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Abstract—Imitation learning holds great promise for address-
ing the complex task of autonomous urban driving, as experi-
enced human drivers can navigate highly challenging scenarios
with ease. While behavior cloning is a widely used imitation
learning approach in autonomous driving due to its exemption
from risky online interactions, it suffers from the covariate shift
issue. To address this limitation, we propose a context-conditioned
imitation learning approach that employs a policy to map the
context state into the ego vehicle’s future trajectory, rather than
relying on the traditional formulation of both ego and context
states to predict the ego action. Additionally, to reduce the
implicit ego information in the coordinate system, we design an
ego-perturbed goal-oriented coordinate system. The origin of this
coordinate system is the ego vehicle’s position plus a zero mean
Gaussian perturbation, and the x-axis direction points towards
its goal position. Our experiments on the real-world large-scale
Lyft and nuPlan datasets show that our method significantly
outperforms state-of-the-art approaches.

I. INTRODUCTION

Planning a safe, comfortable, and efficient trajectory for a
self-driving vehicle (SDV) in complex urban environments is a
challenging and critical task in autonomous driving [1]. Unlike
highway driving [2], urban driving requires handling various
road geometries, such as roundabouts and intersections, while
interacting with traffic lights, pedestrians, and other vehicles.
Conventional rule-based approaches [3] have achieved some
success in industry but require extensive human engineering
to deal with diverse real-world scenarios. Recent advances in
deep learning techniques have motivated researchers [4, 5, 6]
to employ neural networks to model complex driving policies.
Imitation learning (IL) from human drivers’ demonstrations is
a promising solution for learning these policies, as experienced
drivers can handle even the most difficult situations, and their
driving data can be easily collected at scale.

The simplest IL algorithm is the behavior cloning (BC) [7]
method, which has wide applications in autonomous driv-
ing [8, 4, 9]. It learns a policy in a supervised fashion by
minimizing the difference between the actions taken by the
learner and those taken by an expert in the expert state
distribution without potentially dangerous online interactions.
Despite its simplicity, the BC method suffers from the covari-
ate shift issue [10], i.e. the state induced by the learner’s policy
cumulatively deviates from the expert’s distribution.

To overcome the covariate shift problem, existing methods
such as DAgger [10] and DART [11] query supervisor correc-
tions at the learner’s or perturbed expert’s states. Since human
supervision is hard to collect, recent works like GAIL [12]

seek to provide feedback from a neural network-based discrim-
inator to recover from out-of-distribution states induced by the
learner’s policy. However, these data augmentation methods
need either expert supervision or rolling out the learner’s
policy in the real world, which is impractical in autonomous
driving. Alternatively, some researchers have attempted to
constrain the learned policy formulation to ensure its robust-
ness to policy errors by incorporating control theoretic prior
knowledge, as real-world systems usually have a robustness
property. For example, Palan et al. [13], Havens and Hu
[14] impose Kalman or linear matrix inequality constraints on
learned linear policies to ensure closed-loop stability in a linear
time-invariant system. Yin et al. [15] extends this methodology
by formulating the policy as a simple feed-forward neural
network. Furthermore, East [16] expands the method proposed
in [14] to include polynomial policies and dynamical systems.
However, the urban driving task is too complex to be handled
by these naive linear or polynomial policy formulations.

To learn a stable and general urban driving policy by
imitating offline human demonstrations, we propose a context-
conditioned imitation learning (CCIL) method. Unlike BC,
our approach utilizes a policy network that predicts the SDV’s
future trajectory using only its context state, rather than taking
both the ego and context state as inputs to generate the next ac-
tion [17, 18]. In our method, the ego state represents the SDV’s
historical trajectory, while the context state encompasses the
states of all other observed objects and the goal positions of
the SDV.

Our approach is primarily motivated by the fact that the
ego state is highly susceptible to policy errors. Even a small
distribution shift in policy inputs can result in greater action
errors and eventually lead to out-of-distribution states. Besides,
in the autonomous driving task, static elements in the context,
such as lanes or crosswalks, remain unaffected by the SDV,
while dynamic elements like human drivers attempt to recover
from the SDV’s perturbation. This stability property in the
traffic system can be leveraged to address the distribution
shift issue by considering only the context as policy input.
In addition, removing the ego state from policy inputs can
also help overcome the inertia problem caused by causal
confusion [19]. For example, when the ego vehicle comes to
a stop, the training data often shows a high probability of it
remaining static. This leads to the formation of a spurious
correlation between low speed and no acceleration, making it
challenging to restart under the imitative policy. However, our



method masks the ego history, thus preventing the formation
of such spurious correlations.

However, simply removing the ego historical information
from the policy inputs is not enough in practice. The policy
inputs are usually transformed into the vehicle coordinate
system, with the SDV’s rear axle midpoint as the origin and
orientation as the x-axis direction [4, 20]. However, using such
an ego-centric coordinate system can still implicitly leak ego
information. This is because the observation distributions in
the ego-centric coordinate can vary based on the choice of
the coordinate origin, which planning policies can exploit to
infer the ego information. An analogy with the non-inertial
reference frame in physics can help in understanding this
concept. In an ego-centric frame of reference, a moving subject
(such as a car) that experiences acceleration can deduce some
movement information about itself from local observations,
thereby leaking ego motion information. To minimize such
implicit leaked information, we develop an ego-perturbed goal-
oriented coordinate system that is less influenced by ego
motion. The origin of this coordinate system is the SDV’s
current position plus a zero mean Gaussian perturbation, and
the x-axis direction points towards its goal position.

The main contributions of our paper can be summarized as
follows:

1. We present a novel context-conditioned imitation learning
method to address the covariate shift issue in offline imitation
learning. Our method learns a policy that predicts the SDV’s
future trajectory using only its context as input, with a robust-
ness assurance based on the assumption of context stability.

2. We apply our approach specifically to urban driving by
removing the explicit ego state information in policy input and
proposing the ego-perturbed goal-oriented coordinate system
to minimize implicit ego information in the coordinate system.

3. We verify the effectiveness of our method on the real-
world large-scale urban driving datasets, Lyft [21] and nu-
Plan [22], achieving state-of-the-art performance benchmarks.
The videos and code for our method can be found at https:
//sites.google.com/view/contextconditionedil.

II. RELATED WORK

A. Imitation learning for autonomous driving

The objective of applying IL in autonomous driving is to
teach an autonomous vehicle to drive by mimicking human
drivers’ behavior. The most straightforward approach is BC,
which minimizes the difference between the learner’s and
expert’s actions in the expert states without requiring addi-
tional manually labeled data or online interaction. Early BC
applications in autonomous driving, such as ALVINN [8] and
PilotNet [4], used a large amount of human driving experience
to learn an end-to-end policy that directly maps sensor inputs
to vehicle control commands. Recently, ChauffeurNet [18]
improved generalization and transparency by yielding inter-
mediate planning using perception results. However, the BC
approach often leads to a covariate shift between the training
distribution and the deployment distribution. This means that
even minor errors in the policy can cause the vehicle to deviate

from the expert’s state, leading to larger errors. To address this
challenge, existing IL methods can be categorized into online
methods, offline model-free methods, and offline model-based
methods.

1) Online IL: Online methods aim to directly match the
expert state-action distribution instead of matching the expert
state-conditioned action distribution, as done in BC. For ex-
ample, the method proposed in [23], based on DAgger [10],
queries supervisor actions in the states visited by the learner
and adds the new data into the dataset. This adjusts the
expert state distribution to match the learner’s state distribu-
tion, eliminating the requirement of an interactive expert. To
get rid of the requirement of an interactive expert, methods
like [24] based on generative adversarial imitation learning
(GAIL) [12] utilize a discriminator to measure the difference
between the learner’s and the expert’s state-action distribution
and then compute the reward in reinforcement learning. By
increasing the policy’s accumulated reward, the policy’s state
distribution will get closer to the expert distribution. However,
deploying such reinforcement loops in safety-critical tasks like
autonomous driving is challenging since it requires online
interaction with the environment. In contrast, our proposed
method matches the ego future trajectory’s distribution condi-
tioned on context, which can be learned through supervised
learning without interaction with the environment or access to
expert supervision. This avoids the need for online interaction
with the environment and facilitates deployment in safety-
critical scenarios such as autonomous driving.

2) Offline Model-free IL: The most popular model-free IL
methods are based on DART [11] which avoids the compound-
ing error by providing synthetic examples of how to recover
from the deviated state. In [9], temporally correlated noise
is injected into the trajectory to simulate gradual drift away
from the desired trajectory. Alternatively, ChauffeurNet [18]
adds a uniform perturbation to the SDV’s current pose, i.e.
its rear axle’s midpoint coordinate and orientation, and fits
a new smooth trajectory that brings the SDV back to the
original target location. However, these rule-based trajectory
augmentation methods are challenging to cover the real motion
distribution induced by the learner’s policy, and the policy
is likely to develop a tendency for perturbed driving. In our
approach, we also apply perturbation to the SDV’s current
position, but the perturbation’s role is to blur the ego position
information, rather than to provide data augmentation. Thus,
our method does not require a trajectory smoothing process
during training. Our method is also model-free, but we aim to
endow the policy with robustness properties by constraining
its formulation without relying on recovery examples.

3) Offline Model-based IL: To address the distribution shift
problem, model-based IL methods minimize the difference
between a trajectory rolling out in a differentiable learned
or data-driven model and the expert trajectory. For example,
PPUU [25] learns a data-driven dynamics model based on a
variational autoencoder [26] and trains the policy network to
output actions that generate a similar trajectory as the expert
trajectory. As the dynamics model is differentiable, an action
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can receive gradients from multiple time steps ahead, enabling
the penalization of actions that will result in large divergences
in the future, even if their instantaneous divergences are small.
UrbanDriver [20], instead of learning a model, constructs
a differentiable data-driven model using recorded perception
data and High Definition maps, where new observations are
calculated by a coordinate transformation based on the ego
vehicle’s pose and collected data. However, the model-based
approaches’ performance is limited by their models’ accuracy.

B. Imitation learning with robustness

IL is different from supervised learning by deploying the
policy under dynamics, whose robustness is considered to
be the learned policy’s ability to recover from policy errors.
Control-theoretic methods have been explored to learn policies
with stability guarantees by constraining policy and system
dynamics. Taylor Series IL [27] shows that the induced tra-
jectories of a learner and expert will be close if their derivative
difference at expert states is small. However, computing high-
order derivatives of the expert policy is difficult without
sufficient data. Others learn a robust linear [13, 14] or simple
feed-forward neural network [15] control policy for a linear
dynamical system by posing constraints on the policy. Even
though the authors in East [16] extend the robustness guarantee
to the polynomial system and policy, obtaining guarantees
on close-loop stability for the nonlinear autonomous driving
system remains a challenge. Recently, the CMILe method [28]
learns nonlinear policies with the same safety guarantees
as the expert but requires online expert access, similar to
DAgger [10]. In contrast, our method constrains our policy
in the formulation of receiving context state and producing
ego future trajectory, whose stability is guaranteed under a
mild input-to-state stability assumption on the environment’s
dynamics.

III. THEORETICAL ANALYSIS

We first introduce the notations and definitions used in
this paper. For any vector x ∈ Rn, ∥x∥p denotes its Lp

norm, while ∥x∥ represents L2 norm. For any square matrix
A ∈ Rn×n, ∥A∥ represents its induced L2 norm and ρ(A)
represents its spectral radius (the maximum of the absolute
values of its eigenvalues). For every induced matrix norm, we
have ρ(A) ⩽ ∥A∥.

Definition 1 (Comparison functions). A function γ : R⩾0 →
R⩾0 is class K if it is continuous, strictly increasing and
satisfies γ(0) = 0. A function β(x, t) : R⩾0 × R⩾0 → R⩾0 is
class KL if it is continuous, β(·, t) is class K for each t and
β(x, ·) is decreasing for each x.

Definition 2 (Input-to-state stability (ISS) [29]). A discrete-
time system xt+1 = f(xt,ut),x0 = ξ is input-to-state stable
if there exists a class KL function β and a class K function
γ such that, for each bounded input u and initial condition ξ
and t ∈ Z+, it holds that:

∥xt(ξ,u)∥ ⩽ β(∥ξ∥, t) + γ(∥u∥∞), (1)

where ∥u∥∞ = supt∈Z+
(ut) is the input’s sup norm. If a

system satisfies the ISS property, the distance between any two
trajectories must eventually be bounded by its input signal and
independent of initial conditions.

We consider performing imitation learning in a nonlinear
discrete-time system as follows:

xt+1 = f(xt,ut), (2)

where xt ∈ Rn is the system state at time t ∈ N and ut ∈
Ru is the control input. For an autonomous driving system,
its state can be separated into two parts xt = (et, ct): the
ego state et ∈ Rm controlled by the control input u and
the context state ct ∈ Rn−m influenced by the ego state. By
viewing the policy error as a disturbance to the system, we
apply linearization to the nonlinear system at the expert’s state
x∗ to obtain the following linear subsystem:

ct+1 = Act +Bet, (3)

with solution:

ct+1 = At+1c0 +

t∑
j=0

At−jBej . (4)

Here with abuse of notation, we use the same symbol ct, et
for the context deviation ct − c∗t and the ego state deviation
et − e∗t .

Because the real-world traffic system without the ego state
deviation ct+1 = Act is stable, we have ρ(A) < 1. For such
a Schur matrix, there are constants c > 0 and 0 ⩽ σ < 1
such that ∥At∥ ⩽ cσt [30]. Besides, the context in traffic
systems generally includes static map elements that are not
influenced by ego vehicles and intelligent human drivers who
can quickly recover from the other vehicle’s perturbation. It is
natural to assume that the subsystem in Eq. (3) satisfying ISS
property with β(r, t) < σt−1r and γ(r) ⩽ ϵr, where ϵ ⩾ 0.
Combining Eq. (1) and Eq. (4), we have:

β(r, t) = cσtr < σt−1r,

γ(r) =
∞∑
j=0

cσt∥B∥r =
c∥B∥
1− σ

r ⩽ ϵr,
(5)

which implies that c < 1
σ , and ∥B∥ ⩽ ϵ(1−σ)

c .
Next, we study how the policy in our formulation can be

stable under this ISS system. We learn a context state feedback
control et = ut = fθ(ct) that directly maps the context state
to the ego state. For simplicity, we consider a linear policy
ut = Kct. Then, the linear subsystem in Eq. (3) can be
simplified as ct+1 = (A + BK)ct whose stable condition
is ρ(A+BK) < 1. So, we have when ∥K∥ < c(1−cσ)

ϵ(1−σ) ,

ρ(A+BK) ⩽ ∥A+BK∥ ⩽ ∥A∥+ ∥B∥∥K∥

⩽ cσ +
ϵ(1− σ)

c
∥K∥ < 1.

(6)

This result shows that the stability of closed-loop autonomous
driving can be guaranteed as long as the context system is
stable enough and the norm of our policy is sufficiently small.



In practice, we will add a L2 norm regularization to the
training loss of our neural network policy to internalize this
stability prior.

Finally, we show how even with a fixed context ct = 0, the
naive BC policy formulation, which takes both the ego state
and the context state and outputs the displacement from the
current state, can fail. We consider a linear policy: ut = Kbcet
and update the state et+1 = et + ut. Then, the dynamics is
et+1 = (I +Kbc)et. Because ∥I∥ = 1, we cannot obtain the
stable condition ρ(I + Kbc) < 1 by limiting the ∥Kbc∥ as
our policy formulation. Thus, the system’s stability cannot be
guaranteed.

This simple analysis supports our decision to disregard the
SDV’s historical trajectory during the learning process to avoid
the covariate shift. Its advantage will also be validated in
our experiments, showing that our method can significantly
decrease the off-road rate.

IV. METHOD

In Fig. 1, we present an overview of our context-conditioned
imitation learning method. Our policy network comprises two
encoders, namely a spatial encoder and a temporal encoder
based on the Transformer [31]. During training, we optimize
the network parameters to minimize the L1 distance between
its predicted trajectories and the ground truth trajectories.
During the evaluation, we employ a linear-quadratic regulator
(LQR) [32] controller to yield smooth planning based on the
predicted trajectory from the policy network.

A. Policy Inputs

Our policy network takes observed contexts from H previ-
ous time steps with a time step interval of I as inputs. Instead
of directly learning an end-to-end policy from raw sensor
data, such as camera images or lidar point clouds, we utilize
intermediate input representations to improve generalization
and interpretability, similar to the approach in [18].

The road networks consist of crosswalks and lanes, each
represented as a polyline sequence of vectors with various
features like VectorNet [33]. Crosswalk vector features include
their initial and terminal points’ positions and sequence orders,
while lane vectors also contain additional features such as their
traffic light state and lane width.

Regarding the traffic participants, we divide them into the
ego vehicle and other agents. As previously mentioned, we
ignore the features of the ego vehicle that can be influenced
by the learned policy and only consider its mission goal
position without considering its historical trajectory. For other
agents, we input their type, sizes, centroids, and orientations
of bounding boxes at multiple past time steps.

Overall, our approach uses intermediate vector representa-
tions and disregards the SDV’s historical trajectory to improve
model performance.

B. Coordinate System

After obtaining contexts without the explicit ego state for
H time steps, we translate each context into its own current

coordinate system, allowing for feature reuse during closed-
loop evaluation. To avoid leaking implicit ego information
that could be detrimental to closed-loop performance, we
develop an ego-perturbed goal-oriented coordinate system.
The origin of this coordinate system is anchored at the ego
vehicle’s position plus a zero-mean Gaussian perturbation,
and the x-axis points to its goal position. The perturbation
blurs the ego vehicle’s position information and ensures local
observability. The goal position eliminates the influence of
the SDV’s heading, which can be replaced with any point
unaffected by the learned policy.

It’s worth noting that we apply the perturbation indepen-
dently at all past H time steps to blur or conceal the implicit
ego position information from the learned policy, rather than
to augment training data. This is because perturbed data is
nearly impossible to occur during training and evaluation. In
contrast, ChauffeurNet [18] jitters the SDV’s current pose, fits
a smooth trajectory to the perturbed point and the original start
and end points, and generates realistic new training examples.

C. Policy Network

The policy network is designed to predict the SDV’s fu-
ture trajectory using only its context. Since predicting the
SDV’s future trajectory without its historical trajectory is more
challenging, we need to make full use of spatial-temporal
interactions between the SDV and its surroundings. To achieve
this, we use a spatial encoder to embed observations at each
time step into an observation feature. We then use a temporal
encoder to embed the spatial observation features and generate
predictions. The Transformer serves as the foundation for
the network, as it has shown exceptional performance in
autonomous driving [20, 34].

Spatial Encoder: To capture spatial relations between
vectors of the same map polyline, we use a local Trans-
former encoder as the vector-vector interaction encoder. Next,
we aggregate the features of vectors belonging to the same
polyline by max-pooling to obtain polyline-level features.
Additionally, we utilize two multi-layer perceptions (MLPs)
to obtain agent and goal features. Furthermore, to model
high-order interactions between the goal, agents, and map
elements, we employ a global transformer encoder, with the
goal embedding being output as observation features ot.

Temporal Encoder: To capture temporal information and
interaction, a Transformer encoder with a causal self-attention
mask is harnessed to embed the H historical observation fea-
tures. Finally, each hidden state of the Transformer is decoded
by a full-connected linear layer to generate a prediction of the
SDV’s poses for its relative future T time steps.

D. Training Process

We leverage offline supervised learning like BC to train
the policy network by minimizing the L1 distance between
the predictions and ground truth trajectories. This is because
the L1 metric is more correlated with driving performance
compared to the commonly used mean square error [35]. To
help the network converge and generalize, we additionally



Fig. 1. Overview of our approach.

introduce an auxiliary task that minimizes the L1 error at all
previous time steps in the causal Transformer and apply a
squared L2 norm regularization to the network parameters θ,
as inspired by Eq. (6). The final loss is:

L =

T∑
t=1

(
∥pt − p̂t

0∥1 + µ

H−1∑
h=1

∥pt−hI − p̂t
hI∥1

)
+

λ

2
∥θ∥2,

(7)
where pt denotes the ground truth ego pose at time step
t and p̂t

hI is the pose prediction at the past hI time step
for its relative future t time step. µ is an auxiliary task
hyperparameter, and λ is a regularization factor.

E. Evaluation Process

While the prediction without ego state input is more stable,
it struggles to ensure the smoothness of the predicted trajectory
from the current state. To address this, prior works [36, 25]
have typically added a differentiable kinematic layer into the
policy network to generate physically feasible planning. How-
ever, this differentiable kinematic layer would incorporate the
SDV’s current information, which is undesirable in learning a
policy. Instead, we choose to obtain a smooth trajectory during
the evaluation process by applying the LQR.

LQR is a computationally efficient method that minimizes
the total commutative quadratic cost of a linear dynamic
system. For simplicity, we consider a finite-horizon, discrete-

time linear system with dynamics described by: pt+1

ṗt+1

p̈t+1

 =

 I D D2

0 I D
0 0 I

 pt

ṗt

p̈t

+

 D3

D2

D

ut, (8)

where D is a diagonal matrix with the interval of each time
step as diagonal entries, ṗ = (ωt,vt), p̈t = (αt,at), ut =
(ζt, jt) represent the angular and positional velocity and
acceleration, jerk, and control input, respectively. The system
is subject to a quadratic cost function:

J =

T∑
t=1

∥pt−p̂t
0∥2+ηωω

2
t +ηαα

2
t +ηa∥at∥2+ηj ||jt||2, (9)

where pt represents the planned pose, and the predicted pose
p̂t
0 from the policy network are regarded as target pose. We use

weights ηω , ηα, ηaand ηj to balance safety and smoothness of
the planned trajectory. At the end of the optimization, a smooth
trajectory with positions and headings can be generated for the
SDV to follow.

V. EXPERIMENTS

A. Dataset

To evaluate the performance of our method, we conduct
experiments on two large-scale real-world datasets:

Lyft Level 5 Prediction Dataset [21]: It contains approx-
imately 1,000 h of urban driving demonstrations from Palo
Alto, which have been separated into independent scenes of
nearly 25 s at a frequency of 10 Hz. We train our network on



the provided 100 h subset (16,265 scenes) as UrbanDriver [20]
and test it with all 16,220 validation scenes.

nuPlan Dataset [22]: This dataset consists of 1,312 h of
human driving data collected in four cities (Boston, Pittsburgh,
Las Vegas, and Singapore). Due to significant differences in
traffic rules and patterns between different cities, we extract
driving data in Las Vegas as Phan-Minh et al. [37]. Then, we
segment the data into independent scenes of 25 s at a frequency
of 10 Hz, as in the Lyft dataset, and filter out scenes without a
mission goal. After filtering, we obtain 63,181 training, 4,774
validation, and 6,386 testing scenes.

More information on data preparation and another toy
Dataset can be found in the appendix.

B. Closed-Loop Evaluation

To evaluate the closed-loop performance of our method, we
use a log-replay simulator, as in prior work [20, 38]. At each
step in the log-replay simulator, the SDV updates its pose
according to the planned trajectory, while other agents are
assumed to follow their recorded trajectories in the dataset. For
both datasets, we evaluate our method for 25 s at a frequency
of 10 Hz, using the following metrics:

Collision Rate: If the SDV collides with other agents at any
time step during a scene, that scene is considered a collision
scene. The collision rate is calculated by taking the ratio of
the number of collision scenes to the total number of scenes.

Off-road Rate: In nuPlan, we use the official off-road
metric, which considers the distance between a corner of the
SDV’s bounding box and the drivable area. Specifically, if
this distance exceeds 0.3 m, the scene is deemed off-road.
However, in the Lyft dataset, there is no access to the drivable
area. Thus, following UrbanDriver [20], we consider a scene
off-road if the SDV deviates laterally from the human driver’s
ground truth by more than 2 m in the scene.

Discomfort: To quantify the comfort and feasibility of the
planned trajectory, we calculate the rate at which the absolute
acceleration values exceed 3 m/s2 across all time steps.

L2: We use the average L2 position errors between the roll-
out trajectory and the human driver’s ground truth to quantify
the similarity between our results and human driving.

C. Performance

On the Lyft dataset, we compare our methods against three
state-of-the-art methods to demonstrate the advantage of the
proposed framework:

Raster-perturb: An official baseline learned by BC for the
Lyft dataset [21], based on ResNet-50 [39], which receives a
Bird-Eye-View (BEV) representation of the scene surround-
ing the SDV and plans a trajectory with position and yaw
displacements. To augment the data, a perturbation is applied
to the current SDV position, and then a new kinematically
feasible trajectory to reach the original endpoint is generated
as ChauffeurNet.

BC-perturb: A BC method provided by UrbanDriver with
the same trajectory perturbation and output as Raster-perturb

but its map and agent inputs are represented in vector formu-
lations, which are processed by a VectorNet and Transformer.
In addition, the SDV’s history is equipped with a dropout.

UrbanDriver: An offline policy gradient method to imitate
the expert’s policy by exploiting a differentiable data-driven
simulator using the same input and model structure as BC-
perturb.

On the nuPlan dataset, we compare our methods against an
official baselines learned by BC due to a lack of other prior
works:

LaneGCN-perturb: A vector-based model that utilizes a
series of MLPs to encode SDV and agent inputs and a
LaneGCN [40] to encode vector-map elements, and then a
fusion network to capture lane and agent intra- and inter-
interactions through attention layers. To augment the training
data, the SDV trajectories are perturbed and other agents are
randomly dropped out.

In addition to these models provided by prior works, we
also learn our model using a representative method in behavior
cloning and offline reinforcement learning on both datasets:

TD3+BC [41]: It adds a BC term to the policy updating
of the Twin Delayed Deep Deterministic Policy Gradient
(TD3) [42] for implicit policy constraints. We construct the
offline RL dataset by applying the trajectory perturbation
augmentation and consider collision, and comfort for the
reward design.

Vector-Chauffeur: Our network learned using the same
data augmentation method as the ChauffeurNet including
trajectory perturbation and ego past motion dropout. And we
represent the data in the same coordinate system, which uses
the SDV’s location as the origin and its heading perturbed by
a uniform noise as the orientation.

Our proposed method outperformed all previous work sig-
nificantly on both datasets, as shown in Tab. I. The nuPlan
dataset had a higher collision rate than the Lyft dataset due
to the scenarios being more complex with more road agents.
The poor performance of the official baseline LaneGCN-
perturb on the nuPlan dataset is due to using the official
hyper-parameters without fine-tuning, as its training process
is time-consuming.

D. Ablation Study

The following ablation experiments on the Lyft dataset are
used to expose the significance of different components of our
model, whose results are shown Tab. II:

Network Input: We first study the importance of removing
explicit ego information from the network input. We consider
two approaches to reintroducing explicit ego inputs. One is to
directly input the SDV’s past positions and then process them
in the same way that the goal position is processed. The other
one is to additionally introduce a dropout of 50% at the ego
input during training as ChauffeurNet. Note that our method
is different from dropout methods because the dropout is only
applied during training while we keep removing the ego state.
We can observe that in both explicit ego information input



TABLE I
COMPARISON WITH BASELINES OF CLOSED-LOOP PERFORMANCE ON THE LYFT AND NUPLAN DATASETS.

Model Num params Collision(%) Off-road(%) Discomfort(%) L2(m)

Raster-perturb∗ 23.6M 15.48 5.06 4.00 5.90
BC-perturb∗ 1.8M 9.38 6.77 39.10 4.77
UrbanDriver∗ 1.8M 13.28 7.27 39.41 5.74
TD3+BC 2.8M 22.53±1.76 15.21±0.97 4.86±0.47 6.34±0.41
Vector-Chauffeur 1.5M 10.12±0.23 3.40±0.32 5.42±0.44 5.03±0.43
CCIL (ours) 1.5M 3.32±0.15 0.62±0.13 4.33±0.22 1.23 ± 0.08

LaneGCN-perturb 2.0M 60.63±2.34 34.25±1.65 17.26±1.80 21.21±1.81
TD3+BC 2.8M 39.12±2.21 18.59±1.04 10.56±0.95 15.04±1.62
Vector-Chauffeur 1.5M 24.12±1.37 10.11±0.62 12.53±1.17 6.12±0.87
CCIL (ours) 1.5M 6.91±0.11 3.08±0.11 1.16±0.05 3.68±0.04

∗There is no variance in Raster-perturb, BC-perturb, and UrbanDriver because we evaluate the deterministic pre-trained models in a deterministic simulator.

TABLE II
ABLATION EXPERIMENTS ON CLOSED-LOOP PERFORMANCE ON THE LYFT DATASET

Model Perturb Ego Collision(%) Off-road(%) Discomfort(%) L2(m)

w explicit ego ✓ ✓ 20.29±0.88 19.18±2.98 0.57±0.15 5.50±0.55
w ego dropout ✓ ✓ 14.05±1.53 5.02±0.88 0.63±0.20 4.15±0.47

w ego coordinate ✓ 11.31±1.44 9.79±1.34 0.95±0.05 3.87±0.11
std=0 7.08±0.35 2.86±0.25 0.89±0.10 3.46±0.34
std=1 ✓ 3.39±0.17 1.00±0.16 1.99±0.15 2.10±0.05
std=2 (ours) ✓ 3.32±0.15 0.62±0.13 4.33±0.22 1.23±0.08
std=3 ✓ 3.42±0.12 0.49±0.10 7.35±0.26 0.91±0.04

w/o causal Trans ✓ 4.28±0.25 1.43±0.25 6.53±0.26 1.63±0.10
w/o LQR ✓ 3.81±0.14 2.07±0.12 89.05±0.35 1.02±0.02

w/o regularization ✓ 4.07±0.16 1.05±0.14 4.96±0.30 1.23±0.09
w/o auxiliary ✓ 4.56±0.29 1.02±0.06 3.23±0.31 1.92±0.07

ways, there is a steep drop in the collision and off-road rate
and L2 distance due to the covariate shift issue.

Coordinate System: To analyze the impact of the implicit
ego information in the coordinate system, we first consider
replacing our ego-perturbed goal-oriented coordinate system
with the ego-centric coordinate system in ChauffeurNet using
orientation uniformly around the heading. We observe that the
ChauffeurNet coordinate system leads to inferior closed-loop
performance due to the implicit ego information. Furthermore,
in our coordinate system, we add a Gaussian noise with a
zero mean to the SDV’s current position to obtain the origin.
By increasing the standard deviation (std) of the Gaussian
noise, we can reduce the implicit ego information. We observe
that as the std increased, discomfort also increased, while
the off-road rate and closed-loop L2 decreased. This suggests
that although implicit ego information can improve instan-
taneous planning accuracy, it may worsen long-term closed-
loop driving performance. We guess this is because during
closed-loop driving, an auto-regressive model can generate
temporal correlations in planning errors, leading to consistent
bias in one direction that results in off-road events. However,
temporally uncorrelated noise can cause slight oscillations
around the expert trajectory but still enable successful driving.
The phenomenon that offline instantaneous planning accuracy
and actual long-term driving quality are weakly correlated was
also noted by Codevilla et al. [35].

Model Architecture: To demonstrate the importance of
the temporal information and the effectiveness of the causal
Transformer in capturing the temporal interactions, we re-
place it with a MLP. Our findings suggest that the causal
Transformer achieves better performance by integrating both
spatial and temporal information. Moreover, we conducted an
ablation study on the LQR module to examine its impact on
comfort. We observed a significant decrease in comfort when
the LQR mechanism was removed, as well as a small increase
in collision and off-road rates. However, there was a slight
improvement in the L2 metric. This highlights the importance
of the LQR module in enhancing trajectory smoothness while
acknowledging that the ego information introduced during
evaluation can still impair closed-loop performance on the L2
metric.

Loss Term: To demonstrate the effectiveness of the addi-
tional loss terms, we remove the auxiliary and regularization
loss term respectively. We find that both are beneficial to
improving performance, although the improvement brought by
norm regularization is limited, likely because our policy net-
work has a modest parameter number and is well-regularized
even without the loss term.

E. Qualitative Analysis

We visualize and compare the closed-loop trajectories of
our method and the baselines in two Lyft scenarios. As
shown in Fig. 2, our method generates a feasible trajectory



Fig. 2. Qualitative comparison between our method and the baselines for
on-road driving.

Fig. 3. Qualitative comparison between our method and the baselines for
collision avoidance.

similar to that of a human driver, whereas the BC-perturb
and UrbanDriver methods drive the SDV offroad. We can
see in Fig. 3 that our method can avoid the collision with
the static car at the shoulder by changing lanes while the
baseline methods keep moving straight, leading to a crash.
We hypothesize that off-road or collision events occur when
the policy outputs an erroneous action at the turning point
or lane-changing point, such as continuing to move straight
forward. In such cases, the policy taken in out-of-distribution
history may make a larger error, leading to going off-road or
colliding with other objects. The trajectory perturbation in BC-
perturb and the trajectory distribution matching in UrbanDriver
do not help the SDV recover from the erroneous state, which
may be caused by the strong correlation between past straight
trajectories and moving straight action in the training data.

We also conducted a qualitative analysis of our model

Fig. 4. Qualitative analysis of our model’s prediction and planning perfor-
mance. Please refer to Fig. 3 for the whole scenario.

prediction and planning in the collision avoidance scenario
of Fig. 3. In Fig. 4, we demonstrate that our model can plan
a smooth trajectory based on the policy network prediction.
When faced with a static car ahead on the shoulder, our policy
network infers that the SDV’s future positions should be closer
to the road center. Although the prediction is not dynamically
feasible from the SDV’s current state, it is close enough to it.
This suggests that our policy can infer a reasonable ego state
from the context.

VI. CONCLUSION

We have proposed a new offline imitation learning method
to mitigate the distribution shift of behavior cloning. Our
approach involves training a neural network to predict the
future poses of the ego vehicle, without receiving explicit ego
information. To remove implicit ego information and ensure
local observability, we introduce a new ego-perturbed goal-
oriented coordinate system for representation of the observa-
tion input. To tackle the challenging learning task, we design
a Transformer-based network that leverages historical spatial-
temporal context data effectively. Finally, we demonstrate the
effectiveness of our approach using two real-world large-scale
datasets, achieving state-of-the-art performance.
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APPENDIX

A. Map prepossessing

In Lyft, there are only two types of map elements: lane and
crosswalk. In nuPlan, the map elements consist of a lane, lane
connector, intersection, stop line, crosswalk, walkway, and car
park. We categorize them into polyline elements including
lanes and lane connectors, and polygon elements including
stop lines, crosswalks, intersections, walkways, and car parks.

For each polyline element, it is approximated by a sequence
of vectors with an interval of 3 m. For both datasets, we
prepossess the polyline map into a graph to take advantage
of the topological information. We connect each vector with
its nearest left, right, and next vector if any exist. The nearest
left or right vector is the nearest vector of its reachable left or
right polyline. And the distance between vectors is represented
by the Euclidean distance between their starting points. After
building the vector graph, we can compute the travel distance
between any two vectors using Dijkstra’s algorithm. For both
datasets, the polyline vector has shared features, including
coordinates of the starting and ending points, distances to the
left and right vectors, distances to the mission goal, traffic light
states (red or green), and the sequence order. However, lane
vectors in Lyft have a lane width feature because the vectors
approximate the computed middle lines of lanes, while the
lane or lane connector vectors in nuPlan have a lane left and
width feature because the vectors approximate an annotated
baseline. In addition, the polyline vectors in nuPlan have an
additional speed limit and type feature.

For each polygon element, we also approximate it with a
sequence of vectors. In the Lyft dataset, the crosswalk vectors
are directly constructed by connecting the original sequential
annotation coordinates. But we approximate each polygon with
a fixed set of 20 vectors because the annotation point number
is too large for elements like intersections. For both datasets,
each polygon vector has features including coordinates of
starting and ending points and its order sequence, while vectors
in nuPlan have additional type features.

The inputs to our neural network are composed of two types
of map elements: polylines and polygons, and two types of
agent elements: other agents and an ego goal. The missing
inputs are padded with zeros and masked out when calculating
the attention. The origin is the perturbed SDV position.

Polyline: 30 topologically nearest polylines with vectors
whose starting points are within 35 m from the origin. The
topological distance between the origin and a polyline is the
minimum of the distances between the origin and its vectors.

Polygons: 20 polygons whose boundaries are within 35 m
from the origin. If there are more than 20 polygons, they are
selected according to the importance of their types: stop line,
crosswalk, intersection, walkway, and car park.

Agents: the 30 nearest agents whose oriented boxes’ cen-
troids are within 50 m from the origin. The agent features in
Lyft include its centroid coordinates, yaws, shapes, types, and
relative times in the past 2 and current steps. The nuPlan agents
additionally have velocity features, as they are provided.
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TABLE III
HYPER-PARAMETERS FOR BOTH DATASETS

Hyper-parameter Value

Future steps T 15
All Transformers dropout 0.1
All Transformers head number 8
All Transformers hidden size 128
Local Transformer layer number 3
Global Transformer layer number 6
Causal Transformer layer number 3
Causal Transformer history length H 15
Causal Transformer interval I 2
Auxiliary weight µ 0.3
Regularization weight λ 0.0001
LQR angular velocity weight ηω 0.1
LQR angular acceleration weight ηα 0.1
LQR positional acceleration weight ηa 0.1
LQR positional jerk weight ηj 0.01

Goal: the x, y coordinates of the SDV’s mission goal of a
scene. In Lyft, the mission goal is not provided, so we regard
the ending point of the lane where the SDV locates at the
last time step of the scene as the mission goal. In nuPlan, we
directly take the provided mission goal at the last time step of
the scene as the scene mission goal.

B. Model

For both datasets. the same model architecture is used,
whose hyper-parameters are listed in Tab. III.

C. Training

Our model is trained using the Adam optimizer with a
learning rate of 0.0005, 10000 steps linear warm-up, β =
(0.9, 0.999), and batch size 128. We stop training after 30
epochs and select the model with the smallest validation
collision rate for evaluation. We train all models except the
pre-trained model in the Lyft dataset independently 3 times
and then report the mean and std of their performances.

D. Evaluation

For Lyft baselines, we directly evaluate the pre-trained
model provided by the Lyft dataset and UrbanDriver. The
Raster-perturb is the model trained on train.zarr for 2
epochs at https://github.com/woven-planet/l5kit/blob/master/
examples/planning/train.ipynb. The BC-perturb and Urban-
Driver are the Open Loop with history and the Urban
Driver at https://github.com/woven-planet/l5kit/blob/master/
examples/urban driver/train.ipynb.

We evaluate all Lyft models from the second time step to
compute current velocity using position information as input
to the LQR with zero assumed initial acceleration.

For nuPlan baselines, we train the official models by our-
selves using provided hyper-parameters and evaluate from the
first time step because the velocity and acceleration informa-
tion is provided.

E. Runtime

We conduct runtime experiments using a single Nvidia
GeForce GTX 1080 GPU and an Intel i7-8700@3.2GHz CPU
on the Lyft dataset. We measure the runtime of each method
its mean and std over all time steps in an evaluation. The
runtime results shown in Tab. IV consider all components
in each model including data-prepossessing, model inference,
and control. We observe that our architecture can achieve
higher data processing efficiency and medium model inference
efficiency compared with other methods. Our method takes
a longer total execution time due to the extra LQR control
module which does not exist in prior works because they
only focus on optimizing positional accuracy but not comfort.
However, our approach can still be executed in real-time on
this hardware.

F. Toy Experiment

We design a toy experiment to vividly show our method’s
ability to reduce compounding error. In the experiment, we
use synthetic data from a very ideal and simplified scenario
where a SDV moves under a ring road network with a fixed
speed of 1 m/s at 1 Hz, as shown in Fig. 5. During training,
the radius of the ring is a variable with a range from 10 m to
100 m and the circular lane is represented as a series of fixed
lane points with the same interval of nearly 1m.

Fig. 5. Ring road

We compare our CCIL methods with several baseline meth-
ods introduced above, including BC, BC-perturb, and Urban-
Driver. The inputs of these baseline methods are composed
of two parts: ego state (its position and orientation in the
past 10 time steps) and context (the nearest 10 lane points)
in the ego coordinate system, while our method only takes the
context in the past 10 time steps as inputs in the ego-perturbed
center-oriented coordinate system. The ego-perturbed origin-
oriented coordinate system means using the SDV position plus
a zero-mean one-std Gaussian perturbation as the origin and

https://github.com/woven-planet/l5kit/blob/master/examples/planning/train.ipynb
https://github.com/woven-planet/l5kit/blob/master/examples/planning/train.ipynb
https://github.com/woven-planet/l5kit/blob/master/examples/urban_driver/train.ipynb
https://github.com/woven-planet/l5kit/blob/master/examples/urban_driver/train.ipynb


TABLE IV
AVERAGED RUNTIME PER FRAME OF INDIVIDUAL COMPONENTS FOR EACH METHOD

Model Data process (ms) Model inference (ms) Control (ms) Total (ms)

Raster-perturb 6.03±0.61 4.62±0.16 - 10.65±0.64
BC-perturb 6.69±0.72 6.78±5.26 - 13.47±5.65
UrbanDriver 6.33±1.41 12.78±8.80 - 19.11±9.23
CCIL 4.92±0.63 6.74±0.34 11.09±0.27 22.75±1.07

orientation to the center of the circular road as the x-axis
direction. The trajectory perturbation is applied to augment
the data in the BC-perturb method. For outputs, the BC and
CCIL methods generate the relative position and yaw at the
next time step and the BC-perturb method produces the next
10 time steps. In the UrbanDriver method, we unroll the policy
for 32 time steps.

In each method, we employ a two-layer MLP with a hidden
size of 128 as a policy network. We train the neural networks
using the Adam optimizer with a learning rate of 0.0001 and
random initial weights 100 times. We stop training after 10000
steps and then unroll the policy from one random starting
point on the circle of radius 50 m for 100 time steps. The 100
closed-loop trajectories for each method are depicted in Fig. 6.
We can observe that some trajectories in the baseline methods
deviate from the road due to the covariate shift issue, but the
trajectories in our method keep following the route.

Fig. 6. Closed-loop trajectories of each model trained on the toy dataset.
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