
 

  
Abstract— In this paper we explore the mechanism of energy 

transfer between the single actuated DOF of a one-legged 
hopping robot and the remaining unactuated DOFs, during 
stable running. The concept of the energy transfer mechanism is 
laid out, after which follows an analytical study. Using this study, 
an initial controller is derived for the control of a simple SLIP 
model with friction in the leg and hip, using a single actuator at 
the hip. We show that while this controller is capable of stable 
motion for the SLIP model, it does not lead to stable locomotion 
for the full realistic robot model with pitching body, leg inertia 
and friction in hip and leg. This indicates that the SLIP model 
often used for controller design may be unsuitable for this 
purpose. The necessary modifications are then made to the 
controller to achieve stable locomotion for the full model, again 
with a single, easy-to-implement actuator located at the hip. 
Finally, results are shown from applying the controller to the full 
model for a wide range of parameters leading to stable motions. 
 

Index Terms— control, one-legged hopping robot, 
underactuated.  
 

I. INTRODUCTION 
HEIS The research area of legged robots measures only a 
few decades of existence. The severe limitations of 

wheeled vehicles are obvious, when it comes to transversing 
the anomalous terrain that comprises large surfaces of our 
planet and others. Legged robots have the potential of being 
able to handle steep inclines and negotiate obstacles. The fact 
that legged robots do not come into contact with all the points 
of the ground they transverse, as in the case of wheeled 
vehicles, facilitates their motion over rough terrain. This has 
made legged robots an area of intensive research. 

A number of studies have been made on the passive 
motion of hopping or bounding robots [1], [2], [3] especially 
based on the SLIP (Spring Loaded Inverted Pendulum) model 
with a point mass as body and a massless leg [1]. It has been 
found that using the right initial conditions, the passive system 
may execute a cyclic motion using no input torque, given that 
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the massless leg does not require torque to be brought forward 
during flight [1].  

Also, studies have been carried out that have led to 
control algorithms for passive one-legged systems [4], [5], [6], 
[7]. In these, either the leg angle at touchdown has been used 
as a control input or actuators have been added to the model. 
In some cases, stable control was achieved using only the leg 
touchdown angle as a control input [5], [7]. However, these 
models did not incorporate pitching of the body mass, neither, 
as they were passive, did they include the mechanisms of 
energy dissipation found in real robots. Other studies included 
pitching of the body mass, but also did not include losses and 
further required two actuators for control [4], [6]. 

Although stable motions can be achieved using the 
passive model, in the real-world problem of robot locomotion 
further complexities are added. Firstly, the pitching of the 
body mass, often overlooked in studies of passive systems and 
secondly, the inevitable viscous friction present in all the 
joints, both the revolute (hip) joint and the prismatic (leg) 
joint. Due to these reasons, it is important to investigate 
control methods for more realistic robots. 

Legged robots have been constructed and controllers 
designed that lead to stable locomotion [8], [9], [10], [11]. The 
first three involve controlling one or four legged robots with 
two actuators to each leg. In [9], the concepts of replenishing 
energy in the robot and of energy-based control are presented. 
In [11], the Scout II quadruped is controlled with only one 
actuator per leg, although the controller gains must be 
reconfigured depending on the desired speed. In [12], the 
energy transfer mechanism from forward to vertical via the leg 
angle has been described, and a leg angle controller to control 
velocity was employed. 

It is evident that there is a need for a controller, requiring 
the minimum possible number of actuators (i.e. one per leg), 
that will provide stable robot motion and in addition will not 
depend either on the robot initial conditions or the specific 
robot parameters, such as losses, spring stiffness, etc. For this 
controller to be implemented on a real robot with only one 
actuator, a mechanism must be devised for transferring energy 
from the actuated DOF to the unactuated DOFs. 

The aim of this paper is to enhance our understanding of 
the energy transfer mechanism that exists between the single 
actuated DOF of a one-legged hopping robot and the 
remaining unactuated DOFs, during stable running. The 
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concept of the mechanism is laid out, followed by an 
analytical study. Based on this study, an initial controller is 
derived for the control of a simple SLIP model with friction in 
the hip and leg, using a single actuator at the hip. While the 
controller is shown to lead to stable motion for the SLIP 
model, it does not do so for the full realistic robot model with 
pitching body, leg inertia and friction in hip and leg. This is a 
strong indication that the SLIP model, often used for 
controller design, may actually be unsuitable for this. The 
necessary modifications are then made to the controller to 
achieve stable locomotion for the full model, again with a 
single, easy-to-implement actuator located at the hip. Finally, 
results are shown from applying the controller to the full 
model for a wide range of parameters leading to stable 
motions. This paper may also contribute to the control of other 
multilegged systems, as the one-legged robot can be seen as 
part of a more complex system. Finally, it is hoped that it may 
play a part in enhancing the understanding of underactuated 
systems. 

II. ROBOT DYNAMICS 

In this paper, references are made to two distinct models. The 
first model developed corresponds to a realistic robot 
incorporating a pitching body, inertia in the leg, as well as 
friction both at the hip and the leg. This model is referred to as 
the full model. Further, the SLIP model, with a point mass as 
body, no body pitching and a massless leg is described. This 
model is often used for controller design. 

A. Full Model 
The full model of the robot is shown in Fig. 1. This 

incorporates the real-world characteristics of a pitching body 
and inertia in the leg, often neglected in other studies. The 
body of mass  m  is considered to have inertia  Ib , while the 
body’s center of mass (CM) is located at the hip joint. The 
robot leg is equipped with a spring of stiffness k and has a rest 
length of  L . 
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Fig. 1. The robot physical model at the beginning of the 

motion and at a typical stance configuration. 

For the model to be closer to reality, the torque required 
to bring the leg forward during flight cannot be thought to be 
zero. However, the mass of a robot leg in comparison to the 

body mass is typically much smaller. For this reason, the leg is 
considered to have only inertia  Il  and no mass. The system 
also incorporates mechanisms of energy dissipation, due to 
viscous friction at the leg and at the hip. The viscous 
coefficients are bl  and bh  respectively. The robot is equipped 
with a single actuator capable of exerting torque τ  at the hip 
joint. The leg forms an angle θ  with the vertical, while the 
length of the leg at any moment in time is l, see Fig. 1. The 
body forms a pitch angle ϕ  with the horizontal. For the 
configuration in Fig. 1, angle θ  is negative, while angle ϕ  is 
positive. 

When moving, the robot goes through a stance and a 
flight phase, see Fig. 2. During stance, the robot CM covers a 
distance of xs, and during flight a distance of xf, reaching an 
apex height of h. 
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Fig. 2. Phases of the robot motion. 

Stance. The robot equations of motion during stance may 
be found using a Lagrangian approach: 
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where g is the acceleration of gravity. 

Flight. During flight, the only external force on the robot 
is gravity. The robot CM position may be determined by the 
horizontal position x and distance from the ground y (see Fig. 
1). The hip actuator may exert a torque to modify the 
configuration of the system, determined by the anglesθ ,ϕ . 
Therefore, the equations of motion during flight are: 
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B. SLIP Model 
The SLIP model is essentially a simplification of the full 
model described above. The body is considered to be a point 
mass, while the leg is massless and has no inertia. Viscous 
friction is still incorporated in the hip and the leg. The 
equations of motion for this model are expressed in Eqs. (3), 
(4), for the stance phase and flight phase respectively. 
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III. CONCEPT OF MECHANISM OF ENERGY TRANSFER INTO 
AXIAL DOF 

Both robot models discussed above are equipped with a hip 
joint actuator. Having only this actuator is considerably easier 
to implement than having an actuator exerting axial forces on 
the leg. However, the system is underactuated and no method 
of transferring energy directly into the axial direction of the 
leg exists. Observing the second of Eqs. (1) governing the 
motion in the axial direction, it can be seen that, due to 
actuator location, this equation has no input force; hence it 
must be controlled indirectly. The concept of an energy 
transfer mechanism for the axial DOF has been laid out in [9], 
in the case of an actuated axial DOF. Expanding this concept, 
the transfer mechanism below allows for energy transfer when 
no axial actuation is available. 

It is obvious that compensating for the energy lost due to 
friction at the hip is simple since the hip joint is actuated. 
However, compensating for the energy lost in the leg is more 
complex. A first approach would suggest that the hip joint 
actuator might increase the total system energy by the amount 
lost in the leg and hip. But this is not adequate, since it would 
only lead to a continuous increase of energy in the hip DOF, 
while the energy in the leg would decrease with each cycle, 
leading to instability. 

Therefore, it is necessary to devise a mechanism of 
transferring energy from the actuated hip into the axial DOF 
of the leg. To this end, consider what takes place from an 
energy point of view at the time the robot leg touches down 
after the flight phase. At this point, as a result of its previous 
motion, the robot CM has a given velocity  v , see Fig. 3. The 
subscript td denotes the value of a quantity at touchdown. 

As seen in Fig. 3, the body velocity at touchdown can be 
analyzed into two components. The first component is that 
which corresponds to the rotating motion of the leg about the 
pivot point at the leg-ground contact, while the second is in 
the axial direction of the leg. In Fig. 3, it can be seen that the 
resulting magnitude of each component, for the same robot 
velocity  v , is determined by the touchdown angle of the leg. 
This essentially means that, by regulating the touchdown 
angle, the distribution of the CM (linear) kinetic energy 
between the rotating and axial directions may be determined. 
It may be noted that as the magnitude of  θtd  increases, there is 
also a small increase of the magnitude of  v , due to the fact 
that the leg will touch down a little later. However, this is 
considered to be negligible. 

Using this distribution mechanism, it is possible to choose 
to transfer an extra amount of kinetic energy into the axial 

direction, so as to complement the energy lost due to viscous 
friction. Of course, this leads to a decrease of the energy 
available to the rotating direction. However, this is easily 
compensated for, since the hip actuator actuates this DOF. It is 
evident from the coupling of the DOFs in the equations of 
motion, that some energy will be transferred between the 
rotating and axial direction during the stance phase. However, 
the dominant mechanism used for transferring energy in the 
controllers presented is the one described above. 
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Fig. 3. The robot velocity at touchdown and its distribution 

for different touchdown angles 

To conclude, by using this mechanism, energy can 
actually be transferred from the actuated hip joint DOF to the 
unactuated leg axial DOF. All the energy required for 
complementing system losses will be given by the hip 
actuator, and then distributed accordingly at touchdown. 

IV. MATHEMATICAL FORMULATION OF ENERGY 
TRANSFERRING MECHANISM 

In this section, the mechanism described above is 
mathematically formulated to allow its integration into the 
controller. This is achieved by relating the individual 
components of the touchdown velocity, tdx and tdy , to the leg 
angular and linear velocity: 
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Eq. (5) describes how the velocity is distributed between the 
rotation ( td Lθ ⋅ component) and the axial direction 
( tdl component). 

Suppose that the robot is executing a steady state motion, 
composed of a flight phase and a stance phase. Each stance or 
flight phase is identical to the previous one. Further, let El  be 
the energy dissipated at the leg during one stance phase. This 
energy must be replenished in order for the steady state 
motion to continue. Using the mechanism described above, 
this means that the leg angle at touchdown must be regulated 
so that an amount of energy equal to the leg friction losses of 
the current stance phase is added to the axial leg direction. 
The slight difference in the robot potential energy at 
touchdown, for different values of  θtd , is considered to be 
negligible. Hence, the increase in energy in the leg axial 
direction must be made in kinetic energy. This may be 
expressed as: 
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where the subscript  lo  denotes the value of a quantity at 
liftoff,  i denotes the stance phase about to begin, i − 1 denotes 
the previous stance phase. From Eq. (6), it follows that, for 
enough extra energy to be transferred to the leg DOF to cover 
dissipation losses, the necessary touchdown velocity in the 
axial direction is: 

 2
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2
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This velocity can be achieved by regulating the 
touchdown angle as described above. Using Eq. (5), the 
desired touchdown angle   θtd ,des  necessary to achieve the 
desired leg velocity ,td il  can be found. To provide a simple 
expression for the desired touchdown angle, θtd ,des is presumed 
to be small enough so that: 
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Now, combining Eqs. (5) and (8), θtd ,des  can be found to 
be: 
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Using the above touchdown angle, the leg touchdown 
axial velocity is adequately increased in comparison to the leg 
velocity at liftoff of the previous stance phase. The difference 
in velocities leads to a sufficient increase in the energy in the 
direction of the leg to complement the dissipated energy in the 
leg  El . 

In Eq. (9), the expression for the desired touchdown angle 
is a function of the desired axial velocity at touchdown tdl . 
From Eq. (7), tdl  is seen to depend on the energy dissipated in 
the leg El . Since this cannot be measured easily, an analytical 
approximation is used. In [13] an analytical approximation has 
been found for the energy dissipated during the stance phase 
in a leg with viscous friction: 

 l lE b p=  (10) 

where  p  was found to be: 
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where Ts  is the duration of the stance phase and all other 
parameters have been defined previously. 

V. SLIP MODEL CONTROLLER 

In this section a controller, for the SLIP robot model described 
in Section II, will be derived based on the energy transfer 
mechanism laid out in the previous section. This controller 
will be referred to as SL-C. 

The desired touchdown angle of the robot for each hop is 
determined by Eq. (9). This ensures that adequate energy is 
transferred to the unactuated leg. Since the SLIP model has a 
massless leg, no torque is required to bring the leg forward 
during flight. If the robot starts its motion in the flight phase 
(i.e. with a throw), then for the first touchdown angle, Eq. (9) 
cannot be used. Therefore for the first touchdown only, the 
desired touchdown angle is chosen according to the neutral 
point control method established in [8]: 

 , arcsin
2
s td

td des
T x
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This angle represents half the angle the leg would cover 
during stance if the horizontal velocity of the body were 
constant.  

However, even though energy will be transferred to the 
axial DOF, the total robot energy will diminish unless energy 
is provided from some external source to the mechanical 
system. Using the hip actuator, it is possible to provide energy 
to the rotating direction, thus increasing the total system 
energy. The energy input by the actuator is then distributed as 
necessary between the rotating and axial direction, according 
to the mechanism described above. 

To keep the total system energy constant, the actuator 
applies the necessary torque during the stance phase. After 
touchdown and until the leg reaches the vertical position, the 
torque applied is constant and equal to the energy dissipated in 
the leg during the stance phase, over the touchdown angle of 
the leg. When the leg has passed the vertical position, the 
torque has the form of a proportional controller with the 
system energy as feedback. Such a proportional energy 
controller has been used in [9] as part of a control scheme that 
resulted in stable locomotion for a real robot. In each case an 
extra term is added to the controller that compensates for the 
viscous friction at the hip. Therefore the actuator torque 
during stance is: 
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where Esys,d  is the desired system energy, Esys the current 
system energy, k1 the P controller gain. The desired system 
energy is equal to the system energy at the beginning of the 
motion. The expression of system energy at each moment is: 
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As will be seen in the results presented in Section VII, the 
SLIP response to this controller is typically a transient period 
of about four cycles, followed by stable locomotion. 

VI. FULL ROBOT CONTROLLER 

If the derived SLIP controller was to be applied to the case of 
the full robot model, it would be immediately clear that a 
steady state motion could not be accomplished using the 
controller as is. Specifically, gradual instability arises in the 
body pitching motion, while the total gait is not sustainable. 
An example of this is shown in Section VII. As mentioned 
earlier, this result is a strong indication that a more complete 
robot model than the SLIP is required for controller design, 
due to the basic qualitative differences in the behavior of the 
SLIP and the full model. 

It is evident that modifications are required to the initial 
controller presented. The aim of the controller developed here 
is to be able to start the robot with a wide range of initial 
conditions without changing the controller gains. It is 
expected, in accordance with the trial on the SLIP model, that 
there will be a transitional phase of about four cycles before 
the steady state motion. The full controller for the original 
robot will now be presented in three components: (a) the 
stance phase control, (b) the leg touchdown angle command 
and (c) the flight phase control. This controller will be 
referred to as FL-C. 

A. Stance phase control 
As mentioned, using the controller as is on the original robot 
leads to gradual instability in the body pitching motion. To 
bound the pitching motion of the body, an inverse dynamics 
controller is used for the body to follow a desired pitching 
trajectory. During what is estimated to be the transient 
response period, i.e. the first four hops, the desired trajectory 
has the form of a sinusoidal counter-oscillation to the 
oscillation of the leg. The form of this trajectory is based on 
the analysis of [6]. The desired trajectory is 
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where  Tf  is the flight duration, computed in Eq. (24), Ts  the 
stance duration. The stance duration is considered to be equal 
to the stance duration of the previous stance phase, while for 
the first cycle it is roughly approximated as: 

 s
mT
k

π=  (16) 

After the transient period, the desired trajectory becomes 
a third order polynomial, enforced by inverse dynamics 
control. The desired final pitch angle   ϕ td ,des  and pitch velocity 

,td desϕ  are set equal to the pitch angle and velocity at liftoff of 
the last transient stance phase   ϕ lo,lt , ,lo ltϕ . The trajectory is, 
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Since the first part of the response is expected to be of a 
purely transient character, it is evident why Eq. (17) cannot be 
used from the start of the motion. Also, Eq. (15) cannot be 
continued after the transitional phase, as it was not found to 
lead to a stable motion. 

For both the transient and steady state desired trajectories, 
the inverse dynamics controller enforcing them in each case is 
the same: 
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B. Leg touchdown angle command 
The stance phase control presented above controls the body 
pitching motion, but replaces the control set out in Section V 
for keeping the system energy steady, Eq. (13). Therefore, an 
alternative method must be found to retain the system energy 
level steady. 

To this end, a proportional controller term for the system 
energy is added to the expression for the desired leg 
touchdown angle. This term becomes active only after the first 
four transient cycles. The new expression for the desired 
touchdown angle, based on Eq. (9), becomes: 
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where k2  is the proportional controller gain. The desired 
system energy is equal to the value of the system energy after 
the fourth cycle. The expression for the system energy at each 
moment is now, 
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It has been observed that the controller performs significantly 
better when the last two terms, representing the kinetic energy 
of the leg and body due to inertia, are omitted from the energy 
calculation. For the first cycle, the desired touchdown angle is 
chosen as in Eq. (12). 

The stabilizing effect of the added term in Eq. (20) on the 
total system energy is explained as follows. When the system 
energy is greater than desired, the leg is set further forward for 
touchdown during the flight phase. Therefore, the resulting 
velocity in the axial direction of the leg at the beginning of 
stance is increased, according to Section IV. This results in 
greater losses in the leg due to viscous friction, according to 
Eqs. (10), (11). This way the system energy is decreased. 
Similarly, if the system energy is smaller than the desired 
energy, then the new term results in an increase of the system 
energy. 

C. Flight phase control 
To complete the controller, the leg must be brought 

forward to the desired touchdown angle during flight. Since 
the robot leg has inertia, the common assumption that the leg 
may be brought forward with zero torque is not valid. To 
bring the leg to the desired position, an inverse dynamics 
controller is adopted for the leg to follow a desired trajectory, 
ending at the desired touchdown angle. The desired trajectory 

 θd  is a third order polynomial: 

   θd = a0 + a1t + a2t
2 + a3t

3  (22) 

The parameters of the trajectory are chosen so that the leg has 
reached the desired angle before the time of touchdown. The 
parameters are: 
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The duration of the flight phase Tf  is easily approximated as: 
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To implement the controller, the applied torque during flight 
is: 
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where kp , kd  are the controller gains. 
For the complete controller to work on a physical robot, it 

is necessary to have onboard sensing. The robot velocity and 
configuration must be known for the calculation of θtd ,des  and 
the feedback of the flight and stance control, as well as for the 
computation of the system energy in Eq. (20). 

VII. RESULTS 

In this section, the response of the SLIP model and the full 
robot model to the derived controllers will be presented. 

A. SLIP model 
SL-C is applied to the SLIP model. A typical response is 

shown in Fig. 4, for m=10 kg, k=5000 N/m. The losses are set 
to bh = 0.5  N.s/m for the hip and   bl = 1  N.s/m for the leg. The 
robot was started with an initial horizontal velocity of 0x =2.2 
m/s from a height of h=0.7 m. The controller gain is k1 =0.2. 
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Fig. 4. Response of the SLIP model to SL-C. (a) The response 
over 15 s. (b) The transient phase over about 3 s. 



 

As can be seen in Fig. 4, there is a short transient phase during 
which the robot states at a characteristic cycle point (i.e. apex) 
vary considerably. This lasts for the first four or five hops, 
after which the robot settles into a steady state behavior. 

B. Full model 
Here, the response of the full robot is examined. Initially, SL-
C is applied to the full model. The resulting response is then 
compared to the response of the SLIP model under the same 
controller, shown in Fig. 4. This way, the differences in 
qualitative behavior can be investigated, between the full 
model and the SLIP model, often used for controller design.  

For the application of SL-C to the full model, the same 
model parameters and initial conditions are used as in the 
previous example for the SLIP model (Fig. 4). The only 
difference in the controller is that a torque is now necessary to 
bring the leg forward during flight. Also, the remaining full 
model parameters are Ib=0.5 kg.m2, Il=0.05 kg.m2. The 
response is shown in Fig. 5. 
As can be seen, although the exact same controller 
configuration worked perfectly on the SLIP, it is not adequate 
for the full model. The pitch angle quickly tends to instability, 
while the leg angle behavior has the form of a gradual decay. 
It is evident that the motion is not sustainable. This is a 
display of the fundamental differences between the properties 
of the SLIP and the realistic full model and shows that a 
controller designed using the SLIP model fails in a realistic 
case.  
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Fig. 5. Response of full model to SL-C. 

Therefore, there is an indication that the SLIP model is 
not complete enough for dependable robot controller design 
and that future controllers should be designed using a more 
complete model. This conclusion is also verified by the form 
of the equations of motion, see Eq. (1). It is clear that, other 

than for the friction term, there is no coupling between the 
pitching motion and the leg angle or leg length. Therefore, a 
controller designed using the SLIP model cannot have a 
stabilizing effect on the pitching motion of a real robot. The 
rest of system destabilizes due to the leg inertia, not accounted 
for in SLIP based controllers. Because the leg inertia is not 
large, the system destabilizes more gradually. 

Next, FL-C is applied to the full model, using the same 
robot parameters as in the previous case. It is desired to 
examine whether the modifications made to the initial 
controller now lead to a stable motion for the full model. The 
gains used in the full model controller are k1 =0.2, kd =5, 
kp =10. The response is shown in Fig. 6. As can be 
immediately seen, FL-C is successful in stabilizing the motion 
of the full model. There is a transient phase during which each 
cycle differs considerably from the previous one. This lasts for 
about 5 s, after which the system enters a steady state motion. 
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Fig. 6. Full robot model response to FL-C. 

FL-C is now tested for various values of robot 
parameters, as well as for a range of initial conditions, to 
verify its generality. Note that all results presented below are 
for the same set of controller gain values used in the previous 
example. 

This means that there is no need to adjust the controller, 
despite the changes in robot parameters and initial conditions 
used. As the stable time response always has the general form 
of Fig. 6, the test results are collected in tables.  

Table 1 gives some sets of robot parameters and initial 
conditions 0x , y0  that lead to stable motions, as well as the 
resulting leg touchdown angle   θtd ,ss  and maximum torque 
τ max,ss  of a random cycle, after the system has entered the 
steady state. The following robot parameters are kept the 
same: m=10 kg, Ib=0.5 kg.m2, Il=0.05 kg.m2, L=0.5 m, bh =0.5 
N.s/m. The same typical initial velocity 0x =2 m/s is used, so 
as not to vary too many parameters. 



 

Table 1. Robot parameters and initial conditions, and 
resulting stable gait characteristics. 

k 
(N/m) 

 bl  
(N .s/m) 

0x  
(m/s) 

  y0  
(m) 

  θtd ,ss  
(deg) 

τ max,ss  
(N.m) 

5000 1 2.0 0.6 -13.5 8.7 
5000 1 2.0 0.7 -15.8 4.8 
9000 3 2.0 0.6 -12.0 7.2 
9000 3 2.0 0.7 -13.2 11.0 

12000 4 2.0 0.6 -10.5 8.8 
12000 4 2.0 0.7 -11.5 9.6 

It can be seen that FL-C results in steady motions for the full 
model, for a large range of the leg stiffness, as well as in the 
case of significant energy dissipation in the leg.  

In Table 2, further examples of stable motions are given. 
In this table, various values of body inertia and mass are used 
to further demonstrate the controller’s applicable range, still 
using the same gains as the first example of Fig. 6. Again, the 
initial conditions 0x , y0  are given, as well as the resulting leg 
touchdown angle   θtd ,ss  and maximum torque τ max,ss  of a 
steady state cycle. The following robot parameters are kept 
steady: k=9000 N/m, Il=0.05 kg.m2, L=0.5 m,  bh =0.5 N.s/m. 

Table 2. Robot parameters and initial conditions, and 
resulting stable gait characteristics. 

m 
(kg) 

 Ib  
(kg m2) 

bl  
(N .s/m) 

0x  
(m/s) 

  y0  
(m) 

  θtd ,ss  
(deg) 

τ max,ss  
(N.m) 

8 0.6 3 2.0 0.6 -11.3 13.1 
8 0.6 3 2.0 0.7 -13.0 4.3 

15 0.8 2 2.0 0.6 -14.4 3.9 
15 0.8 2 2.0 0.7 -16.5 11.0 
20 1.5 1 2.0 0.6 -15.5 3.8 
20 1.5 1 2.0 0.7 -17.0 6.2 

Accomplishing steady motions using such a wide range of 
parameters and the same controller gains is made possible by 
the systematic exploration of the energy transfer mechanism. 
Because of this, the desired leg angle at touchdown is an 
analytical expression of the robot parameters, as seen in 
Section IV. As a result, once a set of reasonable gains is found 
for the controller, it is extremely accommodating to changes 
in both initial conditions and robot parameters. This makes the 
controller novel, as previous attempts to use the leg 
touchdown angle as a control input on realistic robots have 
relied on trial and error [11]. Also a number of previous 
controllers, such as [6], used special initial conditions so that 
the robot was already close to the steady state cycle at the 
beginning of its motion. It is evident that our controller, 
requiring only knowledge of the initial conditions, is capable 
of overcoming significant transient effects and still leading to 

stable locomotion. Finally, the controller can be implemented 
using only one actuator, situated at the hip, providing a real 
advantage in construction over the two-actuator 
implementation. 

VIII. CONCLUSIONS 

In this paper the mechanism of energy transfer was studied, 
between the single actuated DOF of a one-legged hopping 
robot and the remaining unactuated DOFs, during stable 
locomotion. The concept of the energy transfer mechanism 
was analyzed, followed by an analytical study of the 
mechanism. Using this analysis, an initial controller for the 
simple SLIP model was found. The model incorporated 
friction in the leg and hip, and used a single actuator at the 
hip. Although this controller was successful for the SLIP 
model, it did not lead to stability for the full robot model. This 
result provides a strong indication that the SLIP model, often 
used for controller design, may be unsuitable for this purpose. 
Modifications were then made to the initial controller that 
resulted in stabilizing the full model for a wide range of 
parameters, using only a single actuator. 
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