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I. COMPUTING TERRAIN REPRESENTATION

This section provides more details about how we build the
terrain representation.

Point cloud aggregation. Given the raw LiDAR packets
and the vehicle’s ego motion, we convert the LiDAR packets
into LiDAR points with the rolling shutter effects corrected.
Then, we run Google Cartographer [1] on the LiDAR points
(with IMU information) to compute the gravity-aligned pose
for each LiDAR scan. We aggregate the LiDAR scans using
their poses to get an aggregated point cloud.

Outlier removal. LiDAR may produce false returns due to
the presence of dust, snowflakes, and water. These false returns
manifest as noise in the aggregated point cloud. We identify
these outliers in two ways:

1) Voxel filter. We voxelize the point cloud with a voxel
size of 0.3m. We count the number of points in each
voxel. If the number of points is smaller than a threshold
(set to 5), we remove all the points in this voxel.

2) Semantic filter. When we label the LiDAR points, we ask
the labelers to label the outliers as an additional outlier
class. Our LiDAR segmentation network is trained with
the additional outlier class. After we predict the pseudo
labels for each point, we remove points classified as
outliers.

II. NETWORK ARCHITECTURE

Backbone. Our image backbone follows that of Lift-Splat-
Shoot[2]. There are two main differences:

1) For RGB-D inputs, we duplicate the first five convo-
lutional blocks to process the RGB and depth images
separately (Figure 1). This has a noticeable improvement
over passing a 4-channel RGB-D image directly to the
backbone.

2) We do 8× downsampling of the feature map and depth
map (the original paper performs 16× downsampling).
This provides a good trade-off between speed and ac-
curacy. Note that all the baselines are trained with the
same image backbone with the same 8× downsampling
ratio.
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Fig. 1: The image backbone uses separate branches to process the
RGB and depth inputs, respectively. Then, the outputs of the two
branches are summed and passed to the remaining blocks in the
backbone.

Our input image size is 512×320. Hence, the image backbone
produces a 472-channel feature map with a spatial dimension
of 64× 40.

Depth completion network. The output of the image
backbone is passed to a single convolution layer with 472
input channels and D output channels with kernel size 3. D
is the number of desirable depth bins. For 50 m×50 m maps,
D = 128. For 100 m× 100 m maps, D = 256.

Terrain embedding network. For each back-projected
point (x, y, z), we first apply an MLP with layer sizes
(1, 64, 32) to z to get the 32-dimensional elevation embedding
felev. Then, we concatenate felev with the 472-channel image
feature fsem and apply another MLP with layer sizes (504, 96)
to get the 96-dimensional terrain embedding f . ReLU is
applied after each MLP layer.

Temporal aggregation layer. The temporal aggregation
layer is a single ConvGRU layer with 96 input channels, 96
output channels, and a kernel size of 1. To train TerrainNet-
TA, we first train the non-recurrent version, and then insert
the recurrent layer. We freeze the weights of the model except
the recurrent layer.
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Inpainting network. The inpainting net follows the archi-
tecture of Lift-Splat-Shoot’s BEV encoder network. The main
difference is that we create a separate decoding head consisting
of an upsampling layer and two convolution layers to predict
a specific terrain layer.

III. DATA ANNOTATION

We create our data annotation tool (Figure 2) to obtain
ground truth semantically labeled point clouds. We aggregate
30 to 50 LiDAR scans for each selected frame to get a dense
point cloud for labeling. We provide camera images for every
LiDAR scan for reference so that a labeler can cross-reference
to verify that the labels are correct.

IV. ADDITIONAL DATASET EXAMPLES

Figure 3 shows additional dataset examples to highlight the
diversity of the datasets. We collected our datasets from 3
distinctive geographic locations across the year.

V. MORE QUALITATIVE RESULTS

Figure 4 shows other example predictions of TerrainNet
and other baselines on the validation sets. Figure 5 visual-
izes different predicted 3D terrains of TerrainNet-TA on the
validation sets. For more details, including videos, please visit
the website.
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Fig. 2: Annotation tool. Labelers can select points in the point cloud and see their corresponding image projections. Here we show a bush
is highlighted both in the point cloud and in the bottom image. This helps the labelers to verify the semantic class of those points. Moreover,
labelers only annotate points that they are confident about. We leave points that are difficult to identify unlabeled.
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Fig. 3: Additional dataset examples. These examples were collected at different locations and in different seasons. For the real-world
experiments, we finetuned the model with annotated snow data (rightmost column).
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Fig. 4: Comparing the predictions of different models. Top: on-trail run with rocks and bushes on the two sides of the trail. Bottom: off-trail
run with scattered rocks and bushes. These are open terrains, so the ceiling semantics consists almost entirely of sky.
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Fig. 5: Visualizations of the predicted 3D terrain model from TerrainNet-TA. We only show the min and max ground elevation here for
clarity. Left: uneven terrain with scattered grass, bushes, and rocks. Right: a grass-covered valley with tall trees and low-hanging canopies.
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