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I. DHDE DETAILS

A. Proof of Proposition 1

First, it is straightforward to show the equivalence be-
tween minimizing the costs in (11a) and (13a), since
DKL(N ℓ+1

n ∥N ℓ
i ) is given by

DKL(N ℓ+1
n ∥N ℓ

i ) =
1

2

[
log
|Σi|
|Σn|

− nx + tr(Σ−1
i Σn) (43)

+ (µi − µn)
TΣ−1

i (µi − µn)

]
which yields Ĵe

i (Qi, qi) after substituting with Qi = Σ−1
i ,

qi = Σ−1
i µi and neglecting the constant terms. Note that the

objective function Ĵe
i (Qi, qi) is jointly convex for Qi, qi.

Next, we show the equivalence between the constraints
(11b) and (13b-c). For the convenience of the reader, let us first
restate a result known as the S-Lemma by Yakubovich [1]. Ac-
cording to the S-Lemma, given two functions f1, f2 : Rn → R
with f1(x) = xTA1x+bT1 x+c1 and f2(x) = xTA2x+bT2 x+c2
and if there exists an x̄ such that f1(x̄) > 0, then the following
is true

f1(x) ≥ 0⇒ f2(x) ≥ 0, ∀x, (44)

if and only if there exists a τ ≥ 0 such that f2(x) ≥
τf1(x), ∀x. In constraint (11b), we enforce that if x ∈ Rnp

is such that

(x− µ̄n)
TΣ̄−1

n (x− µ̄n) ≤ α, (45)

then it should follow that

(x− µ̄i)
TΣ̄−1

i (x− µ̄i) ≤ α. (46)

Using the S-Lemma, this is equivalent with imposing the
constraints τn ≥ 0, ∀n ∈ Cℓi and

α− (x− µ̄i)
TΣ̄−1

i (x− µ̄i) ≥ τ
(
α− (x− µ̄n)

TΣ̄−1
n (x− µ̄n)

)
,

which can be written in matrix form as

x̂TVnx̂ ≥ 0, (47)

where x̂ = [x; 1] and

Vn =

[
V11 V12

V T
12 V22

]
,

with

V11 = −Σ̄−1
i + τnΣ̄

−1
n , V12 = Σ̄−1

i µ̄i − τnΣ̄
−1
n µ̄n,

V22 = α− τnα− µ̄T
i Σ̄

−1
i µ̄i + τnµ̄

T
n Σ̄

−1
n µ̄n.

By definition, the constraint (47) is equivalent with Vn ⪰ 0.
Furthermore, by applying the Schur complement w.r.t. V22, it
follows that Vn ⪰ 0 is equivalent with Sn ⪰ 0, where

Sn =

S11 S12 0
ST
12 S22 S23

0T ST
23 S33

 , (48)

with

S11 = V11, S12 = V12, S22 = α− τnα+ τnµ̄
T
n Σ̄

−1
n µ̄n,

S23 = (Σ̄−1
i µ̄i)

T, S33 = Σ̄−1
i .

The expressions in (14c) follow after substituting with Qi and
qi. Finally, it is evident that the constraints (11c) and (13d)
are equivalent since Σi ≻ 0 if and only if Σ−1

i ≻ 0. Note
that all constraints are convex as well. Therefore, the problem
presented in Proposition 1 is a convex optimization one.

B. Proof of Proposition 2

The equivalence between the costs (16a) and (17a), as well
as the equivalence between the constraints (16b) and (17b)-
(17c) follow directly from Proposition 1. Next, we show that if
the constraints (17d) and (17e) are satisfied, then the constraint
(16c) is also satisfied. In fact, the constraint

Eθ[µ̄i, Σ̄i] ∩ Eθ[µ̄j , Σ̄j ] = ∅ (49)

will hold if the following constraint holds

C
[
Eθ[µ̄i, Σ̄i]

]
∩ C

[
Eθ[µ̄j , Σ̄j ]

]
= ∅, (50)

where C [E ] denotes the minimum area enclosing circle of an
ellipse E . Of course, C

[
Eθ[µ̄i, Σ̄i]

]
is a circle with center µ̄i

and radius
√
αλmax(Σ̄i), which is the major axis length of

Eθ[µ̄i, Σ̄i]. Hence, the constraint (50) can be rewritten as

∥µ̄i − µ̄j∥2 ≥
√

αλmax(Σ̄i) +
√

αλmax(Σ̄j). (51)



or equivalently as

∥Q̄−1
i q̄i − Q̄−1

j q̄j∥2 ≥
√
α√

λmin(Q̄i)
+

√
α√

λmin(Q̄j)
. (52)

By introducing the auxiliary variables ϕi, ϕj , the constraint
(52) is equivalent with the set of constraints

∥Q̄−1
i q̄i − Q̄−1

j q̄j∥2 ≥ ϕ
−1/2
i + ϕ

−1/2
j , (53a)

ϕ
−1/2
l ≥

√
α√

λmin(Q̄l)
, l ∈ {i, j} (53b)

where (53a) is the same as (17d). The constraint (53b) can be
rewritten as

Q̄l ⪰ ϕlαI (54)

which yields (17e). Finally, the constraints (16d) and (17f) are
equivalent.

C. ADMM Derivation

After introducing the augmented variables Q̃i, q̃i, ϕ̃i, and
the global ones G, g, z, the problem presented in Proposition
2 can be reformulated as

min
∑

i∈Cℓ−1
a

Ĵe
i (Qi, qi) (55a)

s.t Si,n(Qi, qi, τi,n) ⪰ 0, n ∈ Cℓi , (55b)

τi,n ≥ 0, n ∈ Cℓi , (55c)

hi(Q̃i, q̃i, ϕ̃i) ≤ 0, (55d)
Ti(Qi, ϕi) ⪰ 0, (55e)
Qi ⪰ 0, (55f)

Q̃i = G̃i, q̃i = g̃i, ϕ̃i = z̃i, i ∈ Cℓ−1
a , (55g)

where hi(Q̃i, q̃i, ϕ̃i) is defined as

hi = [{hi,j(Qi, qi, ϕi, Q
i
j , q

i
j , ϕ

i
j)}j∈n[Cℓi ]]. (56)

Let us also introduce the indicator functions ISi
(Qi, qi, τi,n),

Iτi,n(τi,n), Ihi
(Q̃i, q̃i, ϕ̃i), ITi

(Qi, ϕi), IQi
(Qi), which take

a zero value if the constraints (55b), (55c), (55d), (55e), (55f),
respectively, are satisfied, and become infinite, otherwise.
Then, the Augmented Lagrangian (AL) for this problem can
be formulated as

L =
∑

i∈Cℓ−1
a

Ĵe
i (Qi, qi) + Ihi

(Q̃i, q̃i, ϕ̃i) + ITi
(Qi, ϕi)

+ IQi
(Qi) +

∑
n∈Cℓi

ISi,n
(Qi, qi, τi,n) + Iτi,n(τi,n)

+ tr(ΞT
i (Q̃i − G̃i)) + ξTi (q̃i − g̃i) + yTi (ϕ̃i − z̃i)

+
ρQ
2
∥Q̃i − G̃i∥2F +

ρq
2
∥q̃i − g̃i∥22 +

ρϕ
2
∥ϕ̃i − z̃i∥22.

Therefore, the ADMM updates are derived as follows. First,
the updates for the variables Q̃i, q̃i and ϕ̃i, are given by

{Q̃i, q̃i, ϕ̃i} = argminL (57)

for all i ∈ Cℓ−1
a . The minimization in (57) leads to the local

problems

{Q̃i, q̃i, ϕ̃i} = argmin J̃e
i (Q̃i, q̃i, ϕ̃i) (58a)

s.t Si,n(Qi, qi, τi,n) ⪰ 0, n ∈ Cℓi , (58b)

τi,n ≥ 0, n ∈ Cℓi , (58c)

hi(Q̃i, q̃i, ϕ̃i) ≤ 0, (58d)
Ti(Qi, ϕi) ⪰ 0, (58e)
Qi ≻ 0, (58f)

where

J̃e
i = Ĵe

i (Qi, qi) + tr(ΞT
i (Q̃i − G̃i)) + ξTi (q̃i − g̃i)

+ yTi (ϕ̃i − z̃i) +
ρQ
2
∥Q̃i − G̃i∥2F +

ρq
2
∥q̃i − g̃i∥22

+
ρϕ
2
∥ϕ̃i − z̃i∥22. (59)

Subsequently, the global variables G, g and z are updated by

{G, g, z} = argminL. (60)

using the updated values of Q̃i, q̃i and ϕ̃i, ∀i ∈ Cℓ−1
a . The

minimization in (60) can be separated for all Gi, gi and zi,
leading to the following averaging steps

Gi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

Qj
i (61a)

gi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

qji (61b)

zi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

ϕj
i . (61c)

After these updates are performed, then the dual variables are
updated through dual ascent steps, as follows

Ξi ← Ξi + ρQ(Q̃i − G̃i) (62a)
ξi ← ξi + ρq(q̃i − g̃i) (62b)

yi ← yi + ρϕ(ϕ̃i − z̃i), (62c)

by all i ∈ Cℓ−1
a .

D. Implementation Details

1) Constraint Linearization: In the local problems (21),
all cost terms and constraints are convex, except for the
constraint (21d). We accommodate for that by linearizing
the constraint in every ADMM iteration around the pre-
vious values of the included variables, which we denote
with Q̄′

i, q̄
′
i, ϕ

′
i, Q̄j

′, q̄j
′, ϕj

′, where we drop the superscript
i to lighten the notation. The first order Taylor approxima-
tion of hi,j around (Q̄′

i, q̄
′
i, ϕ

′
i, Q̄j

′, q̄j
′, ϕj

′) is denoted by



h̄i,j(Q̄i, q̄i, ϕi, Q̄j , q̄j , ϕj) where

h̄i,j = hi,j(Q̄
′
i, q̄

′
i, ϕ

′
i, Q̄

′
j , q̄

′
j , ϕ

′
j) + tr

(
∇Q̄i

hi,j

∣∣∣T
Q̄′

i

(Q̄i − Q̄′
i)

)
+ tr

(
∇Q̄j

hi,j

∣∣∣T
Q̄′

j

(Q̄j − Q̄′
j)

)
+∇q̄ihi,j

∣∣∣T
q̄′i

(q̄i − q̄′i)

+∇q̄jhi,j

∣∣∣T
q̄′j

(q̄j − q̄′j) +
∂hi,j

∂ϕj

∣∣∣∣
ϕ′
j

(ϕj − ϕ′
j)

+
∂hi,j

∂ϕi

∣∣∣∣
ϕ′
i

(ϕi − ϕ′
i),

with

∇Q̄i
hi,j =

1

∥ωi,j∥2
Q̄−T

i ωi,j(Q̄
−1
i q̄i)

T

∇Q̄j
hi,j = −

1

∥ωi,j∥2
Q̄−T

j ωi,j(Q̄
−1
j q̄j)

T

∇q̄ihi,j = −
1

∥ωi,j∥2
Q̄−T

i ωi,j

∇q̄jhi,j =
1

∥ωi,j∥2
Q̄−T

j ωi,j

ωi,j = Q̄−1
i q̄i − Q̄−1

j q̄j ,

∂hi,j

∂ϕi
= −1

2
ϕ
−3/2
i ,

∂hi,j

∂ϕj
= −1

2
ϕ
−3/2
j .

2) Termination Criterion: We suggest two options for the
termination criterion in Line 10 of Alg. 1. The first one that
would not require any additional communication would be to
just set a maximum amount of ADMM iterations. The second
option would be to also check whether the ADMM primal and
dual residuals norms are below some prespecified thresholds to
allow for early termination. In particular, the primal residuals
norms are given by

ϵprimal,1 =
∑

i∈Cℓ−1
a

∥Q̃i − T̃i∥F ,

ϵprimal,2 =
∑

i∈Cℓ−1
a

∥q̃i − t̃i∥2,

ϵprimal,3 =
∑

i∈Cℓ−1
a

∥ϕ̃i − z̃i∥2,

while the dual residuals norms are given by

ϵdual,1 = ρQ
∑

i∈Cℓ−1
a

∥T̃i − T̃i,prev∥F ,

ϵdual,2 = ρq
∑

i∈Cℓ−1
a

∥t̃i − t̃i,prev∥2,

ϵdual,3 = ρϕ
∑

i∈Cℓ−1
a

∥z̃i − z̃i,prev∥2.

Note that the latter approach would require all agents i ∈ Cℓ−1
a

sending their variables to agent a so that the residuals are
computed.

II. DHDS DETAILS

A. Detailed Expressions

The decision variables ūi ∈ RNnu , Li ∈ RNnu×nx and
Ki ∈ RNnu×Nnx are given by ūi = [ūi,0; . . . ; ūi,N−1],

ūi =
[
ūT
i,0 ūT

i,1 · · · ūT
i,N−1

]T
,

Li =
[
LT
i,0 LT

i,1 · · · LT
i,N−1

]T
,

Ki =


0 0 . . . 0 0

Ki,(0,0) 0 . . . 0 0
Ki,(1,0) Ki,(1,1) . . . 0 0

...
...

. . .
...

...
Ki,(N−2,0) Ki,(N−2,1) . . . Ki,(N−2,N−2) 0

 .

The matrices Ψ0, Ψu and Ψw have the following form

Ψ0 =
[
I AT · · · ANT

]T
,

Ψu =


0 0 . . . 0
B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B

 ,

Ψw =


0 0 . . . 0
I 0 · · · 0
A I · · · 0
...

...
. . .

...
AN−1 AN−2 · · · I

 .

The mean state µi,k is given by

µi,k = fi,k(ūi) = Pkfi(ūi), (63)

where
fi(ūi) = Ψ0µi,0 +Ψuūi, (64)

and Pk :=
[
0, . . . , I, . . . , 0

]
∈ RNx×(N+1)Nx . Furthermore,

the state covariance Σi,k is given by

Σi,k = Fi,k(Li,Ki) = PkFi(Li,Ki)P
T
k , (65)

where

Fi(Li,Ki) := (Ψ0 +ΨuLi)Σi,0(Ψ0 +ΨuLi)
T

+ (Ψw +ΨuKi)W̄ (Ψw +ΨuKi)
T.

with W̄ = blkdiag(W, . . . ,W ) ∈ S+Nnx
.

B. Proof of Proposition 3

First, let us show the equivalence between costs (25a) and
(32a). The cost function J s

i (u
ℓ
i) can be rewritten as

J s
i (ui) = E[uT

i R̄ui] = E
[
tr(R̄iuiu

T
i )

]
= tr

(
E[R̄iuiu

T
i ]
)
.



Using (28), we obtain

J s
i (ui) = Ĵ s

i (ūi, Li,Ki)

= tr
(
E[R̄i(ūi + Lix̃i,0 +Kiwi)(ūi + Lix̃i,0 +Kiwi)

T]
)

= tr(R̄ūiū
T
i + R̄KiWKT

i + R̄LiΣi,0L
T
i )

= ūT
i R̄ūi + tr(R̄KiWKT

i + R̄LiΣi,0L
T
i ),

where x̃i,0 = xi,0−µi,0 and we used the facts that E[x̃i,0] = 0,
E[x̃i,0w

T
i ] = 0, E[wiw

T
i ] = W̄ and E[x̃i,0x̃

T
i,0] = Σi,0.

Furthermore, the dynamics constraints (25b) are implicitly
satisfied since in all expressions we use (31) for the state mean
and covariance.

It is also trivial to show that the constraint fi,N (ūi) = 0
is equivalent to E[xi,N ] = µi,f . Moreover, if we write
Fi(Li,Ki) = Φi(Li,Ki)Φi(Li,Ki)

T with

Φi(Li,Ki) =
[
(Ψ0 +ΨuLi) (Ψw +ΨuKi)

]
Ωi, (66)

where ΩiΩ
T
i = blkdiag(Σi,0,W ) and define Φi,k(Li,Ki) =

PkΦi(Li,Ki), then the constraint Σi,f ⪰ Fi,N (Li,Ki) =
Φi,k(Li,Ki)Φi,k(Li,Ki)

T is equivalent with

Fi,N (Li,Ki) =

[
Σi,f Φi,N (Li,Ki)

Φi,N (Li,Ki)
T I

]
⪰ 0 (67)

by using the Schur complement of Fi,N (Li,Ki) w.r.t. I .
Subsequently, we show that if the constraints
Qi,k(Li,Ki) ⪰ 0 and qi,j,k(ūi, ūj) ≥ 0 are satisfied,
then the constraint qi,j,k(pi,k, pj,k) ≥ 0 is satisfied as well.
In particular, the latter constraint will be true if the following
inequalities hold,

∥µ̄i,k − µ̄j,k∥2 ≥ dinter + 2r, (68a)√
αλmax(Σ̄i,k) ≤ r, (68b)

where we drop the superscripts ℓ for notational convenience. If
we plug the mean state expressions into (68a), then we obtain

∥f̄i,k(ūi)− f̄j,k(ūj)∥2 ≥ dinter + 2r, (69)

which yields the constraint qi,j,k(ūi, ūj) ≥ 0. Furthermore,
the constraint (68b) can be rewritten as

λmax(Σ̄i,k) ≤
r2

α
. (70)

which is equivalent with

HFi,k(Li,Ki)H
T − r2

α
⪯ 0. (71)

or using again the Schur complement with[ (
rℓ√
α

)2
I HΦi,k(Li,Ki)

Φi,k(Li,Ki)
THT I

]
⪰ 0 (72)

which is identical with Qi,k(Li,Ki) ⪰ 0. With similar argu-
ments, it can be shown that if the constraints Qi,k(Li,Ki) ⪰ 0
and si,k(ūi) ≥ 0 are satisfied, then the constraint si,k(pi.k) ≥
0 is also satisfied.

Finally, we wish to show that if the constraint p(ūi) ≤ 0
is true, then the constraint (25f) is also true. Since (68b)

holds, then it suffices to enforce a contraint that µ̄ℓ
i,k should

lie within an ellipse with center µ̄
(ℓ−1)
a,k , major axis length√

αλmax(Σ̄
(ℓ−1)
a,k )−r, minor axis length

√
αλmin(Σ̄

(ℓ−1)
a,k )−r,

and the same orientation as the ellipse Eθ[µ̄ℓ−1
a,k , Σ̄ℓ−1

a,k ]. These
specifications can be captured if the following inequality holds

(µ̄ℓ
i,k − µ̄ℓ−1

a,k )TP̂ (µ̄ℓ
i,k − µ̄ℓ−1

a,k ) ≤ 1, (73)

where

P̂ =
1

α
U Λ̂−1UT,

Λ̂ =

(
Λ1/2 − r√

α
I

)2

,

and [Λ, U ] is the eigendecomposition of Σ̄ℓ−1
a,k . This is true

since the ellipse P̂ and Σ̄ℓ−1
a,k have the same eigenvectors, the

major axis length of the ellipse in (73) is√
1

λmin(P̂ )
=

√
α

1

λmin(Λ̂−1)
=

√
αλmax(Λ̂)

=
√
αλmax

(
Λ1/2 − r√

α
I
)

=
√
α
(
λmax

(
Λ1/2

)
− r√

α

)
=

√
αλmax(Σ̄

(ℓ−1)
a,k )− r

and similarly it can be shown that the minor axis length is√
1

λmax(P̂ )
=

√
αλmin(Σ̄

(ℓ−1)
a,k )− r.

C. ADMM Derivation
The derivation is similar with the one in Section I-C of the

SM. With the introduction of the augmented variables ũi and
global variable b, problem (35) can be reformulated as

{ūi}i∈Cℓ−1
a

= argmin
∑

i∈Cℓ−1
a

Ĵ s
i,1(ūi) (74a)

s.t. fi,N (ūi) = 0, si,k(ūi) ≥ 0, pi,k(ūi) ≤ 0, (74b)

qi,k(ũi) ≥ 0, k ∈ J0, NK, (74c)

ũi = b̃i, i ∈ Cℓ−1
a , (74d)

with hi = [{hi,j(ūi, ū
i
j)}j∈n[Cℓi ]]. The AL for this problem is

given by

L =
∑

i∈Cℓ−1
a

Ĵ s
i (ūi) + Ifi(ūi) + Isi(ūi) + Ipi

(ūi)

+ Iqi
(ũi) + vTi (ũi − b̃i) +

ρu
2
∥ũi − b̃i∥22,

where the indicator functions are of the same form as in
Section I-C of the SM. The updates for the variables ũi, are
given by ũi = argminL, which leads to the local problems

ũi = argmin J̃ s
i,1(ũi) (75a)

s.t. fi,N (ūi) = 0, si,k(ūi) ≥ 0, pi,k(ūi) ≤ 0, (75b)

qi,j,k(ūi, ū
i
j) ≥ 0, j ∈ n[Cℓi ], k ∈ J0, NK, (75c)



with

J̃ s
i,1(ũi) = Ĵ s

i,1(ūi) + vTi (ũi − b̃i) +
ρu
2
∥ũi − b̃i∥22. (76)

The global update given by b = argminL, leads to the update
rules

bi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

ūj
i (77)

using the updated values of ūj
i . Finally, the dual updates are

given by
vi ← vi + ρu(ũi − b̃i). (78)

D. Implementation Details

1) Constraint Linearization: In problems (36), all cost
terms and constraints are convex, except for the constraints
qi,j,k(ūi, ūj) ≥ 0 and si,k(ūi) ≥ 0. To address these non-
convexities, we linearize the constraints in every ADMM
iteration around ū′

i, ū
′
j , which are the previous values of ūi, ūj .

Thus, we replace the aforementioned constraints with

q̄i,j,k(ūi, ū
i
j) ≥ 0, j ∈ n[Cℓi ], k ∈ J0, NK, (79a)

s̄i,k(ūi) ≥ 0, k ∈ J0, NK, (79b)

where

q̄i,j,k(ūi, ūj) = qi,j,k(ū
′
i, ū

′
j) +∇ūi

qi,j,k

∣∣∣T
ū′
i

(ūi − ū′
i)

+∇ūj
qi,j,k

∣∣∣T
ū′
j

(ūj − ū′
j),

s̄i,k(ūi) = si,k(ū
′
i) +∇ūi

si,k

∣∣∣T
ū′
i

(ūi − ū′
i)

and

∇ūi
qi,j,k =

1

∥ζi,j,k∥2
(HPkΨu)

Tζi,j,k

∇ūj
qi,j,k = − 1

∥ζi,j,k∥2
(HPkΨu)

Tζi,j,k

ζi,j,k = HPk

(
Ψ0(µi,0 − µj,0) + Ψu(ūi − ūj)

)
∇ūisi,k =

1

∥ηi,k∥2
(HPkΨu)

Tηi,k

ηi,k = HPk

(
Ψ0µi,0 +Ψuūi

)
− po.

2) Termination Criterion: The termination criterion in Line
10 of Alg. 2 is similar with one presented in Section I-D of
the SM. In particular, we either set a maximum amount of
ADMM iterations or check whether the residual norms

ϵprimal =
∑

i∈Cℓ−1
a

∥ũi − b̃i∥2,

ϵdual = ρu
∑

i∈Cℓ−1
a

∥b̃i − b̃i,prev∥2,

are below some predefined thresholds. Note that in the latter
case, all agents i ∈ Cℓ−1

a would be required to send their
variables to agent a during every ADMM iteration.

III. SIMULATION DETAILS

In the simulation experiments, all agents are modeled
with 2D double integrator dynamics which are discretized
with dt = 0.05s. The time horizon is N = 100 for
all tasks. For the first two tasks, the noise covariance is
W = diag(0.02, 0.02, 0.2, 0.2)2, while for the third one it
is W = diag(10−3, 10−3, 10−2, 10−2)2. For all tasks, we set
θ = 0.997. For both DHDE and DHDS, the maximum amount
of ADMM iterations is set to 20. All penalty parameters are
selected to be ρ = 103.
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