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Abstract—This paper presents Monte-Carlo localization
(MCL) [1] with a mixtur e proposaldistrib ution for mobile robots
with stereo vision. We combine ltering with the Scalelnvariant
Feature Transform (SIFT) image descriptor to accurately and
ef ciently estimate the robot's location given a map of 3D
point landmarks. Our approach completely decouplesthe motion
model from the robot's mechanicsand is general enoughto solve
for the unconstrained 6-degreesof freedomcamera motion. We
call our approach MCL. Compared to other MCL approaches

MCL is more accurate, without requiring that the robot move
largedistancesand make many measuements.Mor e importantly
our approach is not limited to robots constrained to planar
motion. Its strengthis derived fr om its robust vision-basedmotion
and obsewvation models. MCL is general, robust, ef cient and
accurate, utilizing the best of Bayesian lItering, invariant image
features and multiple view geometry techniques.

|. INTRODUCTION

Global localization is the problem of a robot estimating
its position by consideringits motion and obsenations with
respectto a previously learnedmap. Bayesian ltering is a
generalmethod applicableto this problem that recursvely
estimategherobot's belief aboutits currentpose Monte-Carlo
localizationprovides an ef cient methodfor representingand
updatingthis belief using a setof weightedsamples/particles.
Previous MCL approache$ave relied on the assumptiorthat
the robot traversesa planarworld and use a motion model
that is a function of the robot's odometrichardware. Based
on uninformatve sensormeasurementghey suffer from the
perceptuahliasingproblem[2] requiringthat the robot move
for several metersand make mary obsenrations before its
locationcanbe establishedThey alsodemanda large number
of particlesin orderto corverge. MCL hasbeendemonstrated
to beaccuratdor laserbasedobotsbut it hasfailedto achieve
similar resultsfor vision-basednes.

In this paperwe preseniMonte-Carlolocalizationfor robots
with stereovision. We call it MCL andit differsfrom others
in several ways. Firstly, it is not limited to robots executing
planar motion. We solwe for unconstrained3D motion (6
degreesof freedom)by decouplingthe modelfrom therobot's
hardware. We derive an estimateof the robot's motion from
visual measurementsising stereovision. Secondly we use
sparsemaps of 3D natural landmarksbasedon the Scale
Invariant Feature Transform [3] that is fully invariant to
changesin image translation,scaling, rotation and partially

invariantto illumination changesThe choiceof SIFT leadsto

areductionof perceptuahliasingenabling MCL to corverge

quickly after the robot has traveled only a short distance.
Finally, our methodis more accuratethan other constrained
vision-basedapproachesind only requiresa small numberof

particles.

In comparison,Thrun et al. [1] introduceMCL and study
its performancefor planar laser guided robots that utilize
2D occupanyg grid maps[4]. They also demonstratet for
a robot with vision that relies on an image-basednosaicof
a building's ceiling but fail to match the accurag of their
laserbasedapproach5]. Wolf et al. [6] implementMCL for
avision guidedrobotthatusesanimageretrieval systembased
on invariantfeaturesbut alsoneeds2D occupang grid maps
for visibility computationsTheir systemrequiresthe storage
of a large databasef imagesalongwith the metric maps.

Recently image-base@pproachesave beenproposedhat
do not require metric mapshbut operateusing collections of
referenceémagesandtheir locations.Thesemethodscombine
Itering with image-basedocalization[7] in a more general
setting than originally proposedby [6]. Variations exist for
differentchoicesof imagedescriptorandassociatedimilarity
metrics.Menegatti et al. [8] represenimagesusingthe Fourier
coefcients of their lower frequeng componentsThey de ne
a simple similarity metric using the Euclidean distance of
thesecoefcients. Grosset al. [9], in a similar approachuse
the Euclideandistanceof the mean RGB values of images
as a similarity metric and emplgy a luminancestabilization
andcolor adaptatiortechniqueto improve matchingaccurag.
Ulrich et al. [10] represenimagesusing color histogramsin
the normalizedRGB and HLS color spaces.They study the
performanceof differentsimilarity metricsfor their histogram
representationKrose et al. [11] perform Principle Compo-
nent Analysis on imagesand storethe rst 20 components.
They matchimagesby comparingthe Euclideandistanceof
thesecomponentssmoothedby local Gaussiankernels. For
improved ef ciency, they implementan approximatenearest-
neighbourapproachusing the kd-tree data structure. Rofer
et al. [12] proposea variant that focuseson fast feature
extraction. Theirsis limited to very small ervironmentsandit
dependwn color-basedandmarkssuitableonly for the robot
soccerdomain.

The rest of this paperis structuredas follows. We begin



with an overview of Bayesian Itering andits applicationto

robotlocalizationleadingto MCL. We describeheacquisition
of mapsand continueto presentthe main elementsof MCL,

namelyits vision-basedmotion and obseration models.We

provide experimentakesultsto prove its accurag. We compare
it with other vision-basedMCL methodsand shav that it

performsbetter Finally, we concludeand suggestdirections
for future work.

Il. BAYESIAN FILTERING WITH PARTICLE FILTERS

Our goal is to estimatethe robot's position and orientation
attime t, denotedby s;. Thereare 3 degreesof freedomfor
the position (x,y andz) and 3 for the orientation(roll, pitch
and yaw). That is, s; is a 6-dimensionalvector The state
evolvesaccordingo p(stjst 1;Ut) whereu, is acontrolsignal
most often an odometrymeasurementEvidence,denotedby
V¢, IS conditionally independengiven the state (Markov as-
sumption)anddistributedaccordingo p(y:jst). BayesItering
recursvely estimatesa probability densityover the statespace,
given by [1]:

p(sijy'; u') = Bel(s;) =
p(stjst 1;ur)Bel(s; 1)ds; 1
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It's performancedependson how accuratelythe transition
modelis knowvn andhow ef ciently the obsenationprobability
densitycan be estimated.

Particle lItering is a method for approximatingB el(s;)
using a set of m weighted particles, Bel(s;) =
fx(:wlg_ . .. The systemis initialized according to
p(so) and the recursve updateof the Bayes Iter proceeds
in the following steps:

1) for eachparticlei

2) Samplefrom Bel(s; 1) usingthe weightedsamples,
giving st

3)  Samplefrom g = p(stjst 1;ut) (alsoknown
asthe proposaldistribution), giving s\’

4)  Computethe importanceweight, w(") accordingto
p(yiist”)

5) endfor

6) Normalizethe weightssuchthatthey addto 1:0
7) Resamplefrom the particles proportionally to their
weight

This procedure is known as sampling-importance-
resampling The application of the particle Iter to robot
global localizationis know as MCL. It hasbeenshowvn that
the choiceof proposaldistribution is importantwith respecto
the performanceof the particle lter. An alternatve proposal
distribution thatleadsto whatis calleddual MCL is suggested
in [13]. Dual MCL requiresthat we can sampleposesfrom
the obsenations using the dual proposaldistribution (a hard
problemin robotics)
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Fig. 1. Bird's eye view of 3D landmarkmapusedfor localization.Only the
3D coordinatesof eachlandmarkare shavn as dark dots. Overlayedis the
paththe robot followed during map constructionwhile the robot's positionat
the end of the pathis shavn usinga green“V”.

In this case,the importancefactorsare given by [13]

wl) = (yt) (Sgi)jut)Bel(Sgi)l ®)

MCL and dual MCL are complementaryand it is shovn
in [13] that using a mixture of the two resultsin superior
performancecomparedto either of them. Implementing a
particle Iter is straightforvard. One must describethe ini-
tial belief, the proposaldistribution and the obsenation and
motion models.Until now, MCL methodshave beenlimited
to solvingthe simplercaseof planarrobotswith only 3 dof. In
thenext few sectionsve will provide oursolution, M CL, for
vision-basedrobots moving unconstrainedn 3D spacewith
6 dof. However, rst we will describethe mapswe useand
how we constructthem sincethey play a centralrole in our
approach.

I1l. MAP CONSTRUCTION

We use maps of naturally occurring 3D landmarks as
proposedn [14]. Eachlandmarkis avectorl = fP;C; ;s;fg
suchthat P = fX©;Y%;Z%g is a 3-dimensionalposition
vector in the map's global coordinateframe, C is the3 3
covariancematrix for P, and ;s;f describeaninvariantfea-
turebasednthe ScalelnvariantFeaturelransform(SIFT)[3].
Parameter is theorientationof thefeature s is its scaleandf
is the 128-dimensionakey vector SIFT descriptorshave been
shavn [15] to outperformothersin matchingaccurag andas
suchthey areanaturalchoicefor this application.An example
of a map with 32,000 landmarksis shavn in Figure 1. We
constructedit using a total of 1200 frameswhile the robot
traveled a total distanceof 25 meters.

We learn thesemapsusing the methodpresentedn [14].
We usevisual measurement® correctthe odometryestimate
as the robot travels. We assumethat eachlandmarkis in-
dependeniand its position is tracked using a Kalman lter.



This approachis only useful for constructingmapsfor small
ervironments[14].

IV. OBSERVATION FUNCTION

In orderto implementthe Monte-Carloalgorithmwe must
rst specify the distribution p(y;js;) thatis usedto compute
theimportanceweights.Given our maprepresentatioandour

robot's wheelsrotate that can be mappedto a metric value
of displacemenandrotation.Noisedravn from a Gaussians

thenaddedto this measuremert take into accountslippage
as the wheelsrotate. Such measurementslthough accurate
andavailable on all researchrobotsare only usefulfor planar
motions.We wantto establisha more generalsolution. Thus,

we obtain u; measurementby taking advantageof the vast

visual sensor a measuremeny; consistsof correspondences gmountof researchin multiple view geometry Speci cally,

betweenlandmarksin the currentview andlandmarksin the
known map.

Let IR andl} denotethe right andleft gray scaleimages
capturedusing the stereocameraat time t. The right camera
is the referencecameraWe computeimagepoints of interest
from both imagesby selectingmaximal points in the scale
spacepyramid of a Differenceof Gaussiang3]. For each
such point, we computethe SIFT descriptorand record its
scaleandorientation.We thenmatchthe pointsin theleft and
right imagesin order to computethe points' 3D positions
in the camera coordinate frame. Matching is constrained
by the stereocameras known epipolar geometry and the
Euclideandistanceof their SIFT keys. Thus, we obtain a
setOc = fop;0; ;0,0 Of n local landmarkssuch that
o = fPy = fxgi ;YOJF;Z(%J_ 0P = fro:co;10;C; ;sifg
wherepo, = fry ;Co, ; 19 is theimagecoordinatesf the point
andj 2 [1 n].

An obsenation is de ned as a set of k correspondences

betweenlandmarksin the map and the currentview, y; =
[1 «fli $ o gsuchthati 2 [1::m] andj 2 [1::n] wherem
is the numberof landmarksin the map andn is the number
of landmarksin the currentview. We comparethe landmarks'
SIFT keys in orderto obtainthesecorrespondencgsst aswe
did before during stereomatching. There are no guarantees
thatall correspondenceare correctbut the high speci city of
SIFT resultsin a reducednumberof incorrectmatches.

A poseof the camerags;, de nes a transformationR; T1s,
from the camerato the global coordinateframe. Speci cally,
R is a3 3 rotationmatrix and T is a3 1 translation
vector Eachlandmarkin the currentview canbe transformed
to global coordinateausing the well knovn equation

Py = Rs Py + Tg, (4)

Using equation4 and the Mahalanobisdistancemetric (in
order to take into accountthe map's uncertainty),we can
de ne the obsenation densityby:

k Gib Gb T 1/pGb Gib
by (PSP PEPYTC MRS PSP

p(yiis) = € 5)
whereC is given by:
C = RsCq R + Ci (6)

V. COMPUTING CAMERA MOTION

Anotheressentiatomponento theimplementatiorof MCL
is the specication of the robot's motion model, u;. In
all previous work, this has beena function of the robot's
odometry i.e., wheel encodersthat measurethe amountthe

it is possibleto computethe robot's displacementdirectly
from the available image data including an estimateof the
uncertaintyin that measurement.

Let Iy andl,; ; representhe pairsof sterecimagestaken
with the robot's cameraat two consecutie intervals with
the robot moving betweenthe two. For eachpair of images
we detect points of interest, compute SIFT descriptorsfor
them and perform stereo matching, as describedearlier in
sectionlV, resultingin 2 setsof landmarksL; 1 andL;. We
computethe cameramotion in two steps, rst by the linear
estimationof the Essentiamatrix, E, andits parameterization,
as describedbelov. Second,we computea more accurate
estimateby droppingthelinearity assumptiorandusinga non-
linear optimization algorithm minimizing the re-projection
error of the 3D coordinatesf the landmarks.

A. Linear Estimationof the EssentialMatrix

For this partwe only considertheimagesfrom thereference
camerasfor timest andt 1. Using the SIFT descriptors
we obtainlandmarkcorrespondencdsetweerthe two images
as describedearlier in sectionlV. Let the i-th such pair of
landmarksbe denoted!} $ I} ;. For the time beingwe only
considettheimagecoordinatef thesdandmarksp} $ pi ;.

Given this setof 2D point correspondenceshe Essential
matrix, E, isany 3 3 matrix that satis es the property

iTe i =
P Epp 1=0 (1)

The Essentiamatrix mapspointsfrom oneimageto lineson
theother If it is known, the camergpose, [R; T], attimet can
be estimatedwith respecto the cameraposeattimet 1 via
its parameterizatione usethe normalized8-point algorithm
to estimateE . The algorithm can be found in most modern
machinevision bookssuchas[16], and so we do not repeat
here . We notethatthe algorithmrequiresa minimumof 8 point
correspondencesn our experiments,we obtain an average
of 100 such correspondenceallowing us to implementthe
robustversionof thealgorithmthatusesRANSAC to consider
solutionsfor subsetof them until a solutionis found with a
high numberof inliers.

We can computethe cameraposevia the Singular Value
Decomposition(SVD) of E asdescribedn [16]. As a result,
we obtainthe rotationmatrix R anda unit sizevector T that
denoteghe cameras displacemendirectionbut not the actual
cameraisplacementAlthoughwe couldtake advantageof the
informationin T to guide our non-linearsolution described
in the next section, currently we do not and we simply set
T = 0. Figure2 givestwo examplesof the estimatecepipolar
geometryfor forward motion androtation.



Fig. 2. Examplesof estimatingthe epipolargeometryfor (a) forward motion
and (b) a rotationto the right. The top row shaws the point correspondences
betweertwo consecutie imageframes.Crossesnarkthe pointsattimet 1
andlines point to their locationat time t. The bottomrow, shavs the epipolar
lines drawn for a subsetof the matchedpoints using the estimatedEssential
matrix.

We use [R; T]s, to initialize the non-linear estimationof
the camerapose.The adwantageof the initial valueis that it
allows usto do outlier removal , i.e., we canremove landmark
matchesthat do not satisfy equation7. Additionally, having
an initial estimate helps guide the non-linear optimization
algorithm away from local minima.

B. Non-LinearEstimationof the Camen Pose

Given an initial value for the cameraposeat time t with
respectto the cameraat time t 1, we computea more
accurateestimateusing the Levenbeg-Marquardt(LM) non-
linear optimizationalgorithm. We utilize the 3D coordinates
of our landmarksand use the LM algorithm to minimize
their re-projectionerror. Let x; be the 6-dimensionalvector
Xy = [roll; pitch; yaw; T11; T21; Ts1] correspondindo a given
[R; T]. Our goalis to iteratively computea correctionterm

(8)

suchasto minimize the vector of error measurement , i.e.,
the re-projectionerror of our 3D points.For a known camera
calibration m%trix K, isdenedas

3
DD T KRRO, )
;!
k Pt K(RPE 1+ T)

K(RP! ; + T) z
Given aninitial estimatefor the parametersywe wish to solve

i+1 _ i
Xg o = X

9)

for thatminimizes ,i.e.,
IJ = 4 , QT3+ 1) =37 +1d (10
where J = [$°; ;€:]T, is the Jacobianmatrix) is

the identity matrix and d is the initial solution from the

| Odometry | Vision-basedEstimate
X y X y z
0.00 000 -1.76| 0.01 000 -0.01 0.22 -1.83 0.05
0.00 000 -211| -0.01 -0.00 0.01 -0.010 -1.97 -0.02
0.00 000 211 | 001 002 000 0.01 163 0.00
0.12 0.00 0.00 | 0.18 -0.02 0.01 -0.01 -0.13 0.18
0.11 001 000 | 009 001 0.01 -026 -0.52 0.04
TABLE |

COMPARING OUR LEAST-SQUARES ESTIMATE OF CAMERA MOTION WITH
ODOMETRY. POSITION IS SHOWN IN CM AND ORIENTATION IS DEGREES.

linear estimategiven by [R; T]. The LM algorithmintroduces
the variable that controls the corvergenceof the solution
by switching betweenpure gradient descentand Newton's
method. As discussedn [17] solving 10 , i.e., the normal
equationsminimizes
jid i dii?
The normal equationscan be solved ef ciently using the
SVD algorithm.A byproductfrom solving 11 is that we also
getthe covarianceof thesolutionin theinverseof J T J . Tablel
comparesour vision-basedestimateof cameramotion with
that of odometry One canseethatit is very accurate.

ji#+ (11)

VI. THE MIXTURE PROPOSAL DISTRIBUTION

As we discussedn sectionll, we perform Itering usinga
mixture of the MCL anddual MCL proposaldistributions[1]

(1 e+ qe= (1 )P(YtjSt) + p (siise 1:u) (12)

where is known asthe mixing ratio and we have setit to
0:80 for all of our experiments.

Samplingfrom p(stjs; 1;Ut) is straightforvard asall par
ticles from time t 1 are updatedusing our estimate of
the cameras motion, u, with noise addeddravn from our
con denceon this estimategiven by (J7J) . On the other
hand,samplingfrom the dual proposaldistribution is thought
of as a hard problemin robotics since we must be able to
generateposesfrom obsenrations. It turns out that for our
choice of mapsand sensorthis is trivial.

Let M be a map of m landmarksI® for 1 i m
and N be the set of n landmarksl- for 1 j n in
the currentview. Let y; be the currentobsenation. Using the
proceduredescribedin sectionV and k random subsetsof
matchedandmarksxi.x X, we computek candidategposes
sfl: Y. For ef ciency we only call on the non-linearestimation
procedurdnitializing the poseto zerotranslationandrotation.
Evenif our subsebf landmarkdeadsto anincorrectestimate,
this samplewill receve alow weightgivenour completesetof
obsenationsandas suchwe do not needto incur the penalty
of the robust linear estimatedescribedin sectionV-A. For
eachsampledposewe computep(ytjsﬁ')) with 1 k
usingequation5. Becauseof the high quality of obsenations,
we only needto sampleas few as 100 posesto get a good
approximationfor p(y;jst). To samplefrom the dual proposal
we drav a randomparticle from fsﬁlzk);w}:kg accordingto
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Fig. 3. Therobotwe usedfor our experiments(a) seenfrom a distanceand
(b) closeupof its head

the particle weightsand computeits importancefactor using
equation3.

Lastly we should mention that the procedurewe just de-
scribed for approximatingthe dual proposaldistribution is
alsousefulfor estimatingp(so), thatis, theinitial belief. It is
commonpracticethat the initial belief is setto be a uniform
distribution but consideringthe large dimensionalityof our
statespaceoursis a betterchoice.

VIl. SINGLE-FRAME APPROACH USING RANSAC

A straightforvard approacho global localizationthat does
not require ltering is presentedn [18]. Posesare generated
as discussedin the previous section and evaluated using
equation5. For robustnessa RANSAC approachs employed
in that posesare sampleduntil one is found that is well
supportedby the current obsenration, i.e., p(y:jst) is above
a given threshold.

The adwantage of such an approach,made possible by
the geometryof the cameraand map representationis its
simplicity andits high accurag consideringhatonly a single
imageframeneedsto be consideredA major disadantageis
thatis not suitablefor trackingthe robot's poseover multiple
framesdueto thelarge varianceof the estimatesAdditionally,
a user must specify beforehandthe number of samplesto
consider( [18] usesonly 10) and a thresholdvalue for what
is a good pose.However, the former can be avoided if the
adaptve RANSAC algorithmis used.

Until now, no vision-basedMCL methodhasbeenshovn
to matchthe accurag of the single-frameapproachWe will
shaw in the next sectionthat MCL comescloseto this tamget
while consideringamoregenerakaseof unconstrainednotion
in 3D.

VIII. EXPERIMENTS

We have implemented MCL for our mobile robot seenin
Figure 3. It is a modi ed RWI B-14 quasi-holonomicbase.
It is equippedwith a PointGrey ResearclBumblebeestereo
vision cameramountedon a Pan-Tilt Unit. It hasanon-board
Pentium-basedomputerand wirelessconnectvity. It hasno
other functioning sensorsotherthanthe stereocamera.

For our experiments,we have used 3 different sets of
images, S1; Sy; Sz, at 320 240 resolution. S; is the set

of imagesthat we used for constructingthe map. It is a
useful setbecauselongwith the imageswe have the robot's
poseat the time they were acquired.We usethesecorrected
odometry estimatesas a baselinefor judging the accurag
of the MCL approach.One obvious disadwantageof using
this set is that we always get a really large and accurate
numberof landmarkcorrespondencedn orderto showv that
MCL works in general,the secondsetof images,S;, is an
arbitrary sequencethat was not used during map building.
Unfortunately both of theseimage setsare acquiredas the
robottraversesa planarpath. To demonstratéhat our solution
works for non-planarmotions, we have acquireda 3rd set
of images,S3, in which we moved the cameraby handin a
rectangulampatternoff the robot's planeof motion.

An important and open questionin the study of particle
Iters is the numberof particlesto use.In our experiments
with S; we found that asfew as 100 particleswere sufcient
to achieve highly accurataesults;we cangetaway with only a
smallnumberof particlesbecaus®f goodobsenations.Using
more particlesprovided no improvement.For our experiments
with S, and Sz we used500 particles; using more did not
generatea noticeableémprovementon the computedrajectory
of the robot. These numbersare signi cantly smaller than
other vision-basedapproachesFor example, [6] uses5000
particles.

Figure 4 shaws the resultsof global localizationusing S; .
Part (a) of the gure presentghe initial belief. Part(b) shavs
the particlesafter 7 frames,the robot having moved forward
for about80cm. One can seethat thereare several modesto
the distribution. Part (c) shavs the samplesafter 35 frames
having all corverged to the robot's true location. The robot
hasmoved a total of 100cm and rotatedby 20 degrees.

Figure5 plotsthelocalizationerror for the meanposetaken
over all the particleswith respectto the odometryestimate.
The positionerroris lessthan20cm andthe orientationerror
is lessthan 6 degrees.The resultsare the averageof 10 runs
perframe.In comparison[13] reportsa localizationerror that
variesfrom 100cm to 500cm. Similarly, the resultspresented
in [6] specifyanerrorthatis aslargeas82cm in positionand
17 degreesin orientation.In [9] the positionerrorvariesfrom
45cm to 71cm. Finally, [8] reportsthatthe localizationerror
is 20cm but this value is highly correlatedwith the distance
of the referenceimageswhich is also20cm. [13], [9], [8] do
not include resultsfor the error with respectto the robot's
orientation. Also shavn in Figure 5 is the estimateof the
single frame approachusing adaptve RANSAC as described
in sectionVIl. It performsbetterthan MCL but thegenerated
trackis morenoisy dueto the large varianceof the estimates.

Figure 6 showvs the camergpathfor theimagesetS,. It was
generatedisinga total of 500imageswhile therobottraversed
a distanceof 18 meters.It took about 20 framesbefore the
robot estimatedts locationandit successfullykepttrack of it
from thenon.

Finally, Figure 7 shawvs the results using Sz. We have
provided a generalsolution to the localization problem that
canhandleunconstrainednotionsin 3D . Sofar we have only



Fig. 4. An exampleof the evolution of particlesduring global localization. The left column shaws the statefrom a top view point and the right column
shaws it in 3D . The currentobsenation is marked using blue crosses/dotsThe particlesare shovn in red and the robot's true position is shavn using a
green“V” on the top row and a greensphereon the bottom. Row (a) shavs p(so), (b) shavs the sampledistribution after 7 framesand (c) shaws it after

35 frames.
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Fig. 5. Plotsof the localizationerror for MCL and single-frameadaptve
RANSAC approachPart (a) shavs the meanerrorin positionand (b) shavs
the meanerror in orientationfor 100 frames.Both approachesre equally
accuratebut the standardieviation of the MCL is lessthan1=3 of RANSAC.
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demonstratedt using datafrom our robot that moves on a
planar surface and has limited range off this plane due to
its steerablenead.However, in orderto demonstrateéhat our
approachreally works we presentresultswith an image set
obtainedby moving the cameraaroundby holding it in our
hand.This particularimagesetis very challengingwith much
jitter in the cameramotion. Therobotlivesonthex z plane
andwe obtainedS; by moving the cameraonthex vy plane
in an approximatelyrectangulampattern.In Figure 7, the rst
few framesshowv a large variation in the x  z plane until

MCL corvemges,after which the cameras pathis correctly
tracked along the rectangulampath.

We timed the performanceof our approachon a 3:2GH z
Pentium4. MCL takeson averagel:1secs per frame. The

Fig. 6. Therobot's pathfor imagesetS,. Therobottraveleda total distance
of 18 meters.

The robot's path for imageset Sz. The cameras pathis correctly
y plane,after

Fig. 7.
tracked aroundan approximatelyrectangulaipatternon the x
the ®rst few framesrequireduntii MCL corverges.

For completenesskigure 8 shaws the resultsfor the kid-
nappedrobotproblemusingS;. We demonstrat¢hatthe robot
can quickly re-localizeafter a suddenlossin position and a
strong prior estimateof its location. Speci cally, we allowed
therobotto localizeitself andthenwe transportedt at frame
30. The robot localizedagain within 20 frames.We repeated
this procedureat frame 80 andthe robot onceaggin estimated
its positionwithin the error boundsreportedearlierafter only

time doesnot include computinglandmarkcorrespondences, 30 frames.

i.e., y;, becauseit is commonto both approachesin our

implementation,it takes about 1sec to computey; because
we have not implementedthe ef cient kd-tree approachfor

SIFT matchingasin [3]. The performanceof MCL is good

enoughfor an online systemeven thoughwe have not made
much effort to optimize our software.

IX. CONCLUSION

We have presentedan approachto vision-basedMonte-
Carlo localization with a mixture proposaldistribution that
usesthe bestof invariantimage-basedandmarksand statis-
tical techniquesOur approachdecoupleghe sensorfrom the
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Fig. 8. Resultsfor the kidnappedrobot problem.We kidnappedthe robot
twice at frames30 and 80. Part (a) shavs the error for the robot's position
and (b) shows it for the orientation.

robot's body by specifyingthe motion modelasa function of

sensormeasurementand not robot odometry As a resultwe

cansolwe for unconstrained dof motion by taking advantage
of resultsin multiple view geometry We presenteda number
of experimentalresultsto prove that our approachis robust,

accurateand ef cient.

In the future, we plan to optimize the efciency of our
implementationusing such improvementsas the kd-tree ap-
proachfor landmark matching[3]. For all our experiments
we used a x ed value for the mixing ratio. It would be
worth experimenting with adapting this ratio accordingto
the variance of the two proposaldistributions. Finally, we
would like to apply our approachtowards the simultaneous
localization and mapping(SLAM) problem possiblythrough
the implementationof the FastSLAM [19] algorithm.
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