
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Metric-Free Exploration for Topological Mapping
by Task and Motion Imitation in Feature Space

Yuhang He1,∗ Irving Fang2,∗ Yiming Li2 Rushi Bhavesh Shah2 Chen Feng2, ✉

1 Department of Computer Science, University of Oxford, Oxford, United Kingdom yuhang.he@cs.ox.ac.uk
2 Tandon School of Engineering, New York University, New York, United States {zf540;yimingli;rs7236;cfeng}@nyu.edu

Abstract—We propose DeepExplorer, a simple and lightweight
metric-free exploration method for topological mapping of
unknown environments. It performs task and motion plan-
ning (TAMP) entirely in image feature space. The task planner is
a recurrent network using the latest image observation sequence
to hallucinate a feature as the next-best exploration goal. The
motion planner then utilizes the current and the hallucinated
features to generate an action taking the agent towards that goal.
Our novel feature hallucination enables imitation learning with
deep supervision to jointly train the two planners more efficiently
than baseline methods. During exploration, we iteratively call the
two planners to predict the next action, and the topological map
is built by constantly appending the latest image observation and
action to the map and using visual place recognition (VPR) for
loop closing. The resulting topological map efficiently represents
an environment’s connectivity and traversability, so it can be
used for tasks such as visual navigation. We show DeepEx-
plorer’s exploration efficiency and strong sim2sim generalization
capability on large-scale simulation datasets like Gibson and
MP3D. Its effectiveness is further validated via the image-
goal navigation performance on the resulting topological map.
We further show its strong zero-shot sim2real generalization
capability in real-world experiments. The source code is available
at https://ai4ce.github.io/DeepExplorer/.

I. INTRODUCTION

Mobile agents often create maps to represent their sur-
rounding environments [1]. Typically, such a map is either
topological or metrical (including hybrid ones). We consider
a topological map to be metric-free, which means it does not
explicitly store global/relative position/orientation information
with measurable geometrical accuracy [2], [3]. Instead, it is
a graph that stores local sensor observations, such as RGB
images, as graph nodes and the spatial neighborhood structure
(and often navigation actions) as graph edges that connects
observations taken from nearby locations. While metric maps
are often reconstructed by optimizing geometric constraints
between landmarks and sensor poses from classic simultane-
ous localization and mapping (SLAM), topological maps have
recently attracted attention in visual navigation tasks due to the
simplicity, flexibility, scalability, and interpretability [4]–[9].

There are two robot exploration methods to collect data to
construct a topological map in a new environment. The first
and also the simplest one is to let the agent explore the new
environment through metric-free random walk, after which
the topological map could be built by projecting the recorded

∗ Equal contributions.
✉ Corresponding author: cfeng@nyu.edu. The work is supported by

NSF grants 2238968 and 2026479.

Gibson

Simulation Real-World

Sim2Real

Zero-Shot Transfer

Sim2Sim

Metric-Free Exploration

Where to go next?

Feature Space

Hallucinated
Feature

RGBtRGBt-1RGBt-2

MP3D

Fig. 1. DeepExplorer illustration: it is metric-free and plans in the feature
space. It jointly hallucinates the next step feature to visit and predicts the
appropriate action taking the agent to the hallucinated feature. We show that
DeepExplorer is efficient in simulation environment and possesses strong zero-
shot sim2real capability in exploring real-world environment.

observations into a feature space and adding graph edges from
temporal connections and loop closures [4]. However random
walking is very inefficient especially in large or complex
rooms, leading to repetitive visits to the nearby local areas.
The other way is to design a navigation policy that controls
the agent to more effectively explore the area while creating
the map. It is known as active SLAM and often involves
some metric information (e.g., distance and orientation) from
either additional input modalities [8], [10] or intermediate
estimations [5]. Could we combine the merits of the two ways
by finding an exploration policy that (1) is metric-free thus
simple and lightweight in hardware and model complexity, and
(2) exhibits strong generalization ability to explore unknown
environment for topological map construction?

To achieve this objective, we propose DeepExplorer (see
Fig. 1), a new framework to achieve metric-free efficient
exploration by imitating easy-to-access expert exploration
demonstrations [11]. The expert demonstration is a sequence
of image and action pairs taken on a route that efficiently
covers a new environment. This could come from either an
oracle policy having full access to virtual environments or
simply a human expert in the real world.

DeepExplorer follows the task and motion planning formal-
ism (TAMP) and entirely works in image feature space. Its
task planner, a two-layer LSTM [12] network, conceives the
next best goal feature to be explored by hallucination from the
latest sequence of observed image features. Its motion planner,
a simple multi-layer perceptron (MLP), fuses the current and

yuhang.he@cs.ox.ac.uk
{zf540;yimingli;rs7236;cfeng}@nyu.edu
https://ai4ce.github.io/DeepExplorer/

Metr ic-Free Exploration in Feature Space Topological Mapping

Map Ini tial ization Map Completion
via VPR

Task
Planner

Image

ActionHallucinated
Feature

Motion
Planner

ResNet

Repeat

ImageImage

Image

Image

Image

.......

ResNet

Image Image

Action

ImageImage ImageImage

Fig. 2. Workflow of DeepExplorer and the following topological mapping. The agent explores a novel environment by task and motion planning in feature
space (left); The following topological mapping completes the initial topological map by adding new edges via VPR and ActionAssigner.

the hallucinated features to predict the best action moving the
agent toward the hallucinated feature. Both the two planners
are trained jointly by deep supervision [13] of per-step feature
hallucination and action prediction. The trained DeepExplorer
are deployed by iteratively calling the task and the motion
planners to predict the next action.

DeepExplorer is designed for active topological mapping
of unknown environments. During each exploration step, the
topological map is updated by adding the latest image ob-
servation as a new node and the action on the new edge.
We further adopt VLAD-based [14] visual place recognition
(VPR) [15] for loop closing, adding additional new edges
between image pairs that are temporally disjoint but spatially
close. In the meantime, we train an ActionAssigner to assign
each VPR-added new edge with corresponding actions that
move the agent from one node to the other. We call the
above process as Topological Mapping (see Fig. 2). Finally, the
completed topological map efficiently represents environment
connectivity and traversability. We can apply it to various robot
tasks like visual navigation [4].

We demonstrate the advantage of DeepExplorer on both
visual exploration and navigation tasks. We train it on
Gibson [16] simulation dataset and test its exploration effi-
ciency on both Gibson validation and MP3D [17] dataset (for
zero-shot sim2sim generalization test). We further show its
strong zero-shot sim2real generalization capability by directly
deploying the Gibson-trained DeepExplorer to explore a real-
world environment. For the navigation task, we run experi-
ments on both Gibson [16] and MP3D [17] dataset with the
topological map built by DeepExplorer.

In summary, our contributions are listed as follows:
• We propose DeepExplorer for efficient metric-free visual

exploration based on task and motion planning entirely
in an image feature space.

• Our novel feature hallucination enables the imitation
learning of such a feature space via deep supervision,
whose importance is shown in our ablation study.

• Through both exploration and navigation experiments,
we show the efficiency and strong sim2sim/sim2real
generalization capability of DeepExplorer.

II. RELATED WORK

Topological Map in Exploration and Navigation. Inspired
by the animal and human psychology [18], a large amount

of work has recently proposed to build topological map to
represent an environment [4], [5], [7], [19]–[23]. They use
the topological map for tasks such as navigation [4], [5],
[7], [8], [23], exploration [4], [8], [9], [19], [20], [22] and
planning [21]. To build the topological map, they combine
various sensors such as RGB image, depth map [9], [23],
pose [5], [8], [21] and even LiDAR scanner [19], [22].
Some of them further adopt data-hungry and computation-
demanding Reinforcement Learning (RL) techniques to train
the model to construct the topological map [5], [7], [8].
Kwon et al. [7] combine imitation learning (IL) and RL
to train the model. Some of these methods [5], [8], [21]
involve metric information to construct the topological map.
N. Savinov et. al. [4] use the random walk to construct
the topological map, which inevitably leads to an inefficient
topological map. TSGM [9] jointly adds surrounding objects
during topological map construction. Unlike these prior works,
our DeepExplorer is completely metric-free and simple in
experimental configuration (just RGB image, much smaller
expert demonstration size).

Hallucinating Future Feature. The idea of hallucinating
future latent features has been discussed in other application
domains. Previous work has utilized this idea of visual antici-
pation in video prediction/human action prediction [24]–[28],
and researchers have applied similar ideas to robot motion
and path planning [29]–[32]. As stated in [24], [25], [28],
visual features in the latent space provide an efficient way to
encode semantic/high-level information of scenes, allowing us
to do planning in the latent space, which is considered more
computationally efficient when dealing with high-dimensional
data as input [33], [34]. Different from previous robotics work,
we take advantage of this efficient representation by adding
deep supervision when anticipating the next visual feature,
which was computationally intractable if we were to operate
at the pixel level.

Deeply-Supervised Learning has been extensively ex-
plored [13], [35]–[37] during the past several years. The main
idea is to add extra supervision to various intermediate layers
of a deep neural network in order to more effectively train
deeper neural networks. In our work, we adopt a similar idea
to deeply supervise the training of feature hallucination and
action generation.

Task and Motion Planning. Task and motion planning
(TAMP) divides a robotic planning problem into high-level

......

Task Planner Motion Planner

......

......

......

......

Inference

Fig. 3. Training and inference for task and motion imitation. Feature extractor gψ takes image It as input and generates the corresponding feature vector
ft. TaskPlanner πθT is a recurrent neural network (RNN) consuming a sequence of features {ft−10, · · · , ft} to hallucinate the next best feature to visit
f̂t+1. MotionPlanner πθM consumes the concatenation (denoted by

⊕
) of ft and f̂t+1 and generates the action to move the agent towards the hallucinated

feature. During training, we supervise all the intermediate outputs including the intermediate hallucinated features {f̂t−9, · · · , f̂t} and the intermediate actions
{ât−10, · · · , ât−1}, in addition to the final output f̂t+1 and ât. During inference, current observation It is firstly encoded and fed into πθT to hallucinate
f̂t+1, and then f̂t+1 combined with the ft is fed into πθM for motion planning. LT is L2 loss and LM is cross entropy loss (the subscripts T and M
denote Task and Motion respectively). ht denotes the hidden state of RNN.

task allocation (task planning) and low-level action for task
execution (motion planning). This hierarchical framework is
adopted in many robotic tasks such as manipulation [38], [39]
exploration [40] and navigation [41], [42]. Such a framework
allows us to leverage high-level information about the scenes
to tackle challenges in local control techniques [43]. In this
work, to perform active topological mapping of a novel
environment, the agent firstly reasons at the highest level about
the regions to navigate: hallucinate the next best feature point
to visit. Afterward, the agent takes an action to get to the target
feature. The whole procedure is totally implemented in feature
space without any metric information.

Imitation Learning aims to mimic human behavior or
expert demonstrations for a given specific task [11], [44],
[45]. The agent is trained to perform tasks by directly ob-
serving demonstrations [44], [45]. In our work, the expert
demonstration is a set of image-action pair sequences that an
agent would observe along a route that efficiently, albeit sub-
optimally, covers an environment. It is widely accessible in
either real-world or simulated environments (e.g. from human
experts or maps of environments). More details in Sec IV-A.

III. TOPOLOGICAL EXPLORATION IN FEATURE SPACE

Our topological map is represented by a graph G = (I,A),
where the graph nodes denoted by I is a set of RGB panoramic
image observations collected by the agent at different locations
I = {I1, I2, · · · , IN} (where N denotes the number of nodes),
and the edges denoted by A is composed of a set of actions
a(Ii,Ij) ∈ A which moves an agent between the two spatially
adjacent observations Ii and Ij . Each RGB panoramic image
is of size 256×512, and the action space consists of three basic
actions: move_forward, turn_left, and turn_right.

Our visual exploration aims at maximizing the topological map
coverage over an environment given a certain step budget N .
The coverage of the topological map denoted by C is defined
as the total area in the map that is known to be traversable
or non-traversable. Mathematically, let πθ denote the policy
network parameterized by θ, at denote the action taken at
step t, and ∆C(at) denote the gain in coverage introduced by
taking action at, the following objective function is optimized
to obtain the optimal exploration policy π∗:

π∗ = argmax
πθ

E
at∼πθ

(

N∑
t=1

∆C(at)) . (1)

Learning from expert demonstrations. In literature, most
works solve Eq. (1) by reinforcement learning to maximize the
reward [46], [47], such solutions are not only data-hungry but
also require complicated training involving metric information.
Differently, we adopt imitation learning [11] to let our policy
network πθ mimic the output of the expert policy π̃ which
could come from either an oracle policy having full access
to virtual environments or simply a human expert in real
world (more discussion is in Sec. IV-A). Hence, our objective
is to minimize the difference between our policy network and
the expert policy:

π∗ = argmin
πθ

L(πθ, π̃) , (2)

where L measures the discrepancy between two policies. We
propose the task and motion imitation in feature space to solve
Eq. (2) which will be introduced in the following (see Fig. 3).
We respectively introduce the feature extraction (III-A), the
policy network πθ composed of a TaskPlanner denoted by πθT
(III-B) as well as a MotionPlanner denoted by πθM (III-C),
and the deeply-supervised learning strategy (III-D).

A. Image Feature Extraction

We firstly encode each visual observation It ∈ I(t =
1, 2, ..., N) with a feature extractor gψ parameterized by ψ
which uses the ImageNet [48] pre-trained ResNet18 back-
bone [49]. The feature embedding ft ∈ Rd(d = 512) is
obtained by ft = gψ(It), (see Fig. 3). Note that gψ is
jointly optimized with the task planner πθT as well as the
MotionPlanner πθM via imitation learning.

B. Task Planner for Next Best Feature Hallucination

TaskPlanner πθT parameterized by θT takes the most recent
m-step visual features F = {ft−m, · · · , ft} as input, and
learns to hallucinate the next best feature to visit which is
denoted by f̂t+1, see Fig. 3. In specific, πθT is a two-layer
LSTM [12]:

f̂t+1 = πθT (ft−m, · · · , ft|θT) . (3)

To save computation, πθT only takes the most recent m-
step features as input and we empirically find that m = 10
achieves good performance. In other words, TaskPlanner is
only equipped with a short-term scene memory, and it tries
to extend the feature space as quickly as possible in order to
guide the agent to perform efficient exploration. Essentially,
TaskPlanner is planning in the feature space. This efficient
representation of the environment enables us to deploy deep
supervision strategy introduced in Section III-D.

C. Motion Planner for Action Generation

MotionPlanner πθM parameterized by θM takes the hallu-
cinated feature f̂t+1 and the current feature ft as input, and
outputs the action taking the agent towards the hallucinated
goal (see Fig. 3). Specifically, πθM is a multi-layer-perceptron
(MLP) taking the concatenation of two features as input to
classify the action:

ât = πθM (f̂t+1, ft|θM) . (4)

D. Deeply-Supervised Imitation Learning Strategy

Our imitation pipeline is shown in Fig. 3. Given an
expert exploration demonstration including a sequence
of images and the corresponding expert actions E =
{{I1, a1}, {I2, a2}, · · · , {IN , aN}}, we adopt the deeply-
supervised learning strategy [13] to jointly optimize the feature
extractor gψ , task planner πθT , and MotionPlanner πθM .
Ultimately, our objective in Eq. (2) becomes,

min
ψ,θT ,θM

N−1∑
t=1

LT (f̂t+1, ft+1) +

N∑
t=1

LM (ât, at) , (5)

where LT is L2 loss to measure the discrepancy between two
features, and LM is cross-entropy loss to make the model
imitate the expert action. The desired target feature ft+1 is
obtained by ft+1 = gψ(It+1) (It+1 is obtained from the
expert demonstration E), the desired action at is also read
from E , the hallucinated feature f̂t+1 is calculated by Eq. (3),
and the generated action ât is computed by Eq. (4). For each
training iteration, we randomly clip m+1 observations and the

TABLE I
TOTAL LOOP CLOSING TIME FOR TOPOLOGICAL MAPPING ON GIBSON 14
ROOM SCENES. HARDWARE: 10 CORES OF INTEL XEON PLATINUM 8268,

32GB RAM, AND AN SSD. SPTM REQUIRES AN NVIDIA A100 GPU.

Methods Total Time Spent
SPTM [4] ≈ 2.1 hrs

VLAD-Based VPR (Ours) ≈ 0.2 hrs

corresponding m actions from an expert exploration (m = 10
and N ≫ m), and feed them to gψ , πθT , and πθM . During
exploration, we iteratively take the latest m image observa-
tions as input, after which we first call task planner πθT
to hallucinate the next best feature and then motion planner
πθM to predict the next best action taking the agent to the
hallucinated feature accordingly. By constantly executing the
predicted action, the agent efficiently explores an environment.

The whole pipeline is shown in Fig. 3, in which we deeply
supervise all intermediate output. Specifically, in TaskPlanner,
instead of simply hallucinating the next best feature, we si-
multaneously hallucinate all intermediate feature for each step
and supervise all hallucinations by truly image observations.
In MotionPlanner, we deeply supervise the action prediction
in a similar fashion. We show by experiment that such deeply-
supervised learning strategy [13] endows the agent with more
powerful exploration capability.

E. VPR for Loop Closing

The topological map G = (I,A) initialized by the active
exploration experience in Sec. III is unidirectionally connected
in the temporal axis. Each node (a panoramic RGB image
observation) is just connected with its preceding node and
next node, failing to reflect the nodes’ spatial adjacency. We
propose to further complete the initial map G by adding edges
to any two unconnected nodes if they possess a high visual
similarity. In this work, we adopt VLAD-based visual place
recognition (VPR) [14], [50] to measure the “visual similarity”
between two nodes.

Specifically, given N unidirectionally connected image
nodes collected during exploration in a room scene, we extract
the local SIFT [51] feature for each image. Then we get the
global VLAD [14] descriptor for each image by first clustering
all SIFT features with K-Means [52] into k centroids (in our
case k = 16), and then stacking the residuals between the
local SIFT features and centroids. After VLAD descriptors
construction, we store all VLAD features into a ball tree [43],
[53] with leaf size 60. Then we can query each image’s
top-N “most visually similar” images from the corresponding
ball tree, the node pairs whose similarity score is below a
threshold (in our case 1.15) are added edges.

It is worth noting that our VLAD-based VPR is more
efficient for loop closing than SPTM [4] which uses a bi-
nary classification network that requires exhaustive pairwise
checking to detect loops. We report the average loop closing
time of the two methods on all the 14 Gibson test rooms in
Table I, showing VLAD-based VPR’s speed advantage.

Apart from the VPR, we train a model named ActionAs-
signer to assign an action list to each new edge. The architec-
ture of ActionAssigner is similar to MotionPlanner, except that
ActionAssigner predicts a sequence of actions with two node
features as input, while MotionPlanner is a one-step action
predictor (predict just one action).

After topological mapping, the completed topological map
represents a room scene through the edges between nodes and
the actions corresponding to each edge. It reflects both spatial
adjacency and traversability of the room scene so that it can
be used for navigation tasks. Given the image observations for
the start and goal positions, we localize them on a topological
map via the same VPR procedure. Once localized, we apply
Dijkstra’s algorithm [54] to find the shortest path between
the two nodes. We can then navigate the agent from the start
position to the goal without metric information.

IV. EXPERIMENTS

We test DeepExplorer on two datasets: Gibson [16] and
Matterport3D (MP3D) [17] dataset on Habitat-lab plat-
form [55]. The two datasets are collected in real indoor spaces
by 3D scanning and reconstruction methods. The agents can
be equipped with multi-modality sensors to perform various
robotic tasks. The average room size of MP3D (100 m2) is
much larger than that of Gibson ([14m2, 85m2]).

We run experiments on two tasks: (1) autonomous explo-
ration proposed by Chen et al. [46] and discussed in [59],
in which the target is to maximize an environment coverage
within a fixed step budget (1000-step budget following [8]),
and (2) image-goal navigation where the agent uses the
constructed topological map to navigate from current obser-
vation to target observation. Regarding the exploration, we
employ two evaluation metrics: (1) coverage ratio which is
the percentage of the covered area over all navigable area,
and (2) absolute covered area (m2). We exactly follow the
setting by ANS [8] that a point is covered by the agent
if it lies within the agent’s field-of-view and is less than
3.2m away. Regarding the navigation, we adopt two evaluation
metrics: shortest path length (SPL) and success rate (Succ.
Rate) [56]. We again follow ANS [8] to train DeepExplorer
on Gibson training dataset (72 scenes), and test DeepExplorer
on Gibson validation dataset (14 scenes) and MP3D test
dataset (18 scenes). Testing on the MP3D dataset helps to
show DeepExplorer’s generalizability.

A. Experiment Configuration

Exploration setup. In exploration, we independently ex-
plore each scene 71 times, each time assigning the agent a
random starting point (created by a random seed number).
We keep track of all the random seed numbers for result
reproduction. We use Habitat-lab’s sliding function so that
the agent will not be forced to stop but instead continue
the exploration when it collides with the wall. In order to
generate the initial 10 steps required by DeepExplorer, we
constantly let the agent execute move_forward action. Once
it collides with the wall, it randomly chooses turn_left

or turn_right action to continue to explore. Afterward,
we iteratively call TaskPlanner and MotionPlanner to effi-
ciently explore the environment. During DeepExplorer-guided
exploration, we allow the agent to actively detect its distance
with surrounding obstacles or walls (by using a distance
sensor). When the agent’s forward-looking distance to the
closest obstacle or wall is less than 2-step distances and
the DeepExplorer predicted action is move_forward, we
constantly execute turn_right or turn_left actions to
the direction which has the largest ego-centric range distance.
Note that using such a local obstacle avoidance scheme does
not lead to unfair comparisons for global exploration because
the baseline methods internally preserve a metric map, which
serves a similar purpose to help the agent avoid local obstacles.

We experiment with two locomotion setups: the first one is
with step-size 0.25 m and turning angle 10◦, which follows
the same setting established in [8] for comparing with baseline
methods in the exploration task. The second one is with
step-size 0.30 m and turn-angle 30◦. This setting helps us
test DeepExplorer’s generalization capability under different
locomotion configurations.

Navigation setup. In navigation, we encourage the agent
to visit enough positions for each room scene. Specifically,
the agent has collected 2,000 images per room on Gibson and
5,000 images per room on MP3D (2,000/5,000-step DeepEx-
plorer-guided exploration).

Expert demonstration generation. For each room scene,
we first sample multiple anchor points across the whole
navigable area for each room scene. Then the agent starts at a
random anchor point and iteratively walks to the next unvisited
closest anchor point with minimal steps (by calling Habitat
PathFollower API) until all anchor points are traversed.
At each step, we record the agent’s action and panoramic
RGB image. Please refer to Fig. 4 for a visualization of
this process. Note that our expert demonstration does not
necessarily guarantee globally optimal exploration, which is
intentional as this process can be easily automated and scaled.

Training details. The network architectures for both Task-
Planner and MotionPlanner are given in Table IV and V
in Appendix . In our implementation, the local observation
sequence length is 10 (m=10) due to its empirical good
performance-memory trade-off. We experimentally tested m =
20 and got inferior performance. DeepExplorer network archi-
tecture is illustrated in Appendix (parameter size is just 16 M).
We train DeepExplorer with PyTorch [60]. The optimizer is
Adam [61] with an initial learning rate of 0.0005, but decays
every 40 epochs with a decaying rate of 0.5. In total, we train
70 epochs. We train all the DeepExplorer variants with the
same hyperparameter setting for a fair comparison.

B. Comparison Methods

For exploration task, we compare DeepExplorer with six
RL-based methods: 1. RL + 3LConv: An RL Policy with 3
layer convolutional network [55]; 2. RL + Res18: RL Policy
initialized with ResNet18 [49] and followed by GRU [62]; 3.
RL + Res18 + AuxDepth: adapted from [57] which uses depth

A. All Anchor Points (red dot) B. Expert Exploration Demonstration C. DeepExplorer exploration trajectory

G
ibson

Sw
orm

ville

Fig. 4. Expert Demonstration and DeepExplorer exploration visualization. A: all potential anchor points in the Gibson Swormville scene. B: expert
selectively traverses a subset of the anchor points (by merging spatial close anchor points) by iteratively reaching the next unvisited closest anchor points so
as to create expert demonstrations. C: DeepExplorer exploration trajectory with a 1000-step budget, with the model learned from expert demonstrations.

TABLE II
COVERAGE RATIO OVER 1000-STEP BUDGET. TOP THREE PERFORMANCES ARE HIGHLIGHTED BY RED, GREEN, AND BLUE COLOR, RESPECTIVELY.

Method Description Method Sensor Used #Train Imgs Gibson Val
Domain Generalization

MP3D Test
%Cov. Cov. (m2) %Cov. Cov. (m2)

Non-learning Based RandomWalk (used by SPTM [4]) No No 0.501 22.268 0.301 40.121

RL w/ Metric Input/Estimates

RL + 3LConv [56]

RGB, Depth, Pose

10 M 0.737 22.838 0.332 47.758
RL+ResNet18 10 M 0.747 23.188 0.341 49.175

RL+ResNet18+AuxDepth [57] 10 M 0.779 24.467 0.356 51.959
RL+ResNet18+ProjDepth [46] 10 M 0.789 24.863 0.378 54.775

OccAnt [58] 1.5-2 M 0.935 31.712 0.500 71.121
ANS [8] 10 M 0.948 32.701 0.521 73.281

DeepExplorer Model Variants

DeepExplorer NoDeepSup

RGB only 0.45 M

0.768 26.671 0.292 37.163
DeepExplorer NoFeatDeepSup 0.912 35.151 0.620 104.499
DeepExplorer NoActDeepSup 0.900 33.922 0.600 102.122
DeepExplorer LSTMActRegu 0.914 35.238 0.610 101.734

DeepExplorer withHistory 0.917 35.331 0.618 102.302
DeepExplorer NoFeatHallu 0.907 34.563 0.589 99.091

Deeply Supervised Imitation DeepExplorer 0.918 35.274 0.642 109.057
DeepExplorer (0.30m/30◦) 0.927 37.731 0.656 117.993

G
ib
s
o
n
M
o
s
q
u
ito

A. RandomWalk B. DeepExplorer_noDeepSup C. DeepExplorer_LSTMActRegu D. DeepExplorer

G
ib
s
o
n
R
ib
e
ra

E. DeepExplorer: 500 steps F. DeepExplorer: 500 steps G. DeepExplorer: 500 steps H. DeepExp: 200 steps, 0.3m/30 deg.

Fig. 5. Exploration trajectories Visualization. Top row: various DeepExplorer variants exploration result (1000-step budget) on Gibson Mosquito scene.
Bottom row: exploration with different start positions (E, F, G, 500-step budget, with agent step-size 0.25 m and turn-angle 10◦). An agent with larger step
size and turn angle (0.3 m/30◦) achieves a similar coverage ratio with much smaller steps (200 steps, F). The trajectory color evolving from cold (blue) to
warm (yellow) indicates the exploration chronological order.

map prediction as an auxiliary task. The network architecture
is the same as ANS [47] with one extra deconvolution layer for
depth prediction; 4. RL + Res18 + ProjDepth adapted from
Chen et al. [46] who project the depth image in an egocentric
top-down in addition to the RGB image as input to the RL
policy. 5. ANS (Active Neural SLAM [8]) jointly learns a
local and global policy network to guide the agent to explore;
6. OccAnt [58]: takes RGB, depth, and camera as inputs to
learn a 2D top-down occupancy map to help exploration. For
ablation studies, we have following DeepExplorer variants:

1) RandomWalk The agent randomly chooses an action to
execute at each step. It serves as a baseline and helps us

to know agent exploration capability without any active
learning process. Please note that RandomWalk is also
the SPTM [4] exploration strategy.

2) DeepExplorer NoDeepSup. DeepExplorer without
deeply-supervised learning. We remove LSTM per-step
feature supervision in TaskPlanner and neighboring
frame action supervision in MotionPlanner. In other
words, we just keep the feature prediction and action
classification between the latest step and the future
step. It helps to test the necessity of involving a
deeply-supervised learning strategy.

3) DeepExplorer NoFeatDeepSup. DeepExplorer with-

A. Efficient Exploration

M
P3D

q9vSo1V
nCiC

B. Efficient Exploration C. Efficient Exploration

D. Inefficient Exploration E. Local Repetitive Exploration F. Local Repetitive Exploration

Room 3D Visualization 1

Room 3D Visualization 2

Fig. 6. DeepExplorer exploration result on MP3D [17] room scene q9vSo1VnCiC. We show both efficient exploration results (top row, sub-figure A, B,
C). We also show relatively less-efficient exploration in sub-figure E and F, which are mainly due to local repetitive exploration. We further show an inefficient
exploration example in sub-figure D. Two-room scene 3D visualization is given in the left-most subfigures. The agent exploration starting position is marked
by a red rectangle patch.

out deeply-supervised learning in the feature space. We
remove LSTM per-step feature supervision in TaskPlan-
ner but keep the neighboring frame action supervision
in MotionPlanner. This means no LT but only LM .
Together with DeepExplorer NoDeepSup and Deep-
Explorer NoActDeepSup, it helps to test the necessity
of deploying deep supervision in both task and motion
planning.

4) DeepExplorer NoActDeepSup. DeepExplorer without
deeply-supervised learning regarding action prediction.
We remove the neighboring frame action supervision in
MotionPlanner but keep the LSTM per-frame feature su-
pervision in TaskPlanner. In other words, there is no LM
but only LT . Together with DeepExplorer NoDeepSup
and DeepExplorer NoFeatDeepSup It helps to test the
necessity of deploying deep supervision in both task and
motion planning.

5) DeepExplorer LSTMActRegu. TaskPlanner halluci-
nates the next-best feature at each step to deeply su-
pervise the whole framework in the feature space. As
an alternative, we can instead predict action instead at
each step in TaskPlanner. This DeepExplorer variant
helps us to figure out whether supervising each step of
TaskPlanner LSTM in feature space is helpful.

6) DeepExplorer withHistory. DeepExplorer is trained
with only a short-memory (the latest m steps observa-
tions). To validate the influence of long-term memory,
we train a new DeepExplorer variant by adding extra
historical information: we evenly extract 10 observations
among all historically explored observations excluding
the latest m steps. After feeding them to ResNet18 [49]
to get their embedding, we simply use average pooling
to get one 512-dimensional vector and feed it to Task-
Planner LSTM as the hidden state input.

7) DeepExplorer noFeatHallu. We use the architecture
of TaskPlanner to directly predict the next action. It

discards task planning in feature space but instead plans
directly in action space. Its performance helps us to
understand if the hallucinated feature is truly necessary.

8) DeepExplorer (0.30m/30◦). This variant adopts a dif-
ferent locomotion protocol than the one used in ANS
[8] and all other variants to demonstrate DeepExplorer’s
robustness under different locomotion setups.

Some visualizations of different DeepExplorer variants’ ex-
ploration results can be found in Fig. 5.

C. Evaluation Results on Exploration

The quantitative results of the exploration task are shown
in Table II. We can observe from this table that DeepExplorer
achieves comparable performance on the Gibson dataset with
the best RL-based methods and best-performing result on
the MP3D dataset by outperforming all RL-based methods
significantly (about 13% coverage ratio and 40m2 area im-
provement). Since the comparing RL-based methods [8], [46],
[56], [57] build the map in metric space and requires millions
of training images, DeepExplorer is desirable because (1) it
provides a metric-free option for exploration, and (2) it is
lightweight (in terms of parameter size 16 M) and requires
much less training data (just about 0.45 million images, in
contrast with 10 million images required by most RL-based
methods). The room scenes in MP3D dataset are much more
complex and larger than those in the Gibson dataset. They
contain various physical impediments (e.g., complex layout,
furniture), and some rooms contain outdoor scenarios. Hence,
DeepExplorer exhibits stronger zero-shot sim2sim general-
izability in exploring novel scenes than RL-based methods.
Moreover, the performance gain is more obvious on both
Gibson and MP3D datasets when we change the agent to a
different locomotion setup (from 0.25/10◦ to 0.30/30◦), which
also shows DeepExplorer is robust to different locomotion
setups.

A. Exploration Trajectory B. Topological Mapping Result C. Error between Hallucinated
Feat. and Real-Observed Feat.

Fig. 7. Feature Visualization A. The exploration trajectory (blue to yellow, step size 0.25 m and turn-angle 30◦) with a 500-step budget overlaid on top of
the floor plan map. B. The spatially-adjacent panoramic images are connected (purple lines) via VPR. C. The difference (Euclidean distance in 512-d feature
space) between real-observed features and hallucinated features. The darker the color, the lower the difference.

On the Gibson dataset, DeepExplorer achieves a slightly
lower coverage ratio than ANS [8] but a higher average
covered area. We find such performance difference is mainly
caused by DeepExplorer stronger capability in exploring large
areas than RL-based methods. In most cases, DeepExplorer
actively reaches new areas within limited steps.

Comparison with random exploration. RandomWalk
serves as the baseline for our framework. It is also adopted
by SPTM [4] to build a topological map. It involves no
learning procedure, and the agent randomly takes action at
each step to explore an environment. From Table II, we can see
that RandomWalk dramatically reduces the exploration perfor-
mance in terms of both coverage ratio and average coverage
area. The inferior performance of RandomWalk verifies the
necessity of learning active exploration strategy in order to
help the agent efficiently explore an environment. Figure 5
demonstrates the qualitative comparison between RandomWalk
and DeepExplorer exploration result.

Feature regularization and with history memory. If
we replace feature regularization involved in TaskPlanner
with action regularization (DeepExplorer LSTMActRegu), we
have observed more performance drop on MP3D than on
Gibson dataset (3% versus 0.2%), which shows adopting
feature regularization improves the generalizability compared
with action regularization. Moreover, introducing full history
memory (DeepExplorer FullHistory) to TaskPlanner (used as
LSTM hidden state input) produces very similar results on
the Gibson dataset, but significantly reduces the performance
on MP3D dataset (more than 2% drop). It thus shows using
historical memory tends to encourage DeepExplorer to overfit
training data so that its generalizability is inevitably reduced.
We argue that such generalizability drop might lie in our over-
simplified history memory modeling because we just evenly
sample 10 nodes (image observations) from all historically
visited nodes, which might be too simple to represent the
whole history memory, or even confuses TaskPlanner if the
agent has already explored many steps. A more elegant long-
term history memory model remains to be explored.

Deeply-supervised learning and joint task and motion

imitation. Removing deeply-supervised learning (DeepEx-
plorer noDeepSup, DeepExplorer noFeatDeepSup, DeepEx-
plorer noActDeepSup) leads to performance drop on both Gib-
son and MP3D dataset, especially when both deep supervisions
in TaskPlanner and MotionPlanner are both dropped. In the
MP3D dataset, it can even lead to worse performance than
RandomWalk. It thus shows the necessity of deep supervision
in both feature space (TaskPlanner) and action space (Mo-
tionPlanner). Meanwhile, DeepExplorer noFeatHallu leads to
a significant performance drop on both Gibson and MP3D
datasets. It thus attests to the advantage of our feature-space
task and motion imitation strategy which jointly optimize
TaskPlanner for high-level task allocation and MotionPlanner
for low-level motion control.

We also visualize the comparison between DeepExplorer
hallucinated next-step future feature and truly observed feature
in Fig. 7 (C). We see that the hallucinated feature is more
similar to the observed real feature when the agent is walking
through a spacious area (in other words, the agent mostly
takes move_forward action) than when the agent is walking
along a room corner, against the wall or through a narrow
pathway. This may be due to the learned TaskPlanner most
likely hallucinates feature moving the agent forward if the
temporary egocentric environment allows. This also matches
expert exploration experience because experts mostly prefer
moving forward so as to explore as many areas as possible.

D. Evaluation Results on Navigation

For the visual navigation task, we compare DeepExplorer
with most of the methods compared in the exploration task.
CMP [63] builds up a top-down belief map for joint planning
and mapping. For OccAnt [58], we just report its result with
the model trained with RGB image (so as to be directly
comparable with DeepExplorer). For SPTM [4], we train all its
navigation-relevant models on data obtained by DeepExplorer.
The navigation result is given in Table III. We can see that
DeepExplorer outperforms all comparing methods on the two
datasets, with the largest performance gain on the MP3D
dataset (about 14% Succ. Rate, 12% SPL improvement).
Hence, we can see that our DeepExplorer-built topological

TABLE III
NAVIGATION RESULT. TOP THREE PERFORMANCES ARE HIGHLIGHTED IN RED, GREEN, AND BLUE COLOR, RESPECTIVELY. WE COLLECT

2000 (GIBSON)/5000(MP3D) IMAGES WITH AGENT SETUP (0.25M/10◦). ‘N/A’ MEANS ‘NOT AVAILABLE.’

Method Gibson Val Domain Generalization on MP3D Testset
Succ. Rate (↑) SPL (↑) Succ. Rate (↑) SPL (↑)

RandomWalk 0.027 0.021 0.010 0.010
RL + Blind 0.625 0.421 0.136 0.087

RL + 3LConv + GRU [56] 0.550 0.406 0.102 0.080
RL + ResNet18 + GRU 0.561 0.422 0.160 0.125

RL + ResNet18 + GRU + AuxDepth [57] 0.640 0.461 0.189 0.143
RL + ResNet18 + GRU + ProjDepth [46] 0.614 0.436 0.134 0.111

IL + ResNet18 + GRU 0.823 0.725 0.365 0.318
SPTM [4] 0.510 0.381 0.240 0.203
CMP [63] 0.827 0.730 0.320 0.270

OccAnt (RGB) [58] 0.882 0.712 N/A N/A
ANS [8] 0.951 0.848 0.593 0.496

DeepExplorer 0.957 0.859 0.733 0.619

map can be used for image-goal-based visual navigation.
More importantly, DeepExplorer shows satisfactory zero-shot
sim2sim generalizability in navigation as well. In Fig. 7 (B),
we can see VPR and ActionAssigner successfully add new
edges (purple lines) for loop closing. The resulting topological
map, after topological mapping, fully reflects environment
connectivity and traversability.

E. Zero-Shot Sim2Real Real-World Exploration

DeepExplorer is deployed and verified on a customized
real-world robot. We set an Insta360 Pro 2 camera1 on an
iRobot Create 2 robot2 (the camera height is around 1.5 m).
Nvidia Jetson TX23 platform is used to launch the DeepEx-
plorer model and control the robot. We directly deploy the
model (with step size 0.25m and turn-angle 10◦) trained on the
Gibson simulation dataset without any fine-tuning on the real-
world dataset. The robot’s physical configuration is as close to
that of the simulation as possible. We adopt a LiDAR scanner
for obstacle avoidance. The experiment environment is a large
indoor multi-functional office building.

We find that DeepExplorer demonstrates strong zero-shot
sim2real exploration results: the robot is capable of identifying
obstacles and actively reaching the open navigable areas. The
robot can traverse the entire hallway and enter the only open
door (marked with a star in Fig. 1) and manage to exit it
through the door after exploring it. The exploration trajectory
is shown in Fig. 1 and Fig. 9 (in Appendix). The corresponding
video can be found on the Github repository.

F. Limitations

In our experiment on the simulation datasets, we find that
DeepExplorer sometimes leads to inefficient exploration in
complex room environments as is shown in Fig. 6 (bottom
row), especially when the room layout is sophisticated and the
navigable area is narrow. We hypothesize that this is partly due
to the lack of full history memory of DeepExplorer that can
steer the agent away from already-covered areas. Although we

1https://www.insta360.com/cn/product/insta360-pro2
2https://edu.irobot.com/what-we-offer/create-robot
3https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/

jetson-tx2/

have tried one simple history memory mechanism (DeepEx-
plorer withHistory), it still remains a future research topic to
design a better history memory framework.

In the zero-shot sim2real exploration experiment, we find
that the agent often mistakes large glass walls for open door-
ways. We speculate that the lack of relevant data in the Gibson
training dataset, which is entirely made of the household
environment, leads to this failure. Extra measurement should
be considered to handle such cases.

V. CONCLUSION

Our proposed DeepExplorer is capable of efficiently build-
ing a topological map by metric-free exploration to represent
an environment. It entirely works in an image feature space to
explore a new environment by jointly hallucinating the next
step feature and predicting the appropriate action that best
moves the agent to the feature. It is simple and lightweight
as it just requires RGB images and the model size is small.
It is trained via deeply-supervised imitation learning where
the expert demonstration is easy to acquire and scale up. We
show its strong zero-shot sim2sim and sim2real generalization
capability by experiments in both large-scale and photo-
realistic simulation environments and real-world environments.
Future works include designing more elaborate historic mem-
ory modules and involving multi-modality sensors to further
improve the performance of visual exploration and navigation.

REFERENCES

[1] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
muzza, José Neira, Ian Reid, and John J. Leonard. Past, Present, and
Future of Simultaneous Localization and Mapping: Toward the Robust-
Perception Age. IEEE Transactions on Robotics, 2016. 1

[2] Benjamin Kuipers and Yung-Tai Byun. A Robot Exploration and Map-
ping Strategy based on a Semantic Hierarchy of Spatial Representations.
Robotics and Autonomous Systems, 1991. 1

[3] David Kortenkamp and Terry Waymouth. Topological Mapping for
Mobile Robots Using a Combination of Sonar and Vision Sensing.
In Proceedings of the twelfth national conference on Artificial Intel-
ligence (AAAI), 1994. 1

[4] Savinov Nikolay, Dosovitskiy Alexey, and Koltun Vladlen. Semi-
Parametric topological memory for navigation. In International Con-
ference on Learning Representations (ICLR), 2018. 1, 2, 4, 6, 8, 9

[5] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and
Saurabh Gupta. Neural Topological SLAM for Visual Navigation.
In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 1, 2

https://www.insta360.com/cn/product/insta360-pro2
https://edu.irobot.com/what-we-offer/create-robot
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/

[6] Sabine Gillner and Hanspeter A. Mallot. Navigation and Acquisition
of Spatial Knowledge in a Virtual Maze. Journal of Cognitive Neuro-
science, 1998. 1

[7] Obin Kwon, Nuri Kim, Yunho Choi, Hwiyeon Yoo, Jeongho Park, and
Songhwai Oh. Visual Graph Memory With Unsupervised Representation
for Visual Navigation. In IEEE International Conference on Computer
Vision (ICCV), 2021. 1, 2

[8] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav
Gupta, and Ruslan Salakhutdinov. Learning To Explore Using Active
Neural SLAM. In International Conference on Learning Representa-
tions (ICLR), 2020. 1, 2, 5, 6, 7, 8, 9, 12

[9] Nuri Kim, Obin Kwon, Hwiyeon Yoo, Yunho Choi, Jeongho Park, and
Songhawi Oh. Topological Semantic Graph Memory for Image Goal
Navigation. In Annual Conference on Robot Learning (CoRL), 2022. 1,
2

[10] Cindy Leung, Shoudong Huang, and Gamini Dissanayake. Active
SLAM Using Model Predictive Control and Attractor based Exploration.
In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 5026–5031. IEEE, 2006. 1

[11] Stephane Ross and Drew Bagnell. Efficient Reductions for Imitation
Learning. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), 2010. 1, 3

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 1997. 1, 4, 12

[13] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and
Zhuowen Tu. Deeply-Supervised Nets. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2015. 2, 4

[14] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez.
Aggregating Local Descriptors into a Compact Image Representation.
In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2010. 2, 4

[15] Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J. Leonard,
David Cox, Peter Corke, and Michael J. Milford. Visual Place Recog-
nition: A Survey. IEEE Transactions on Robotics, 2016. 2

[16] Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra Malik,
and Silvio Savarese. Gibson Env: Real-World Perception for Embodied
Agents. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2, 5, 12

[17] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.
Matterport3D: Learning from RGB-D Data in Indoor Environments.
International Conference on 3D Vision (3DV), 2017. 2, 5, 7

[18] Edward C Tolman. Cognitive Maps in Rats and Men. Psychological
review, 1948. 2

[19] Fan Yang, Dung-Han Lee, John Keller, and Sebastian Scherer. Graph-
based Topological Exploration Planning in Large-scale 3D Environ-
ments. IEEE International Conference on Robotics and Automa-
tion (ICRA), 2021. 2

[20] Liz Murphy and Paul Newman. Using Incomplete Online Metric Maps
for Topological Exploration with the Gap Navigation Tree. In IEEE
International Conference on Robotics and Automation (ICRA), 2008. 2

[21] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and Christian
Wolf. Learning to Plan with Uncertain Topological Maps. In European
Conference on Computer Vision (ECCV), 2020. 2

[22] Zhaoliang Zhang, Jincheng Yu, Jiahao Tang, Yuanfan Xu, and Yu Wang.
MR-TopoMap: Multi-Robot Exploration Based on Topological Map in
Communication Restricted Environment. IEEE Robotics and Automation
Letters, 2022. 2

[23] Kevin Chen, Juan Pablo de Vicente, Gabriel Sepulveda, Fei Xia, Alvaro
Soto, Marynel Vazquez, and Silvio Savarese. A Behavioral Approach to
Visual Navigation with Graph Localization Networks. In Proceedings
of Robotics: Science and Systems, 2019. 2

[24] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating Visual
Representations from Unlabeled Video. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 2

[25] K. Zeng, W. B. Shen, D. Huang, M. Sun, and J. Niebles. Visual
Forecasting by Imitating Dynamics in Natural Sequences. In IEEE
International Conference on Computer Vision (ICCV), 2017. 2

[26] Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli, Li Fei-Fei,
and Juan Carlos Niebles. Procedure Planning in Instructional Videos.
In European Conference on Computer Vision (ECCV), 2020. 2

[27] B. Fernando and S. Herath. Anticipating Human Actions by Correlating
Past with the Future with Jaccard Similarity Measures. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
2

[28] Dı́dac Surı́s, Ruoshi Liu, and Carl Vondrick. Learning the predictability
of the future. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 2

[29] Ashesh Jain, Avi Singh, Hema Swetha Koppula, Shane Soh, and
Ashutosh Saxena. Recurrent Neural Networks for Driver Activity Antic-
ipation via Sensory-Fusion Architecture. IEEE International Conference
on Robotics and Automation (ICRA), 2016. 2

[30] Hema S. Koppula and Ashutosh Saxena. Anticipating Human Activities
Using Object Affordances for Reactive Robotic Response. IEEE
Transaction on Pattern Analysis and Machine Intelligence (TPAMI),
2016. 2

[31] Luca Carlone and Sertac Karaman. Attention and Anticipation in Fast
Visual-Inertial Navigation. Transaction on Robotics, 2019. 2

[32] Hyun Soo Park, Jyh-Jing Hwang, Yedong Niu, and Jianbo Shi. Egocen-
tric Future Localization. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2016. 2

[33] Martina Lippi, Petra Poklukar, Michael C. Welle, Anastasiia Varava,
Hang Yin, Alessandro Marino, and Danica Kragic. Latent Space
Roadmap for Visual Action Planning of Deformable and Rigid Object
Manipulation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020. 2

[34] Brian Ichter and Marco Pavone. Robot Motion Planning in Learned
Latent Spaces. IEEE Robotics and Automation Letters, 2019. 2

[35] Dawei Sun, Anbang Yao, Aojun Zhou, and Hao Zhao. Deeply-
Supervised Knowledge Synergy. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 2

[36] Chi Li, M Zeeshan Zia, Quoc-Huy Tran, Xiang Yu, Gregory D Hager,
and Manmohan Chandraker. Deep Supervision with Shape Concepts
for Occlusion-Aware 3D Object Parsing. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 2

[37] Chi Li, M Zeeshan Zia, Quoc-Huy Tran, Xiang Yu, Gregory D Hager,
and Manmohan Chandraker. Deep Supervision with Intermediate Con-
cepts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2018. 2

[38] Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth
Srivastava, Edward Groshev, Christopher Lin, and Pieter Abbeel. Guided
Search for Task and Motion Plans Using Learned Heuristics. In IEEE
International Conference on Robotics and Automation (ICRA), 2016. 3

[39] Michael James McDonald and Dylan Hadfield-Menell. Guided Imita-
tion of Task and Motion Planning. In Annual Conference on Robot
Learning (CoRL), pages 630–640. PMLR, 2022. 3

[40] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang. TARE: A
Hierarchical Framework for Efficiently Exploring Complex 3D Envi-
ronments. In Proceedings of Robotics: Science and Systems, 2021. 3

[41] Shih-Yun Lo, Shiqi Zhang, and Peter Stone. PETLON: Planning
Efficiently for Task-Level-Optimal Navigation. In Proceedings of In-
ternational Conference on Autonomous Agents and MultiAgent Systems,
2018. 3

[42] Antony Thomas, Fulvio Mastrogiovanni, and Marco Baglietto. MPTP:
Motion-Planning-Aware Task Planning for Navigation in Belief Space.
Robotics and Autonomous Systems, 2021. 3

[43] Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik, and Claire
Tomlin. Combining Optimal Control and Learning for Visual Nav-
igation in Novel Environments. In Annual Conference on Robot
Learning (CoRL), 2019. 3, 4

[44] Xinlei Pan, Tingnan Zhang, Brian Ichter, Aleksandra Faust, Jie Tan,
and Sehoon Ha. Zero-shot Imitation Learning from Demonstrations for
Legged Robot Visual Navigation. In IEEE International Conference on
Robotics and Automation (ICRA), 2020. 3

[45] Sha Luo, Hamidreza Kasaei, and Lambert Schomaker. Self-Imitation
Learning by Planning. In IEEE International Conference on Robotics
and Automation (ICRA), 2021. 3

[46] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning Exploration
Policies for Navigation. In International Conference on Learning
Representations (ICLR), 2019. 3, 5, 6, 7, 9

[47] Cindy Leung, Shoudong Huang, and Gamini Dissanayake. Active
SLAM in Structured Environments. In IEEE International Conference
on Robotics and Automation (ICRA), 2008. 3, 6

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large

Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 2015. 4

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2016. 4, 5, 7, 12

[50] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD:
CNN Architecture for Weakly Supervised Place Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2017. 4

[51] David G. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. International Journal on Computer Vision (IJCV), 2004.
4

[52] S. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137, 1982. 4

[53] Ting Liu, Andrew W. Moore, and Alexander Gray. New Algorithms
for Efficient High-Dimensional Nonparametric Classification. Journal
of Machine Learning Research, 2006. 4

[54] Edsger W Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische mathematik, 1959. 5

[55] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao,
Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun,
Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A Platform
for Embodied AI Research. In International Conference on Computer
Vision (ICCV), 2019. 5

[56] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot, Alexey
Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra
Malik, Roozbeh Mottaghi, Manolis Savva, and Amir Roshan Zamir. On
Evaluation of Embodied Navigation Agents. CoRR, 2018. 5, 6, 7, 9

[57] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy
Ballard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre,
Koray Kavukcuoglu, Dharshan Kumaran, and Raia Hadsell. Learning
to Navigate in Complex Environments. In International Conference on
Learning Representations (ICLR), 2017. 5, 6, 7, 9

[58] Ziad Al-Halah Santhosh Kumar Ramakrishnan and Kristen Grauman.
Occupancy Anticipation for Efficient Exploration and Navigation. In
Proceedings of the European Conference on Computer Vision (ECCV),
2020. 6, 8, 9

[59] Santhosh K. Ramakrishnan, Dinesh Jayaraman, and Kristen Grauman.
An Exploration of Embodied Visual Exploration. In International
Journal of Computer Vision (IJCV), 2021. 5

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems (NeurIPS), 2019. 5

[61] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. In International Conference on Learning Representa-
tions (ICLR), 2015. 5

[62] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the Properties of Neural Machine Translation: Encoder-
Decoder Approaches. In Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, 2014. 5

[63] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar,
and Jitendra Malik. Cognitive Mapping and Planning for Visual
Navigation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017. 8, 9

APPENDIX

A. DeepExplorer Neural Network Architecture

DeepExplorer neural network architecture is given in Ta-
ble IV, it consists of ResNet18 (for image observation em-
bedding), LSTM layer [12] (for TaskPlanner) and multi-layer
perceptron (MLP) (for MotionPlanner). Please note that Deep-
Explorer is lightweight, its parameter size is just 16 M (where
M is million).

TABLE IV
DEEPEXPLORER NETWORK ARCHITECTURE ILLUSTRATION. THE

NETWORK CONSISTS OF BASIC 2D IMAGE CONVOLUTION LAYERS, SUCH
AS RESNET18, LSTM, AND FC. THE NETWORK IS LIGHTWEIGHT, THE

PARAMETER SIZE IS JUST 16 M.

Layer Name Filter Num Output Size
Image Embedding Layer

Input: [10, 3, 256, 512]
Embedding Network: ResNet18

Embedding Size: [10, 512]
Task Planner Network

LSTM layers = 2, hidden size = 512 [10, 512]
Feat Prediction FC in feat = 512, out feat = 512 [10, 512]

Motion Planner Network
Input: Feat [10, 1024], Action: [10]

Feat Merge FC in feat = 1024, out feat = 512 [10, 512]
Action Classification FC in feat = 512, out feat = 3 [10, 3]

TABLE V
ActionAssigner NEURAL NETWORK ARCHITECTURE. THE WHOLE

PARAMETER SIZE IS 13.5 M.

Layer Name Filter Num Output Size
Image Embedding Layer

Input: [2, 3, 256, 512]
Embedding Network: ResNet18

Feat. Merge Layer
Concat. Size: [1, 1024]

FC in feat = 1024, out feat = 512 [1, 512]
Action Predict Branch

head1 FC in feat = 512, out feat = 128 [1, 128]
head2 FC in feat = 512, out feat = 128 [1, 128]
head3 FC in feat = 512, out feat = 128 [1, 128]
head4 FC in feat = 512, out feat = 128 [1, 128]
head5 FC in feat = 512, out feat = 128 [1, 128]
head6 FC in feat = 512, out feat = 128 [1, 128]

Action Predict
Concat. Size: [1, 6, 128]

BiLSTM layers = 1, out feat = 128 [1, 6, 128]
Action Classify FC in feat = 128, out feat = 3 [1, 6, 3]

B. ActionAssigner Network Architecture

The ActionAssigner neural network is given in Table V.
The ActionAssigner also uses ResNet18 [49] as the image
embedding module. Then it uses a sequence of multi-layer
perceptron (MLP) to predict multi-step actions separately (step
length is 6), each step independently predicts one action. So
ActionAssigner is a multi-label classification neural network.
Bidirectional LSTM is applied to model mutual action depen-
dency among different steps. The parameter size is 13.5 M.
We train ActionAssigner with the same parameter setting as
of TaskPlanner and MotionPlanner (the network in Table IV).
During training data preparation, if the action list length is
smaller than 6, we pad STOP action to fill the length.

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

%
 C

ov
er

ag
e

Gibson Val - Large

RL+ProjDepth
ANS
DeepExplorer

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0 Gibson Val - Small

RL+ProjDepth
ANS
DeepExplorer

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0 Gibson Val - Overall

RL+ProjDepth
ANS
DeepExplorer

Step Length

Fig. 8. Coverage ratio variation curve comparison over 1000-step budget
over large > 50m2, small < 50m2 and all (average) room size, respectively.

Fig. 9. DeepExplorer exploration trajectory on zero-shot sim2real experi-
ment. We can see that the agent can successfully find the navigable area along
the corridor to efficiently explore more areas. It can also manage to enter and
exit one conference room (the area marked with a red star).

C. Coverage Ratio Progression Comparison

We further provide the coverage ratio progression variation
w.r.t. exploring steps comparison between DeepExplorer and
ANS [8], one RL-based method (RL+ProjDepth) in Fig. 8. The
comparison is based on Gibson validation dataset [16], and we
divide the room into Large, Small, and Overall according to
the room size. From this table, we can see that DeepExplorer
is capable of covering more area during the first 200 steps than
ANS [8] on large rooms (which is verified by the more steep
curve of DeepExplorer over ANS [8] and RL+ProjDepth, in
the middle sub-figure).

D. Zero-Shot Sim2Real Exploration Discussion

We provide two exploration videos in the supplemen-
tary folder. One video demonstrates the successful explo-
ration (with the exploration trajectory shown in Fig. 9), and

the other video shows one unsuccessful exploration case in
which the agent mixes the glass walls with an open area.

The agent we used for real-world exploration contains large
actuation noise, so the actual angle it has turned may be
different from our configuration (10◦). Sometimes its actual
executed turn angle can be as large as 20◦ or even 30◦,
especially in the conference room where the floor is overlaid
with carpet (yellow color and red star marked area in Fig. 9).
The existence of actuation noise explains the non-smoothness
between adjacent frames in our provided video, especially
when the agent entered the conference room.

Although the actuation noise is caused by the agent, we find
our trained DeepExplorer model can predict the appropriate
actions to mitigate the actuation noise impact. For example,
when the agent has turned a larger angle than the configu-
ration (e.g. turn left), DeepExplorer can predict a contrary
action (e.g. turn right) to the correct agent.

