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Abstract— This paper presents Monte-Carlo localization
(MCL) [1] with a mixtur e proposaldistrib ution for mobile robots
with stereo vision. We combine �ltering with the ScaleInvariant
Feature Transform (SIFT) image descriptor to accurately and
ef�ciently estimate the robot's location given a map of 3D
point landmarks. Our approachcompletelydecouplesthe motion
model fr om the robot's mechanicsand is generalenoughto solve
for the unconstrained 6-degreesof fr eedomcamera motion. We
call our approach � MCL. Compared to other MCL approaches
� MCL is more accurate, without requiring that the robot move
largedistancesand make many measurements.Mor e importantly
our approach is not limited to robots constrained to planar
motion. Its strength is derived fr om its robust vision-basedmotion
and observation models. � MCL is general, robust, ef�cient and
accurate, utilizing the best of Bayesian �ltering, invariant image
features and multiple view geometry techniques.

I . INTRODUCTION

Global localization is the problem of a robot estimating
its position by consideringits motion and observationswith
respectto a previously learnedmap. Bayesian�ltering is a
generalmethod applicable to this problem that recursively
estimatestherobot'sbeliefaboutits currentpose.Monte-Carlo
localizationprovidesan ef�cient methodfor representingand
updatingthis belief usinga setof weightedsamples/particles.
Previous MCL approacheshave relied on the assumptionthat
the robot traversesa planar world and use a motion model
that is a function of the robot's odometrichardware. Based
on uninformative sensormeasurements,they suffer from the
perceptualaliasingproblem[2] requiringthat the robot move
for several metersand make many observations before its
locationcanbeestablished.They alsodemanda largenumber
of particlesin orderto converge.MCL hasbeendemonstrated
to beaccuratefor laser-basedrobotsbut it hasfailedto achieve
similar resultsfor vision-basedones.

In thispaper, wepresentMonte-Carlolocalizationfor robots
with stereovision. We call it � MCL andit differs from others
in several ways. Firstly, it is not limited to robotsexecuting
planar motion. We solve for unconstrained3D motion (6
degreesof freedom)by decouplingthemodelfrom therobot's
hardware. We derive an estimateof the robot's motion from
visual measurementsusing stereovision. Secondly, we use
sparsemaps of 3D natural landmarksbasedon the Scale
Invariant Feature Transform [3] that is fully invariant to
changesin image translation,scaling, rotation and partially

invariantto illumination changes.Thechoiceof SIFT leadsto
a reductionof perceptualaliasingenabling� MCL to converge
quickly after the robot has traveled only a short distance.
Finally, our methodis more accuratethan other constrained
vision-basedapproachesandonly requiresa small numberof
particles.

In comparison,Thrun et al. [1] introduceMCL and study
its performancefor planar, laser guided robots that utilize
2D occupancy grid maps [4]. They also demonstrateit for
a robot with vision that relies on an image-basedmosaicof
a building's ceiling but fail to match the accuracy of their
laser-basedapproach[5]. Wolf et al. [6] implementMCL for
a vision guidedrobotthatusesanimageretrieval systembased
on invariant featuresbut alsoneeds2D occupancy grid maps
for visibility computations.Their systemrequiresthe storage
of a large databaseof imagesalongwith the metric maps.

Recently, image-basedapproacheshave beenproposedthat
do not require metric mapsbut operateusing collectionsof
referenceimagesandtheir locations.Thesemethodscombine
�ltering with image-basedlocalization[7] in a more general
setting than originally proposedby [6]. Variationsexist for
differentchoicesof imagedescriptorsandassociatedsimilarity
metrics.Menegatti et al. [8] representimagesusingtheFourier
coef�cients of their lower frequency components.They de�ne
a simple similarity metric using the Euclideandistanceof
thesecoef�cients. Grosset al. [9], in a similar approach,use
the Euclideandistanceof the meanRGB valuesof images
as a similarity metric and employ a luminancestabilization
andcolor adaptationtechniqueto improve matchingaccuracy.
Ulrich et al. [10] representimagesusing color histogramsin
the normalizedRGB and HLS color spaces.They study the
performanceof differentsimilarity metricsfor their histogram
representation.Kröse et al. [11] perform Principle Compo-
nent Analysis on imagesand store the �rst 20 components.
They match imagesby comparingthe Euclideandistanceof
thesecomponentssmoothedby local Gaussiankernels.For
improved ef�ciency, they implementan approximatenearest-
neighbourapproachusing the kd-tree data structure.Rofer
et al. [12] proposea variant that focuseson fast feature
extraction.Theirsis limited to very small environmentsandit
dependson color-basedlandmarkssuitableonly for the robot
soccerdomain.

The rest of this paper is structuredas follows. We begin



with an overview of Bayesian�ltering and its applicationto
robotlocalizationleadingto MCL. We describetheacquisition
of mapsandcontinueto presentthe main elementsof � MCL,
namely its vision-basedmotion and observation models.We
provideexperimentalresultsto prove its accuracy. Wecompare
it with other vision-basedMCL methodsand show that it
performsbetter. Finally, we concludeand suggestdirections
for future work.

I I . BAYESIAN FILTERING WITH PARTICLE FILTERS

Our goal is to estimatethe robot's positionandorientation
at time t, denotedby st . Thereare 3 degreesof freedomfor
the position(x,y andz) and3 for the orientation(r oll , pitch
and yaw). That is, st is a 6-dimensionalvector. The state
evolvesaccordingto p(st jst � 1; ut ) whereut is acontrolsignal
most often an odometrymeasurement.Evidence,denotedby
yt , is conditionally independentgiven the state(Markov as-
sumption)anddistributedaccordingto p(yt jst ). Bayes�ltering
recursively estimatesa probabilitydensityover thestatespace,
given by [1]:

p(st jyt ; ut ) = B el(st ) =

� p(yt jst )
Z

st � 1

p(st jst � 1; ut )B el(st � 1)dst � 1 (1)

It' s performancedependson how accuratelythe transition
modelis known andhow ef�ciently theobservationprobability
densitycanbe estimated.

Particle �ltering is a method for approximatingB el(st )
using a set of m weighted particles, B el(st ) =
f x ( i ) ; w( i ) gi =1 ;��� ;m . The system is initialized according to
p(s0) and the recursive updateof the Bayes �lter proceeds
in the following steps:

1) for eachparticle i
2) Samplefrom B el(st � 1) using the weightedsamples,

giving s( i )
t � 1

3) Samplefrom qt = p(st jst � 1; ut ) (alsoknown
as the proposaldistribution), giving s( i )

t
4) Computethe importanceweight, w( i ) accordingto

p(yt js
( i )
t )

5) end for
6) Normalizethe weightssuchthat they add to 1:0
7) Resamplefrom the particles proportionally to their

weight

This procedure is known as sampling-importance-
resampling. The application of the particle �lter to robot
global localization is know as MCL. It hasbeenshown that
thechoiceof proposaldistribution is importantwith respectto
the performanceof the particle �lter . An alternative proposal
distribution that leadsto what is calleddual MCL is suggested
in [13]. Dual MCL requiresthat we can sampleposesfrom
the observationsusing the dual proposaldistribution (a hard
problemin robotics)

~qt =
p(yt j~st )
� (yt )

; � (yt ) =
X

~st

p(yt j~st ) (2)

Fig. 1. Bird's eye view of 3D landmarkmapusedfor localization.Only the
3D coordinatesof eachlandmarkare shown as dark dots.Overlayedis the
paththe robot followed during mapconstructionwhile the robot's positionat
the endof the path is shown usinga green“V”.

In this case,the importancefactorsaregiven by [13]

w( i ) = � (yt )� (~s( i )
t jut )B el(s( i )

t � 1) (3)

MCL and dual MCL are complementaryand it is shown
in [13] that using a mixture of the two results in superior
performancecomparedto either of them. Implementing a
particle �lter is straightforward. One must describethe ini-
tial belief, the proposaldistribution and the observation and
motion models.Until now, MCL methodshave beenlimited
to solvingthesimplercaseof planarrobotswith only 3 dof. In
thenext few sectionswewill provideoursolution,� M CL, for
vision-basedrobotsmoving unconstrainedin 3D spacewith
6 dof. However, �rst we will describethe mapswe useand
how we constructthem sincethey play a central role in our
approach.

I I I . MAP CONSTRUCTION

We use maps of naturally occurring 3D landmarks as
proposedin [14]. Eachlandmarkis avectorl = f P; C; � ; s; f g
such that P = f X G ; Y G ; Z G g is a 3-dimensionalposition
vector in the map's global coordinateframe, C is the 3 � 3
covariancematrix for P, and� ; s; f describean invariantfea-
turebasedontheScaleInvariantFeatureTransform(SIFT) [3].
Parameter� is theorientationof thefeature,s is its scaleandf
is the128-dimensionalkey vector. SIFT descriptorshave been
shown [15] to outperformothersin matchingaccuracy andas
suchthey area naturalchoicefor this application.An example
of a map with 32; 000 landmarksis shown in Figure 1. We
constructedit using a total of 1200 frameswhile the robot
traveleda total distanceof 25 meters.

We learn thesemapsusing the methodpresentedin [14].
We usevisual measurementsto correctthe odometryestimate
as the robot travels. We assumethat each landmark is in-
dependentand its position is tracked using a Kalman �lter .



This approachis only useful for constructingmapsfor small
environments[14].

IV. OBSERVATION FUNCTION

In order to implementthe Monte-Carloalgorithmwe must
�rst specify the distribution p(yt jst ) that is usedto compute
theimportanceweights.Givenour maprepresentationandour
visual sensor, a measurementyt consistsof correspondences
betweenlandmarksin the currentview and landmarksin the
known map.

Let I R
t and I L

t denotethe right and left gray scaleimages
capturedusing the stereocameraat time t. The right camera
is the referencecamera.We computeimagepointsof interest
from both imagesby selectingmaximal points in the scale
spacepyramid of a Differenceof Gaussians[3]. For each
such point, we computethe SIFT descriptorand record its
scaleandorientation.We thenmatchthepointsin the left and
right imagesin order to computethe points' 3D positions
in the camera coordinate frame. Matching is constrained
by the stereo camera's known epipolar geometry and the
Euclideandistanceof their SIFT keys. Thus, we obtain a
set OC = f o1; o2; � � � ; on g of n local landmarkssuch that
oj = f Poj = f X L

oj
; Y L

oj
; Z L

oj
g; poj = f r oj ; coj ; 1g; C; � ; s; f g

wherepoj = f r oj ; coj ; 1g is theimagecoordinatesof thepoint
and j 2 [1 � � � n].

An observation is de�ned as a set of k correspondences
betweenlandmarksin the map and the current view, yt =
[ 1��� k f l i $ oj g suchthat i 2 [1::m] and j 2 [1::n] wherem
is the numberof landmarksin the map and n is the number
of landmarksin the currentview. We comparethe landmarks'
SIFT keys in orderto obtainthesecorrespondencesjust aswe
did before during stereomatching.There are no guarantees
that all correspondencesarecorrectbut the high speci�city of
SIFT resultsin a reducednumberof incorrectmatches.

A poseof the camera,st , de�nes a transformation[R; T]st

from the camerato the global coordinateframe.Speci�cally,
R is a 3 � 3 rotation matrix and T is a 3 � 1 translation
vector. Eachlandmarkin the currentview canbe transformed
to global coordinatesusing the well known equation

PG
oj

= Rst Poj + Tst (4)

Using equation4 and the Mahalanobisdistancemetric (in
order to take into account the map's uncertainty),we can
de�ne the observation densityby:

p(yt jst ) = e0:5
P k

b=1
(P G;b

o j
� P G;b

i )T C � 1 (P G;b
o j

� P G;b
i ) (5)

whereC is given by:

C = Rst Coj RT
st

+ Ci (6)

V. COMPUTING CAMERA MOTION

Anotheressentialcomponentto theimplementationof MCL
is the speci�cation of the robot's motion model, ut . In
all previous work, this has been a function of the robot's
odometry, i.e., wheel encodersthat measurethe amountthe

robot's wheelsrotate that can be mappedto a metric value
of displacementandrotation.Noisedrawn from a Gaussianis
thenaddedto this measurementto take into accountslippage
as the wheels rotate. Such measurementsalthoughaccurate
andavailableon all researchrobotsareonly useful for planar
motions.We want to establisha moregeneralsolution.Thus,
we obtain ut measurementsby taking advantageof the vast
amountof researchin multiple view geometry. Speci�cally,
it is possible to compute the robot's displacementdirectly
from the available image data including an estimateof the
uncertaintyin that measurement.

Let I t and I t � 1 representthe pairs of stereoimagestaken
with the robot's cameraat two consecutive intervals with
the robot moving betweenthe two. For eachpair of images
we detect points of interest, computeSIFT descriptorsfor
them and perform stereomatching, as describedearlier in
sectionIV, resultingin 2 setsof landmarksL t � 1 andL t . We
computethe cameramotion in two steps,�rst by the linear
estimationof theEssentialmatrix,E , andits parameterization,
as describedbelow. Second,we compute a more accurate
estimateby droppingthelinearityassumptionandusinganon-
linear optimization algorithm minimizing the re-projection
error of the 3D coordinatesof the landmarks.

A. Linear Estimationof the EssentialMatrix

For this partwe only considertheimagesfrom thereference
camerasfor times t and t � 1. Using the SIFT descriptors
we obtainlandmarkcorrespondencesbetweenthe two images
as describedearlier in sectionIV. Let the i -th such pair of
landmarksbe denotedl i

t $ l i
t � 1. For the time beingwe only

considertheimagecoordinatesof theselandmarks,pi
t $ pi

t � 1.
Given this set of 2D point correspondences,the Essential

matrix, E , is any 3 � 3 matrix that satis�es the property

pi
t
T

Epi
t � 1 = 0 (7)

TheEssentialmatrixmapspointsfrom oneimageto lineson
theother. If it is known, thecamerapose,[R; T], at time t can
be estimatedwith respectto the cameraposeat time t � 1 via
its parameterization.We usethenormalized8-point algorithm
to estimateE . The algorithm can be found in most modern
machinevision bookssuchas [16], and so we do not repeat
here.Wenotethatthealgorithmrequiresaminimumof 8 point
correspondences.In our experiments,we obtain an average
of 100 such correspondencesallowing us to implement the
robustversionof thealgorithmthatusesRANSAC to consider
solutionsfor subsetsof themuntil a solution is found with a
high numberof inliers.

We can computethe cameraposevia the Singular Value
Decomposition(SVD) of E asdescribedin [16]. As a result,
we obtain the rotationmatrix ~R anda unit sizevector ~T that
denotesthecamera's displacementdirectionbut not theactual
cameradisplacement.Althoughwecouldtakeadvantageof the
information in ~T to guide our non-linearsolution described
in the next section,currently we do not and we simply set
~T = 0. Figure2 givestwo examplesof the estimatedepipolar
geometryfor forward motion androtation.



(a) (b)

Fig. 2. Examplesof estimatingtheepipolargeometryfor (a) forwardmotion
and(b) a rotationto the right. The top row shows the point correspondences
betweentwo consecutive imageframes.Crossesmark thepointsat time t � 1
andlinespoint to their locationat time t . Thebottomrow, shows theepipolar
lines drawn for a subsetof the matchedpointsusing the estimatedEssential
matrix.

We use [ ~R; ~T]st to initialize the non-linearestimationof
the camerapose.The advantageof the initial value is that it
allows usto do outlier removal , i.e.,we canremove landmark
matchesthat do not satisfy equation7. Additionally, having
an initial estimatehelps guide the non-linear optimization
algorithmaway from local minima.

B. Non-LinearEstimationof the Camera Pose

Given an initial value for the cameraposeat time t with
respectto the cameraat time t � 1, we computea more
accurateestimateusing the Levenberg-Marquardt(LM) non-
linear optimizationalgorithm.We utilize the 3D coordinates
of our landmarksand use the LM algorithm to minimize
their re-projectionerror. Let ~x t be the 6-dimensionalvector
x t = [r oll ; pitch; yaw; T11; T21; T31] correspondingto a given
[R; T]. Our goal is to iteratively computea correctionterm �

x i +1
t = x i

t � � (8)

suchas to minimize the vector of error measurement� , i.e.,
the re-projectionerror of our 3D points.For a known camera
calibrationmatrix K , � is de�ned as

� =

2

6
6
6
4

� T
0

� T
1
...

� T
k

3

7
7
7
5

=

2

6
6
6
4

p0
t � K (RP0

t � 1 + T)
p1

t � K (RP1
t � 1 + T)

...
pk

t � K (RP k
t � 1 + T)

3

7
7
7
5

(9)

Given an initial estimatefor the parameters,we wish to solve
for � that minimizes� , i.e.,

�
J
�I

�
� =

�
�

�d

�
, (J T J + �I )� = J T � + �I d (10)

where J = [ @� 0
@� ; � � � ; @� k

@� ]T , is the Jacobianmatrix,I is
the identity matrix and d is the initial solution from the

Odometry Vision-basedEstimate
x y � x y z � � �

0.00 0.00 -1.76 0.01 0.00 -0.01 0.22 -1.83 0.05
0.00 0.00 -2.11 -0.01 -0.00 0.01 -0.01 -1.97 -0.02
0.00 0.00 2.11 0.01 0.02 0.00 0.01 1.63 0.00
0.12 0.00 0.00 0.18 -0.02 0.01 -0.01 -0.13 0.18
0.11 0.01 0.00 0.09 0.01 0.01 -0.26 -0.52 0.04

TABLE I

COMPARING OUR LEAST-SQUARES ESTIMATE OF CAMERA MOTION WITH

ODOMETRY. POSITION IS SHOWN IN cm AND ORIENTATION IS DEGREES.

linear estimategiven by [ ~R; ~T]. The LM algorithmintroduces
the variable � that controls the convergenceof the solution
by switching betweenpure gradient descentand Newton's
method.As discussedin [17] solving 10 , i.e., the normal
equations,minimizes

jjJ � � � jj2 + � 2jj � � djj2 (11)

The normal equationscan be solved ef�ciently using the
SVD algorithm.A byproductfrom solving 11 is that we also
getthecovarianceof thesolutionin theinverseof J T J . TableI
comparesour vision-basedestimateof cameramotion with
that of odometry. Onecanseethat it is very accurate.

VI . THE M IXTURE PROPOSAL DISTRIBUTION

As we discussedin sectionII, we perform�ltering usinga
mixture of the MCL anddual MCL proposaldistributions[1]

(1 � � )~qt + �q t = (1 � � )p(yt j~st ) + �p (st jst � 1; ut ) (12)

where � is known as the mixing ratio and we have set it to
0:80 for all of our experiments.

Samplingfrom p(st jst � 1; ut ) is straightforward as all par-
ticles from time t � 1 are updatedusing our estimateof
the camera's motion, ut , with noise addeddrawn from our
con�denceon this estimategiven by (J T J ) � 1. On the other
hand,samplingfrom the dual proposaldistribution is thought
of as a hard problem in robotics since we must be able to
generateposesfrom observations. It turns out that for our
choiceof mapsandsensorthis is trivial.

Let M be a map of m landmarkslG
i for 1 � i � m

and N be the set of n landmarkslL
j for 1 � j � n in

the currentview. Let yt be the currentobservation. Using the
proceduredescribedin sectionV and k randomsubsetsof
matchedlandmarks,x1:k � X , we computek candidateposes
~s(1: k )

t . For ef�ciency we only call on thenon-linearestimation
procedureinitializing theposeto zerotranslationandrotation.
Evenif our subsetof landmarksleadsto anincorrectestimate,
thissamplewill receive a low weightgivenourcompletesetof
observationsandassuchwe do not needto incur the penalty
of the robust linear estimatedescribedin section V-A. For
eachsampledposewe computep(yt j~s

( j )
t ) with 1 � j � k

usingequation5. Becauseof the high quality of observations,
we only needto sampleas few as 100 posesto get a good
approximationfor p(yt j~st ). To samplefrom the dual proposal
we draw a randomparticle from f ~s(1: k )

t ; ~w1:k
t g accordingto



(a) (b)

Fig. 3. The robot we usedfor our experiments(a) seenfrom a distanceand
(b) closeupof its head

the particle weightsand computeits importancefactor using
equation3.

Lastly we should mention that the procedurewe just de-
scribed for approximatingthe dual proposaldistribution is
alsouseful for estimatingp(s0), that is, the initial belief. It is
commonpracticethat the initial belief is set to be a uniform
distribution but consideringthe large dimensionalityof our
statespace,ours is a betterchoice.

VI I . SINGLE-FRAME APPROACH USING RANSAC

A straightforward approachto global localizationthat does
not require�ltering is presentedin [18]. Posesare generated
as discussedin the previous section and evaluated using
equation5. For robustnessa RANSAC approachis employed
in that posesare sampleduntil one is found that is well
supportedby the current observation, i.e., p(yt jst ) is above
a given threshold.

The advantageof such an approach,made possible by
the geometryof the cameraand map representation,is its
simplicity andits high accuracy consideringthatonly a single
imageframeneedsto be considered.A major disadvantageis
that is not suitablefor trackingthe robot's poseover multiple
framesdueto thelargevarianceof theestimates.Additionally,
a user must specify beforehandthe number of samplesto
consider( [18] usesonly 10) and a thresholdvalue for what
is a good pose.However, the former can be avoided if the
adaptive RANSAC algorithmis used.

Until now, no vision-basedMCL methodhasbeenshown
to matchthe accuracy of the single-frameapproach.We will
show in thenext sectionthat � MCL comescloseto this target
while consideringamoregeneralcaseof unconstrainedmotion
in 3D.

VI I I . EXPERIMENTS

We have implemented� MCL for our mobile robot seenin
Figure 3. It is a modi�ed RWI B-14 quasi-holonomicbase.
It is equippedwith a PointGrey ResearchBumblebeestereo
vision cameramountedon a Pan-Tilt Unit. It hasan on-board
Pentium-basedcomputerand wirelessconnectivity. It hasno
other functioningsensorsother than the stereocamera.

For our experiments,we have used 3 different sets of
images,S1; S2; S3, at 320 � 240 resolution. S1 is the set

of images that we used for constructingthe map. It is a
usefulsetbecausealongwith the imageswe have the robot's
poseat the time they were acquired.We usethesecorrected
odometry estimatesas a baselinefor judging the accuracy
of the � MCL approach.One obvious disadvantageof using
this set is that we always get a really large and accurate
numberof landmarkcorrespondences.In order to show that
� MCL works in general,the secondset of images,S2, is an
arbitrary sequencethat was not used during map building.
Unfortunately, both of theseimage setsare acquiredas the
robot traversesa planarpath.To demonstratethatour solution
works for non-planarmotions, we have acquireda 3r d set
of images,S3, in which we moved the cameraby handin a
rectangularpatternoff the robot's planeof motion.

An important and open questionin the study of particle
�lters is the numberof particlesto use. In our experiments
with S1 we found that asfew as100 particlesweresuf�cient
to achieve highly accurateresults;wecangetaway with only a
smallnumberof particlesbecauseof goodobservations.Using
moreparticlesprovidedno improvement.For our experiments
with S2 and S3 we used500 particles;using more did not
generatea noticeableimprovementon thecomputedtrajectory
of the robot. Thesenumbersare signi�cantly smaller than
other vision-basedapproaches.For example, [6] uses5000
particles.

Figure 4 shows the resultsof global localizationusing S1.
Part (a) of the �gure presentsthe initial belief. Part(b) shows
the particlesafter 7 frames,the robot having moved forward
for about80cm. One can seethat thereare several modesto
the distribution. Part (c) shows the samplesafter 35 frames
having all converged to the robot's true location. The robot
hasmoved a total of 100cm androtatedby 20 degrees.

Figure5 plots thelocalizationerror for themeanposetaken
over all the particleswith respectto the odometryestimate.
The positionerror is lessthan20cm andthe orientationerror
is lessthan6 degrees.The resultsare the averageof 10 runs
per frame.In comparison,[13] reportsa localizationerror that
variesfrom 100cm to 500cm. Similarly, the resultspresented
in [6] specifyanerror that is aslargeas82cm in positionand
17 degreesin orientation.In [9] thepositionerrorvariesfrom
45cm to 71cm. Finally, [8] reportsthat the localizationerror
is 20cm but this value is highly correlatedwith the distance
of the referenceimageswhich is also20cm. [13], [9], [8] do
not include results for the error with respectto the robot's
orientation.Also shown in Figure 5 is the estimateof the
single frame approachusing adaptive RANSAC as described
in sectionVII. It performsbetterthan� MCL but thegenerated
track is morenoisy dueto the large varianceof the estimates.

Figure6 shows thecamerapathfor the imagesetS2. It was
generatedusinga total of 500imageswhile therobottraversed
a distanceof 18 meters.It took about20 framesbefore the
robot estimatedits locationandit successfullykept track of it
from thenon.

Finally, Figure 7 shows the results using S3. We have
provided a generalsolution to the localization problem that
canhandleunconstrainedmotionsin 3D. So far we have only



Fig. 4. An exampleof the evolution of particlesduring global localization.The left column shows the statefrom a top view point and the right column
shows it in 3D . The currentobservation is marked using blue crosses/dots.The particlesare shown in red and the robot's true position is shown using a
green“V” on the top row and a greensphereon the bottom.Row (a) shows p(s0 ), (b) shows the sampledistribution after 7 framesand (c) shows it after
35 frames.
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Fig. 5. Plots of the localizationerror for � MCL and single-frameadaptive
RANSAC approach.Part (a) shows the meanerror in positionand(b) shows
the meanerror in orientationfor 100 frames.Both approachesare equally
accuratebut thestandarddeviationof the� MCL is lessthan1=3 of RANSAC.

demonstratedit using data from our robot that moves on a
planar surface and has limited range off this plane due to
its steerablehead.However, in order to demonstratethat our
approachreally works we presentresultswith an image set
obtainedby moving the cameraaroundby holding it in our
hand.This particularimagesetis very challengingwith much
jitter in thecameramotion.The robot liveson thex � z plane
andwe obtainedS3 by moving thecameraon thex � y plane
in an approximatelyrectangularpattern.In Figure7, the �rst
few framesshow a large variation in the x � z plane until
� MCL converges,after which the camera's path is correctly
tracked along the rectangularpath.

We timed the performanceof our approachon a 3:2GH z
Pentium4. � MCL takes on average1:1secs per frame. The
time doesnot include computinglandmarkcorrespondences,
i.e., yt , becauseit is common to both approaches.In our
implementation,it takes about 1sec to computeyt because
we have not implementedthe ef�cient kd-tree approachfor
SIFT matchingas in [3]. The performanceof � MCL is good
enoughfor an online systemeven thoughwe have not made
mucheffort to optimizeour software.

Fig. 6. Therobot's pathfor imagesetS2 . Therobot traveleda total distance
of 18 meters.
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Fig. 7. The robot's path for imageset S3 . The camera's path is correctly
trackedaroundanapproximatelyrectangularpatternon thex � y plane,after
the ®rst few framesrequireduntil � MCL converges.

For completeness,Figure 8 shows the resultsfor the kid-
nappedrobotproblemusingS1. We demonstratethattherobot
can quickly re-localizeafter a suddenloss in position and a
strongprior estimateof its location.Speci�cally, we allowed
the robot to localizeitself andthenwe transportedit at frame
30. The robot localizedagain within 20 frames.We repeated
this procedureat frame80 andthe robotonceagain estimated
its positionwithin the error boundsreportedearlierafter only
30 frames.

IX. CONCLUSION

We have presentedan approachto vision-basedMonte-
Carlo localization with a mixture proposaldistribution that
usesthe bestof invariant image-basedlandmarksand statis-
tical techniques.Our approachdecouplesthe sensorfrom the
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Fig. 8. Resultsfor the kidnappedrobot problem.We kidnappedthe robot
twice at frames30 and 80. Part (a) shows the error for the robot's position
and(b) shows it for the orientation.

robot's body by specifyingthe motion modelasa function of
sensormeasurementsandnot robot odometry. As a resultwe
cansolve for unconstrained6 dof motionby takingadvantage
of resultsin multiple view geometry. We presenteda number
of experimentalresultsto prove that our approachis robust,
accurateandef�cient.

In the future, we plan to optimize the ef�ciency of our
implementationusing such improvementsas the kd-tree ap-
proach for landmarkmatching [3]. For all our experiments
we used a �x ed value for the mixing ratio. It would be
worth experimenting with adapting this ratio according to
the varianceof the two proposaldistributions. Finally, we
would like to apply our approachtowards the simultaneous
localization and mapping(SLAM) problempossiblythrough
the implementationof the FastSLAM [19] algorithm.
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