic images extracted
from 3D lidar data to predict the overlap between scans as
a proxy for detecting loop closure. OverlapNet was extended
to a Transformer [58]-based architecture for rotation-invariant
learning in [40], and to handle sequential data in [39].

B. Localisation Using Aerial Imagery

Aerial imagery maps can be used to localise a forward-
facing camera image in the geo-localisation problem. In this
case, the localisation happens from different view perspectives
(forward vs top-down). Still, the sensory nature of the query
image and the map database are the same, i.e. RGB data.
When a range sensor localises in an aerial imagery map, the
view perspectives are consistent as range sensor scans are
often expressed as bird’s-eye view images. However, the data
belong to different modalities, requiring alternative strategies
for bridging the sensory gap.

1) Cross-view, intra-modality: Early work by Lin et al. [31]
learns cross-view geo-localisation with hand-crafted features
and an SVM classifier. CVMNet [21] applies two streams of
convolutional layers followed by a NetVLAD layer to learn
cross-view matching with a weighted soft-margin ranking loss.

Li et al. tackled cross-view retrieval by supplying orientation
maps [32], predicting cross-view orientation [50], learning
spatial attention [49], and using optimal feature transport [51].

2) Consistent view, cross-modality: The method in [10]
accumulates lidar intensity sub-maps and directly localises
against overhead imagery using Normalised Mutual Informa-
tion. Some methods [11, 29] extract hand-crafted features
from overhead imagery before comparing them against range
sensor data. Zhu et al. [65] learned a matching probability
between lidar grid-maps and satellite imagery to enhance a
lidar SLAM pipeline. The work in [14] combines ground
camera and lidar data to solve registration against overhead
imagery in a correlation-maximisation approach. Tang et al.
addressed the modality gap between range sensor data and
satellite imagery by generating synthetic range sensor images
[54, 55] or representing satellite imagery as points [56]. Prior
learning-based methods, different from our work, have mostly
relied on paired range sensor and satellite data for supervision.

Most recently, Kim et al. [27] trained a semantic seg-
mentation network using hand-annotated satellite images and
extracted building outlines while also performing orthorecti-
fication. This practically converted satellite imagery to a rep-
resentation similar to building outlines from OpenStreetMap
(OSM). Localisation is then solved by computing mutual
information between lidar scans against building outlines.

C. Localisation Using Other Publicly Available Resources
Other off-the-shelf resources, in particular OSM, have been

applied for robot localisation. The methods in [6, 15] match
Visual Odometry (VO) against road segments extracted from
OSM for global localisation. The methods in [43, 61] bridge
the modality gap between lidar and OSM by learning domain-
invariant semantic descriptors. Cho et al. [8] designed a hand-
crafted rotation-invariant descriptor based on the distance to
buildings applicable to both lidar point-clouds and OSM data.

D. Cross-Sensory Retrieval With Unpaired Data
Several recent works have targeted cross-sensory retrieval

with unpaired data. Yin et al. [62] applied a GAN-based
style transfer that generates synthetic lidar images from radar
images to achieve radar localisation in lidar maps. Jeong et al.
[24] combined style transfer with joint feature space learning
to match camera images with infra-red images. The method in
[8] uses a hand-crafted descriptor for lidar and OSM data, and
therefore does not require paired data for training, but is not
directly applicable to our problem set-up. The method in [27]
does not require paired lidar and satellite data, but relies on
hand-annotated satellite imagery semantics to train semantic
segmentation, which is another form of ground truth that is
potentially time consuming to acquire.

Though promising, the method by Yin et al. [62] seeks to
address the modality gap between two types of range sensors,
while the method in [24] targets RGB images and infra-
red images, both having a much smaller modality gap than
between lidar and aerial images. In our experiments, neither
[62] nor [24] were sufficient in our problem of lidar place
recognition in satellite imagery with unpaired data.



E. Unpaired Image-to-Image Translation

A core module of our pipeline involves generating synthetic
lidar images from satellite images in an unpaired set-up.
Unpaired image-to-image translation can be achieved using
cycle-consistency [64] between the input and reconstructed
images, the assumption of a shared latent space [33, 22], or
contrastive learning [44]. Several prior works were proposed to
learn multi-modal image generation [22, 30, 1], but empirically
they resulted in limited success in generating lidar images
from satellite images in our experiments. Our choice fell on
CycleGAN [64] as it is a well-established method.

III. PROBLEM OVERVIEW

Suppose a vehicle travels along a known route and takes
lidar scans at a certain frequency, resulting in a sequence of
N lidar images X = {X1, X2, . . . , XN}. Satellite images are
queried along the route, forming a sequence of M satellite
images Y = {Y1, Y2, . . . , YM}. In the simplest case, paired
data are available through ground truth: for each lidar scan Xi,
we have a satellite image Yj sharing the same centre position,
resulting in one-to-one correspondences with N =M .

Here, we consider a more general scenario where paired
data are unavailable and the lidar and satellite sampling po-
sitions differ, for example, if the satellite images are sampled
uniformly along the route. In this context, we want to find
for each Xi the closest Yj ∈ Y; vitally, there are no known
correspondences from training data, and the mapping from X
to Y is neither surjective nor injective.
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Fig. 3: Top: From unpaired data, UDA typically seeks to learn consistent
decision boundaries between the source and target modalities. Bottom: In
our problem, the goal is to search for neighbours across modalities from
continuously distributed data.

Here, we distinguish cross-sensory or cross-modal place
recognition with unpaired data from the perhaps better studied
problem of unsupervised domain adaptation (UDA) [36, 47,
25]. As shown in Figure 3, UDA typically aims to learn
consistent decision boundaries among source and target data.
Our problem is different in that both lidar and satellite images
are distributed continuously along a route, and neither can
be appropriately classified into a discrete number of distinct
categories. Our goal is instead to find the nearest neighbour
from modality Y for each sample in X , which can be achieved
by sampling positive pairs from X and Y for metric learning.

While this is trivial if X and Y are paired, our method seeks
to extract positive pairs from unpaired data.

IV. METHODOLOGY

The core idea of our approach is to exploit the fact that,
albeit without one-to-one correspondences, lidar and satellite
data follow the same underlying sequence, as they are col-
lected along the same known route. We begin by learning
an embedding function for projecting a lidar image to a
vector space descriptor using time consistency on lidar only
(Section IV-B). In parallel, we learn to generate synthetic
lidar images from satellite imagery using CycleGAN [64]
(Section IV-C). We can then use this projection to construct an
affinity matrix by comparing synthetic and real lidar images.

Though the synthetic lidar images are realistic, there is no
guarantee they capture the same regions of the scene as a
real lidar situated at the centre of the satellite image. The
affinity matrix will then be corrupted by heavy signal aliasing.
We propose a simple yet effective learned strategy to de-alias
the affinity matrix and improve its signal-to-noise ratio before
sequence alignment (Section IV-D). Pseudo pairs are then
selected from sequence alignment and used as positive pairs to
learn a final embedding space projection for place recognition
(Section IV-E). Figure 1 shows the method overview.

A. Data Representation

In our problem set-up, we project 3D lidar data to the x-y
plane to form bird’s-eye view lidar images, where points with
z value less than a threshold are discarded to remove ground
points. The intensity in each pixel is the average intensity of
all points projected to that pixel.

Fig. 4: A satellite image, a lidar image, and their polar counterparts.

Since the heading offset between lidar scans and satellite
data is unknown, the place recognition pipeline must be
rotation-invariant. Motivated by this, we convert lidar and
satellite images to a polar coordinate representation, where
the axes are range r and azimuth θ. A rotation in Cartesian
space becomes a circular shift in the polar domain along the
vertical axis, and, as CNNs are equivariant to vertical shifts,
they can be easily trained to be rotation-invariant through
data augmentation when applied to polar images. Examples of
polar representations of satellite and lidar images are shown in
Figure 4. While recent work proposes the Radon transform,
which is SE(2) equivariant, for lidar localisation [37], we
observed that Radon transform fails to preserve regions in
satellite images with a strong gradient, such as building edges.

B. Descriptor Embedding for Lidar Images

We wish to learn a function F , parametrised by a neural
network, that projects a lidar image to a descriptor space
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Fig. 5: Comparison between the input satellite image, a real lidar image scanned at the centre of the satellite image (not used during training, for visualisation
only), and the synthetic lidar image generated from the satellite image, from the training set trajectories of RobotCar (left) and KITTI (right).

Rd, where closeness in Euclidean space reflects closeness in
Cartesian space geometrically. We train the function F in a
self-supervised way using Siamese networks with a triplet
margin loss. Specifically, given a polar lidar image Xi, we
take its temporal neighbour taken τ frames earlier or later,
Xi±τ , to form a positive pair, and take a random sample X−

to form a negative pair, and minimise the following loss:

Lemb =
[
∥F (Xi)−F (Xi±τ )∥− ∥F (Xi)−F (X−)∥+m

]
+
.

(1)
[a]+ here denotes max(a, 0), and m is the triplet margin. In

our experiments, we set m to 1 and τ to 5. We apply random
rotation augmentations to Xi, Xi±τ , and X− so that F learns
to be rotation invariant.

C. Unpaired Satellite-to-Lidar Translation

To bridge the modality gap between satellite imagery and
lidar, we use a variant of CycleGAN applied to the polar im-
ages. Specifically, we concatenate each polar lidar or satellite
image with an additional single-channel image R, where the
values of all pixels on column k of R is k

W , with W being
the image width. Since height and width now denote azimuth
and range values in polar representation, supplying R makes
the generator and discriminator aware of the normalised range
value of each pixel, and has shown to help stabilise training.

In CycleGAN, we seek to optimise generator func-
tions GX→Y , GY→X and discriminator functions DX , DY ,
parametrised by neural networks. GX→Y maps an image from
modality X to Y, while GY→X is the counterpart. DX and
DY discriminate whether an image in modality X or Y is real
or fake, respectively.

Given arbitrary Xi and Yj , an adversarial loss can be applied
to GX→Y and DY :

LGAN(GX→Y , DY , Xi, Yj , R) = EYj∼Y logDY (Yj , R)

+ EXi∼X log
(
1−DY

(
GX→Y (Xi, R) , R

))
, (2)

and a similar loss is introduced for GY→X and DX .

The cycle-consistency loss can be formulated as:

Lcyc = EXi∼X
∥∥Xi −GY→X

(
GX→Y (Xi, R) , R

)∥∥
1

+ EYj∼Y
∥∥Yj −GX→Y

(
GY→X (Yj , R) , R

)∥∥
1
. (3)

Finally, the full loss is:

LCycleGAN = LGAN(GX→Y , DY , Xi, Yj , R)

+ LGAN(GY→X , DX , Yj , Xi, R) + λLcyc, (4)

where λ was set to 100 in our experiments. The networks are
optimised as:

G∗
X→Y , G

∗
Y→X = argmin

GX→Y ,GY →X

argmax
DX ,DY

LCycleGAN. (5)

As the majority of pixels in a lidar image are dark and only a
small fraction has range returns, there is no guarantee synthetic
lidar images will capture the same regions of the scene as an
actual lidar situated at the centre of the satellite image would.
Figure 5 shows examples of synthetic lidar images compared
to actual lidar images taken at the centre of the satellite image
(not used during training in our method). In many cases the
synthetic lidar images are visibly significantly different from
what an actual lidar would capture, which will result in finding
false matches in the descriptor space. As such, relying on
unpaired image-to-image translation only is insufficient, unlike
the case of radar-to-lidar transfer [62] where locations with
strong radar range return will likely also result in lidar return,
and pixels with weak or no radar return will likely be not
captured in a lidar scan.

D. Sequence Alignment

Though individual nearest-neighbour matching with syn-
thetic lidar images is inadequate, pair-finding can be achieved
with sequence alignment. Specifically, given a sequence of
lidar images X = {X1, X2, . . . , XN} and a sequence of
satellite images Y = {Y1, Y2, . . . , YM} queried along the
same route, we first generate synthetic lidar images X̃j =
GY→X(Yj) using the learned generator, forming a set of
synthetic lidar images X̃ = {X̃1, X̃2, . . . , X̃M}. Next, we can



(a) Original affinity matrix (b) 1-D patch normalisation [42] (c) Eigenvector removal [20]

(d) Dimensionality reduction [48, 34] (e) Ours (neural de-aliasing) (f) Pseudo pairs found
Fig. 6: (a): Affinity matrix computed from sequence 2011_10_03_0034 of the KITTI dataset, suffering from high signal aliasing with very poor local
contrast. We show 4 methods for de-aliasing the affinity matrix, namely 1-D patch normalisation (b), eigenvector removal (c), dimensionality reduction (d),
and our neural de-aliasing (e). (f): The highlighted pixels indicate pseudo pairs found from sequence alignment using a modified Smith-Waterman algorithm..

construct an affinity matrix A ∈ RN×M where each element
is the Euclidean distance in descriptor space between Xi and
X̃j after normalisation:

fi =
F (Xi)− µX

σX
, f̃j =

F (X̃j)− µX̃

σX̃

Aij =
∥∥∥fi − f̃j∥∥∥ , (6)

where F is the learned embedding function from Section IV-B.
µX ∈ Rd and σX ∈ Rd are the mean and standard deviation
of {F (X1), . . . , F (XN )}, and similarly for µX̃ and σX̃ .

Since synthetic lidar images are not necessarily compatible
with real lidar images as described in Section IV-C, the affinity
matrix can be heavily corrupted by signal aliasing, resulting
in a poor signal-to-noise ratio. Figure 6a shows the affinity
matrix for a sequence from the KITTI dataset [17]. Various
hand-crafted methods were proposed in prior work to enhance
the contrast in the affinity matrix. SeqSLAM [42] proposes 1-
D patch normalisation on the affinity matrix. Ho and Newman
[20] performed eigendecomposition on the affinity matrix and
reconstructed a rank-reduced one by removing eigenvectors
corresponding to the largest eigenvalues. The methods in
[48, 34] apply dimensionality reduction by keeping the de-
scriptor’s most descriptive k ≤ d dimensions. These methods
were designed primarily for visual place recognition – where
the mapping and localising sensors are of the same type and
thus the affinity matrix does not suffer from extreme signal
aliasing as in our cross-sensory problem.

We propose neural de-aliasing, a learned approach for de-
aliasing the affinity matrix trained on simulated data. First,
we form K random vectors {ξ1, ξ2, . . . , ξK}, where each
ξk ∈ Rd is sampled from a zero-mean Gaussian distribution,
and normalised to a unit sphere. Next, we form a random
dynamic sequence of length P, Φ = {ϕ1, . . . , ϕP }, by
travelling from ξ1 to ξK , taking step sizes of 0, 1, or 2 with
various probabilities each. This procedure is repeated, forming
a different dynamic sequence of length Q,Ψ = {ψ1, . . . , ψQ}.
We can construct an affinity matrix As ∈ RP×Q between Φ
and Ψ. Here, P and Q can either be less than, equal to, or
larger than K. The probability for each step size is a design
choice and does not affect performance greatly.

We then add artificial aliasing to corrupt the simulated
affinity matrix. We take inspiration from [20], yet, instead
of removing eigenvectors, we introduce aliasing by adding
an eigenvector from the affinity matrix of a KITTI sequence
whose real and synthetic lidar embeddings result in heavy
aliasing. The detailed procedure is found in Algorithm 1 and
a visual example of a simulated affinity matrix As and its
alias-corrupted version A′

s is shown in Figure 7.
We can treat As and A′

s as single-channel images and apply
Pix2Pix [23] to learn to recover a clean affinity matrix from
its alias-corrupted counterpart, after appropriate resizing:

As = GDA(A
′
s), (7)

where GDA : RH×W → RH×W is a matrix de-aliasing
function parametrised by a neural network. After GDA is



Algorithm 1: Adding Signal Aliasing
Input:
As ∈ RP×Q # affinity matrix from simulated data
{f1, . . . , fN}, {f̃1, . . . , f̃M} # embeddings from KITTI
Output:
A′

s # affinity matrix with added signal aliasing
Procedure:
f ∈ Rd×(N+M) ←

[
f1 . . . fN f̃1 . . . f̃M

]
W ∈ R(N+M)×(N+M) ← initialise
for i = 1, 2, · · · , N +M do

for j = 1, 2, · · · , N +M do
# fi and fj are the ith and jth columns of f
Wij = ∥fi − fj∥

Λ,V← eigendecomposition(W)
λ∗,v∗ ← largest eigenvalue and the corresponding
eigenvector
v∗ ← randompermute(v∗)
N ∈ R(N+M)×(N+M) ← v∗λ∗v∗T

# random crop to a P ×Q patch
N ∈ RP×Q ← randomcrop(N, P,Q)
A′

s ← As +N
A′

s ← A′
s/max(A′

s)

Fig. 7: Example of a simulated affinity matrix As (left) and its alias-
corrupted version A′

s (right). We train a neural network that takes A′
s as

input and recovers the original, high-contrast affinity matrix As.

optimised, we apply GDA to the aliased affinity matrix A
for de-aliasing. Finally, we use the modified Smith-Waterman
algorithm in [20] on the de-aliased affinity matrix for sequence
alignment, where pseudo pairs are found from the unpaired
data, forming a set of pseudo pairs S, with each (Xp, Yq) ∈ S
being a pair found by sequence alignment. Figure 6 compares
the effect of existing hand-crafted approaches and neural de-
aliasing on enhancing the contrast of the affinity matrix. We
train neural de-aliasing only once and apply the same learned
model to all datasets without further fine-tuning.

E. Learning Place Recognition from Pseudo Pairs

After pseudo pairs are selected from sequence alignment,
we use them as positive pairs in metric learning for place
recognition. Formally, we wish to learn embedding functions
FX and FY that project images of modality X and Y respec-
tively to RD, where FX and FY are parametrised by neural
networks. Here FX and FY are separate and different from
F as in Section IV-B, which was used for constructing the

affinity matrix. To optimise FX and FY , we aim to minimise
a bi-directional triplet margin loss:

LPR =
[
∥FX(Xp)− FY (Yq)∥−

∥∥FX(Xp)− FY (Y
−)

∥∥+m]
+

+
[
∥FY (Yq)− FX(Xp)∥−

∥∥FY (Yq)− FX(X−)
∥∥+m]

+
,

(8)

where (Xp, Yq) ∈ S, and the negative samples X− and Y − are
random samples from X and Y. Here, we set the triplet margin
m to 0.1. We again apply random rotation augmentations to
the images, so FX and FY learn to be rotation-invariant.

F. Network Architecture and Implementation Details

For the generator networks GX→Y , GY→X , and GDA,
we use the ResNet [19] generator from the authors’ official
implementation 1. For learning embeddings, we use the con-
volution layers of a VGG16-style [52] backbone followed by
a NetVLAD layer [2] for F, and the convolution layers of a
ResNet18 backbone, followed by a NetVLAD layer for FX

and FY . On lidar and synthetic lidar images, we add a single
convolution layer at the top to convert single-channel images
to 3 channels, so VGG16 and ResNet18 can consume them.
We set the embedding dimensions as d = 256 and D = 2048.

All of our training is conducted in PyTorch with a batch size
of 32. We use RMSProp with a fixed learning rate of 1×10−4

in CycleGAN training and ADAM with a fixed learning rate
of 2× 10−4 in all other modules. As no ground truth data are
used in training, we cannot split the training data to form a
validation set. Instead, we arbitrarily terminate training when
the training loss has stabilised for 10 epochs.

V. EXPERIMENTAL SETUP

Our method is validated on the Oxford Radar RobotCar
Dataset [4], of which we use the left of the two Velodyne
HDL-32E lidars mounted in a tilted configuration, and the
KITTI Dataset (raw data) [17], which uses a Velodyne HDL-
64E lidar mounted on-top.

Our experiments’ trajectories at inference time are unseen
during training. As RobotCar features repeated sequences of
the same route, we split the trajectory into training and test
sets with no overlap, as shown in Figure 9a. We use lidar
data collected along the training trajectories from sequences
no. 2 and 5 and query satellite data according to the GPS/INS
timestamps of sequence no. 7, forming an unpaired training
set illustrated in Figure 2 Right.

On KITTI, the training set consists of two long residential
sequences, 2011_10_03_0027 and 2011_10_03_0034.
To simulate the scenario where the route is known from a past
survey (but never traversed by the lidar-equipped vehicle), we
take the paired GPS data but uniformly divide each sequence
into 5000 segments based on distance and find the centre of
each segment. We then sample satellite images at these centres
(as in Figure 2 Middle) with an added random error of −2m to
2m to simulate the past survey following a slightly different

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


(a) Original affinity matrix (b) 1-D patch normalisation [42] (c) Eigenvector removal [20] (d) Ours (neural de-aliasing)
Fig. 8: Results of applying neural de-aliasing compared to hand-crafted techniques on the affinity matrix of sequence no.2 from RobotCar..

route than when collecting lidar data. The test set consists
of another long residential sequence, 2011_09_30_0028,
where we discard the first 1000 frames to avoid overlap with
training data, shown in Figure 9b.
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(a) RobotCar (b) KITTI
Fig. 9: The RobotCar data were split into training (blue) and test (red).
For KITTI, the test set is 2011_09_30_0028 with the first 1000 frames
removed (red), as they overlap with 2011_10_03_0027 (blue).

Ours Paired
baseline

Unpaired
baseline PointLoc [56]

Paired data ✗ ✓ ✗ ✓
Metric SE(2)
ground truth ✗ ✗ ✗ ✓

TABLE I: Training data requirements for each evaluated method.
A. Retrieval Accuracy

All test set satellite images {Yj} are mapped to the de-
scriptor space, forming {FY (Yj)} where FY (Yj) ∈ RD ∀j.
For each lidar image Xi at test time, we map it to descriptor
space as FX(Xi) ∈ RD, and calculate the Euclidean distances
against all satellite data descriptors. We find the top-1 satellite
image match and the top 1% matches for each lidar image
based on descriptor Euclidean distance. This solves the ve-
hicle’s place recognition as each satellite image is associated
with an x-y position. We compute the percentage of retrievals
within a certain threshold to the lidar’s ground truth position.
In this evaluation, we consider single-frame localisations only
and do not use sequential information.

B. Precision and Recall
We sample various descriptor distance thresholds from the

minimum distance between each FX(Xi) to any FY (Yj) to the
maximum, and consider matches less than the threshold pos-
itives and the rest negatives. Matches (positives or negatives)
are considered true matches if the error to the ground truth
position is less than 50m and false if it is more than 75m.
The precision and recall for all descriptor distance thresholds
is computed to generate the Precision-Recall curves.

C. Baselines

Learning lidar-only place recognition in satellite imagery
maps is relatively unstudied, and we compare against the
following baselines, whose training data requirements are
summarised in Table I.

Paired baseline: We trained the same network as ours
with the same metric learning approach as in Section IV-E,
except with paired training data. Although the paired lidar and
satellite images do not need to be perfectly aligned at pixel
level, for example the heading ground truth is not required.

Unpaired baseline: This baseline method uses the de-
scriptor embedding function F trained on real lidar images
only as in Section IV-B, and directly operates on synthetic lidar
images generated from satellite images using the approach
in Section IV-C. Specifically, for the unpaired baseline, all
test set satellite images are mapped to descriptor space as
{F

(
GY→X(Yj)

)
}, and each lidar image at test time is mapped

to descriptor space as F (Xi). The unpaired baseline is similar
in spirit as [62] but applied to lidar-satellite place recognition
and makes no attempt at sequence alignment.

PointLoc: To the best of our efforts, we implement [56]
where satellite images are converted to 2-D points for com-
parison against lidar data, which we dub PointLoc. PointLoc
requires the data to be paired and fully aligned at pixel-level
through accurate SE(2) ground truth, including heading.

VI. EXPERIMENTAL RESULTS

A. RobotCar Dataset

The affinity matrix for sequence no.2 of RobotCar is shown
in Figure 8a. It has much less signal aliasing than the KITTI
dataset (Figure 6a). Though hand-crafted techniques such as
1-D patch normalisation and eigenvector removal can increase
local contrast to a sufficient extent, we show qualitatively in
Figure 8 that our learned method reduces aliasing even further.

The test set trajectory of the RobotCar dataset features ap-
proximately 1 km of urban environment, with 800 lidar frames
sampled at 4Hz. The retrieval performances of our method
compared to the baselines are shown in Table II. Though
slightly outperformed by the supervised, paired method, al-
most half of our top-1 retrievals can localise correctly within
60m of the true position. Figure 10 shows the Precision-
Recall curve, where our method has higher precision than
using paired data for recall between 2% and 10%. PointLoc



greatly outperforms the other methods, but has the strictest
requirements for training data ground truth.

Distance (m) 10 20 30 40 50 60
Top-1

Paired baseline 30.88 43.50 47.13 48.75 49.75 50.88
Unpaired baseline 8.25 17.00 19.63 20.75 21.75 22.50

PointLoc [56] 48.00 57.00 60.63 63.75 66.50 68.88
Ours 17.00 32.75 37.13 41.25 43.63 45.50

Top 1%
Paired baseline 29.91 42.70 47.52 49.21 50.77 52.98

Unpaired baseline 6.84 12.55 14.58 16.21 17.31 18.44
PointLoc [56] 43.14 54.15 59.29 63.22 66.46 69.33

Ours 20.05 29.93 34.83 38.74 41.08 43.20

TABLE II: Percentage of top-1 and top 1% retrievals within each distance
threshold to the true position, evaluated on the RobotCar Dataset.

Fig. 10: Precision-Recall curve on the test set of RobotCar.

B. KITTI Dataset

The test set trajectory of KITTI features approximately 4 km
of traversal with more than 4000 lidar frames at 10Hz. KITTI
features much more challenging data than RobotCar for lidar
place recognition using overhead imagery. Firstly, KITTI uses
a Velodyne HDL-64E lidar compared to Velodyne HDL-32E.
Though the higher vertical resolution is ideal for many lidar-
based applications, it increases complexity in the resulting
lidar images, making it less likely for the synthetic lidar
images to be compatible with real lidar scans. This has made
it extremely challenging to perform sequence alignment from
unpaired data, as indicated by the significantly higher levels of
aliasing (Figure 6a) than RobotCar (Figure 8a). Moreover, the
test set is in a residential area with many similar places and
fewer distinct landmarks, resulting in a high false positive rate.
This is further exaggerated when satellite images are expressed
as points where several distinctive image features are lost,
as demonstrated by the reduced performance of PointLoc.
Finally, our test set of KITTI features a longer trajectory,
having a much larger satellite map database to search from,
inherently making retrieval difficult.

The retrieval performance and Precision-Recall curve are
shown in Table III and Figure 11. Even the paired baseline
struggles in this environment; nevertheless, our method out-
performs the unpaired baseline and, notably, PointLoc.

C. Monte Carlo Localisation

Though single frame retrieval using only overhead imagery
has limited accuracy, given a stream of lidar data, here we
present a Monte Carlo Localisation (MCL) pipeline that can

Distance (m) 10 20 30 40 50 60
Top-1

Paired baseline 3.42 5.89 7.90 10.61 12.09 13.31
Unpaired baseline 1.41 2.18 3.02 3.38 4.00 5.41

PointLoc [56] 3.08 3.69 4.91 6.15 7.42 8.41
Ours 2.61 4.93 7.02 8.93 9.87 10.92

Top 1%
Paired baseline 3.58 6.34 8.39 10.34 11.83 13.12

Unpaired baseline 1.17 1.96 2.72 3.46 4.22 4.89
PointLoc [56] 2.68 3.93 5.08 6.18 7.35 8.48

Ours 1.89 3.83 5.43 6.92 8.04 9.01

TABLE III: Percentage of top-1 and top 1% retrievals within each distance
threshold to the true position, evaluated on the KITTI Dataset.

Fig. 11: Precision-Recall curve on the test set of KITTI.

accurately track the pose over long distances. Assuming the
route to be taken at test time is known, we can formulate the
localisation as a 1-D problem along the known route, where
the distance along the route parametrises the state.

Specifically, at time t, the state consists of J particles Pt =
{pt1, . . . , ptJ | ptj ∈ R} denoting the distance from the starting
point of the trajectory, and the 1-D parametrisation indexes
to a 2-D x-y position in the world. We use 2000 particles in
our experiments, uniformly initialised along the trajectory. The
detailed MCL update step is shown in Algorithm 2.

1) Motion Model: A crucial step in MCL is the motion up-
date, typically provided by vehicle control input or odometry.
To demonstrate a pipeline that uses only lidar place recognition
in overhead imagery with no need for accurate odometry, we
update the motion by sampling the velocity from a uniform
mean Gaussian distribution with mean µv and standard de-
viation σv. We choose µv based on prior knowledge about
the vehicle’s speed. For the RobotCar Dataset, we set µv to
20 km/h as each sequence features approximately a 10 km
trajectory collected in around 30 minutes. For KITTI, there
is no repeated traversal, so we set µv to 30 km/h, which is
the speed limit in residential areas in Germany. Finally, as the
motion update is entirely approximated based on a constant-
speed prior, which may not represent the vehicle’s true motion
at time t, we use a large value of σv corresponding to 10m/s
for both datasets to account for the noise correctly.

2) Measurement Model: For each particle ptj , its associated
x-y position is used to query the nearest satellite image. The
corresponding satellite image is mapped to descriptor space
using FY , and compared to the live lidar image at time t, Xt.

3) Results: We compute the median of Pt to find the
vehicle’s estimated distance along the trajectory, and thus its
x-y position, at time t. The error to the ground truth position
is plotted for RobotCar in Figure 12 and KITTI in Figure 13



Algorithm 2: 1-D Monte Carlo Localisation
function MCL (Pt−1, µv, σv, X

t)
P̄t = Pt = St = ∅
for j = 1, 2, . . . , J do

sample v from V ∼ N (µv, σv)
ptj ← pt−1

j + v ·∆t
Y t
j ← nearest satellite image to ptj
stj ←

FX(Xt)·FY (Y t
j )

∥FX(Xt)∥∥FY (Y t
j )∥ # cosine similarity

P̄t ← P̄t ⊕ ptj # add to set
St ← St ⊕ stj

Wt ← softmax(St)
for j = 1, 2, . . . , J do

draw ptj from P̄t with probability wt
j

Pt ← Pt ⊕ ptj
return Pt

for our method and the paired baseline. On RobotCar, the
particles quickly converged after about 50 frames and localised
with small errors afterwards. On KITTI, though MCL lost
track near the end of the trajectory, it successfully localised
to mostly under 50m error for over 2 km, relying solely on
comparing lidar data against overhead imagery. Notably, the
localisation accuracy of our method is on par with the paired
baseline under an MCL set up.

Fig. 12: MCL results on RobotCar.

Fig. 13: MCL results on KITTI.

D. Unpaired Radar Place Recognition in Overhead Imagery
Our method was designed for lidar data but can be applied

to radar data through radar-to-lidar image translation. Given
radar images Z = {Z1, Z2, . . . }, we apply CycleGAN [64] to
learn a function GZ→X : RH×W → RH×W that maps a polar
radar image to its synthetic lidar counterpart. Figure 14 shows
examples of radar images and the corresponding synthetic lidar
images after style transfer on the RobotCar dataset, which also
features an on-board Navtech radar.

Fig. 14: Radar images (yellow) and corresponding synthetic lidar images.

Distance (m) 10 20 30 40 50 60
Top-1

Paired baseline 11.25 16.25 22.88 30.88 36.88 46.13
Ours 9.75 22.38 29.75 36.25 41.50 45.50

Top 1%
Paired baseline 10.70 17.83 23.95 31.47 37.80 45.54

Ours 9.26 22.12 30.29 36.02 41.32 45.72
TABLE IV: Percentage of top-1 and top 1% retrievals within each distance
threshold to the true position, evaluated on RobotCar for radar data.

Then, without further retraining, we utilise networks learned
with lidar data from our unpaired approach and directly apply
them to synthetic lidar images from radar input. Specifically,
taking FX , FY trained for lidar-satellite place recognition with
found pseudo pairs, at test time, each radar image Zi is
mapped to descriptor space as FX

(
GZ→X(Zi)

)
, and com-

pared against the map database of satellite image descriptors
{FY (Yj)}. We compare our approach against a supervised
method trained on paired radar and satellite images, using
the metric learning approach in Section IV-E. The retrieval
performance is shown in Table IV. Notably, the unpaired
approach has better accuracy than the supervised approach
trained with paired radar and satellite data.

VII. CONCLUSION AND FUTURE WORK

In this paper, we show how lidar place recognition in a map
of satellite images can be solved without any paired data. Our
approach relaxes the need for an on-board, time-synchronised
GPS/INS when collecting on-road lidar data for high-precision
pose ground truth, as long as the route taken is known from
a previous survey or traversal. Though the performance of
place recognition in overhead imagery is far from lidar-to-
lidar localisation, this capability nevertheless allows a mobile
robot to travel to an unvisited place and still localise to a
certain extent, and can also add an extra layer of redundancy
in standard navigation applications.

Here we focus on solving the pairing problem from unpaired
data and rely on metric learning for solving place recognition.
Using data with global pose ground truth, future work can
target how to further bridge the domain gap between lidar
data and overhead imagery to enhance the localisation quality.
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