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Abstract— In mobile robotics, there are often features that,
while potentially powerful for improving navigation, prove dif-
ficult to profit from as they generalize poorly to novel situa-
tions. Overhead imagery data, for instance, has the potential to
greatly enhance autonomous robot navigation in complex out-
door environments. In practice, reliable and effective automated
interpretation of imagery from diverse terrain, environmental
conditions, and sensor varieties proves challenging. We introduce
an online, probabilistic model to effectively learn to use these
scope-limited features by leveraging other features that, while
perhaps otherwise more limited, generalize reliably. We apply our
approach to provide an efficient, self-supervised learning method
that accurately predicts traversal costs over large areas from
overhead data. We present results from field testing on-board a
robot operating over large distances in off-road environments.
Additionally, we show how our algorithm can be used offline to
produce a priori traversal cost maps and detect misalignments
between overhead data and estimated vehicle positions. This
approach can significantly improve the versatility of many
unmanned ground vehicles by allowing them to traverse highly
varied terrains with increased performance.

I. I NTRODUCTION

A common problem that arises in mobile robotics is that
potentially powerful sensor data and features are often difficult
to take advantage of because they are situation or location
specific. For instance, camera imagery can potentially detect
unpaved road in the desert significantly farther than some
ladar-based systems can. Detecting such roads from a distance
proved to be a crucial component in Stanford Racing’s win-
ning Grand Challenge entry [1]. Unfortunately, such data can
prove very resistant to automated interpretation. In particular,
classifiers that prove to be powerful indicators of road in a
particular area often do not generalize to new conditions.

Similarly, outdoor robot navigation can benefit from the
now widespread availability of high quality overhead imagery
and elevation data from satellite and aircraft [2][3]. Presently,
nearly the entire world has been surveyed at1 m accuracy, with
higher resolution (better than25 cm accuracy) data available in
certain areas. With this overhead data, many of the difficulties
associated with autonomous robot operation are alleviated,
even with the coarsest of terrain resolution. Systems can then
dispense with myopic exploration and instead pursue routes
that are likely to be effective.

Unfortunately, leveraging this tremendous resource on an
autonomous robot proves difficult. Building systems that

(a) (b)

Fig. 1. Sample results of terrain traversal cost predictions. 0.35 m resolution
color overhead imagery used by our online learning algorithm(a) and
corresponding predictions of terrain traversal costs (b).Traversal costs are
color-scaled for improved visibility. Blue and red correspond to lowest and
highest traversal cost estimates, respectively.

can reliably interpret overhead image data is far from easy.
Additionally, such estimates must be well calibrated with
other on-board perception estimates of the terrain, or system
performance may suffer.

In this paper, we address the problem of learning and
inferring between two heterogeneous data sources that vary
in density, accuracy and scope of influence. The objective
is to generalize from one data source, viewed as a reliable
estimate, to be able to work with another, which may be high
performance (e.g., long range or high accuracy) but difficult
to generalize to new environments. We frame the problem
as a simple, linear probabilistic model for which inference
results in a self-supervised online learning algorithm that fuses
the estimates from the two data sources. We discuss the
advantages of this framework including reversible learning,
feature selection, data alignment capabilities, reliableuse of
multiple estimates, as well as confidence-rated predictions.

Furthermore, we demonstrate the approach in the context
of long range navigation of a large, unmanned ground vehicle
during various field tests in complex natural environments.
As it traverses an environment, the vehicle utilizes its on-
board perception system and overhead imagery and elevation
data to learn the mapping from overhead data features to
computed terrain traversal costs in order to predict traversal
costs elsewhere in the environment where only overhead data
is available, effectively extending the range of the vehicle’s
local perception system and allowing more effective navigation



of the environment. This approach removes the necessity of
human involvement and parameter engineering, which limits
the versatility of many robotic systems.

II. A PPROACH

A. Formalization

We approach the problem of leveraging the powerful, but
difficult to generalize, features in a Bayesian probabilistic
framework using the notion of scoped learning [4]. The scoped
learning model admits the idea of two types of features:
“global” and “local”. Global features are generally useful, and
their predictive power extends well to new domains, while
local ones, which, although often very powerful, typically
generalize poorly and are more difficult to take advantage of
in a consistent way. These local features havescopethat is
limited to one particular domain. We wish to apply our system
to extend the scope of such features to many possible domains.
For our canonical problem of learning to leverage the extended
range of overhead data, these names may prove counter-
intuitive, so we refer to them instead asgeneraland locale-
specificfeatures. Features generated from dense, vehicle-based
ladar perception serve as our general features, while features
generated from overhead based imagery and elevation data
serve as our locale-specific features. The latter are particularly
valuable to mobile robots because of their extended range and
widespread availability.

1) Model: The scoped learning approach is a very sim-
ple probabilistic model (shown graphically in Figure2) that
captures this notion of features that have scope. The outer
plate L represents in graphical model notation that there are
independent locales in which the model will be applied [5].
These correspond to new areas of the world in which our robot
will operate.

Within the plate, we see a sequence of locale-specific
features and corresponding general feature-based estimates.
At each point in the sequence, we wish to make predictions
about c (either all or a subset of them.) Here,c is the true
variable we wish to predict, and̃c is an estimate of that variable
coming from the general features, whilex are our locale-
specific features. The parametersβ common to the locale
(plate) capture the relationship between locale-specific features
and the variables of interestc. The length of our sequence is
n.

This learning model captures the idea of self-supervised
learning [6] in a Bayesian framework and extends the idea to
integrate both the general feature-based estimates and theself-
supervised locale-specific estimates. Driven by our application,
we are particularly interested in the onlineregressioncase1

where the goal is to infer the true continuous valuesci in an
online fashion as general feature-based estimatesc̃i become
available. We choose a simple model forc as a function of
the k locale-specific featuresx = (x1, . . . , xk) by modeling

1The original scope learning work [4] was developed in the context of
classification using discrete features, generative descriptions of those features,
and in batch.

the distribution forc givenx as a Gaussian with mean a linear
function of x and with a variance ofσ2

l :

E(c|β, x) = βT x (1)

We assume that the estimates from the general feature-based
predictors have Gaussian noise and thus are distributed:

c̃ ∼ Normal(c, σ2
g)

We take theσg and σl to be hyper-parameters lying outside
the locale-specific plate.

Fig. 2. Graphical depiction of the scoped learning model. Hyper-parameters,
including priors on the locale-specific parametersβ and noise variances, lie
outside the plate indexed byL and are not depicted.

2) Inference: We develop the inference for the model in
an online fashion. Given a new data pointc̃i estimating the
true variableci, our goal is to compute new estimates2 of
the variablescj , assuming we have already seen dataD =
{{x}1...n, {c̃}1...i−1}. We can compute this by integrating over
the uncertain parametersβ which describe the relationship
between the true variable and the local features.

p(cj |c̃i, xi,D) =

∫
dβ p(cj |β, c̃i, xi)p(β|c̃i, xi,D)

We can compute the required distribution overβ as:

p(β|c̃i, xi,D) ∝ p(β|D)

∫
dci p(c̃i|ci)p(ci|β, xi)

In our linear-Gaussian model, this can be understood as
revising the posterior distribution fromp(β|D) in light of a
Gaussian likelihood that takes into account noise from both
general and locale-specific features.

Our computation of the posterior distributionp(β|c̃i, xi,D)
is as follows. We first initialize our distribution to the prior dis-
tributionp(β). Then, for every training examplei, we multiply
our distribution byp(c̃i|β, xi). Since the prior distribution and
p(c̃i|β, xi) are normal, the posterior distribution is also normal.
We use the notation̂β to represent the mean of the posterior
distribution andVβ to represent the variance. Thus, computing
p(β|c̃i, xi,D) is performing a self-supervised learning using a
Bayesian linear regression model with noise varianceσ2

l +σ2
g .

We use our current estimate of the posterior distribution
when we want to predict a future outcomecj . We are interested

2We assume that our prior onβ is a priori independent of the featuresx

so that inference will remain the same even in the case where thefeatures
become available in some sequence.



in predictions in two cases: first, when we have no general
feature-based estimatẽcj for a particular cj , and second,
when such an estimate is available. In the first case, the
predictive distributionp(c) has meancp = xT β̂ and variance
σ2

p = σ2
l + x̃T Vβx̃ [7]. When we also have an estimatẽcj ,

inference combines these two estimates:

p(cj) = Normal(σ′2
p (

cp

σ2
p

+
c̃j

σ2
g

), σ′2
p )

where
σ′2

p =
1

1
σ2

p

+ 1
σ2

g

.

We note that it is possible to compute the posterior distri-
bution in batch, but we prefer to maintain an estimate of the
posterior distribution as we receive general feature-based cost
estimates so that we may immediately apply our algorithm to
new data.

B. Advantages of the Bayesian Learning Approach

Using the online Bayesian scope learning model provides a
number of important benefits.

1) Confidence Rated Prediction:The variance estimate
provided by our algorithm for the probability of eachc can be
used as a metric of confidence in the prediction. If a situation
arises in which we must choose which one of several predicted
outcomes to trust, we could simply use the one with the
smallest variance.

2) Learning of the Hyper-Prior and Feature Selection:Our
algorithm depends on a number of hyper-parameter terms that
may be chosen based on data from multiple locales. We discuss
ways to choose the noise variance termsσl andσg in section
II-A and the prior distribution on parametersβ in sectionIII-A .
It is important to note that the prior onβ may also be chosen
as hyper-parameters on multiple locales by adapting Tipping’s
sparse hyper-parameter re-estimation procedure3 to our setting
[8]. In this way, we can both automate feature selection and
bias our algorithm to prefer certain features for new locales.

3) Reversible Learning:A problem that often arises in
online learning is the handling of multiple estimates of a
particular quantity. For instance, in our canonical example,
our general feature-based estimatesc̃i may improve as we
get closer and denser laser readings of the terrain. It is not
appropriate to treat these as independent training examples:
while they may differ in their variance, they are generally
highly correlated. Neither is it useful to simply take the first
estimate available: often this is a poor substitute for all the
data. In our model, since we maintain an exact posterior
distribution that lies inside the exponential family, we may
effectively removethe effects of training on a data point by
dividing out the likelihood term we had used to include it in the
posterior [7]. In this way, we always have an estimate of the
posterior distribution ofβ using the current best estimatec̃i.
Minka has developed an alternate use of this “removal trick”
for approximate inference [9].

3The procedure finds the ML-II estimate for the precision (inverse variance)
of each weightβi.

III. A PPLICATION TO GROUND ROBOTICS

A. Context

A natural application of our algorithm is to the improvement
of autonomous navigation capabilities for unmanned ground
vehicles. Our algorithm lends itself well to addressing many
of the issues that arise due to the diversity in the environments
and data that robotic systems must encounter. In many robotic
systems, variables most relevant to an unmanned ground vehi-
cle, such as terrain traversal cost, are computed directly by the
vehicle’s on-board perception system through the processing
of high density ladar data gathered by on-board sensors.
Techniques to process such data are often generalizable to
many environments so that the vehicle’s perception system
does not require much adjustment when dealing with new
terrain, yet the limited range for this type of data source is
a major shortcoming. While data sources such as overhead
imagery are widely available with high accuracy, developing
fixed techniques to process such locale-specific data sources
is difficult because even though they may be extremely useful
in specific areas, they do not generalize well to new domains
due to variations in terrain, lighting conditions, weather, and
even time of data gathering.

We demonstrate how our algorithm can be applied to the
domain of mobile robotics in order to derive the most benefit
from the availability of both general and locale-specific data
sources without any human involvement. The performance of
our algorithm is evaluated through actual field testing in a
complex off-road environment on-board a rugged, all-terrain
unmanned ground vehicle. Our results show how combining
the adaptive performance of our algorithm with the inherent
mobility of such a vehicle leads to more efficient navigationof
complex environments. Additionally, we show how our algo-
rithm can be used to detect misalignments between overhead
data and the vehicle’s estimated position, a common problem
in many such robotic systems.

For the results in section IV, we chose the hyper-parameter
for noise varianceσ2

l with ML-II and chose an isotropic
Gaussian with high variance for the prior onβ [7].

(a) (b)

Fig. 3. Robot used for all field tests in its typical operatingenvironment
(a) and an illustration of how the online learning algorithmruns on-board
the robot (b). Algorithm learns mapping from local-specific overhead data
features to locally computed terrain traversal costs (computed from general
features) to make prediction elsewhere in the environment.

B. Terrain Traversal Cost Prediction

Our robot performs local sensing using ladar sensors, as-
signs traversal costs to the environment from features com-



puted by interpreting the position, density, and point cloud dis-
tributions of sensed obstacles (these features generalizeacross
most domains and therefore serve as ourgeneral features as
defined in SectionII-A ). The robot re-plans in real-time by
finding minimum cost paths through the environment using
the D* algorithm (see Figure3) [10]. We demonstrate how our
algorithm can learn to predict terrain traversal costs computed
by the on-board perception system of our unmanned ground
vehicle from overhead data. We also compare the predictive
performance of our algorithm to that of a hand-trained classi-
fier using superior data sources. We chose to predict traversal
cost rather than intermediate results such as slope, density, or
presence of vegetation because traversal cost is the metricthat
most closely governs a vehicle’s navigation strategy through
an environment. Our robot’s perception system is proficientat
effectively assessing terrain traversal costs, so it is desirable
to be able to mimic its predictive abilities. We will therefore
use estimates from the robot’s perception system to evaluate
the accuracy of traversal cost predictions.

The characteristics of an environment change with varying
conditions. However, even outdated data can be useful since
most distinct areas in an environment will maintain uniformity
in their characteristics despite these variations. By relaxing
restrictions on the recency of overhead data, our algorithm
further increases its impact on improving robot navigation.
Overhead data is relatively inexpensive and available at various
resolutions for the entire world, so as the quality of global
surveying improves, the applications of such research will
greatly expand.

C. Features

A set of feature maps for the vehicle’s environment was
generated from each overhead data source for use as inputs to
the algorithm (these are ourlocale-specificfeatures as defined
in SectionII-A ). In our implementation, HSV (hue, saturation,
value) features were used to represent color imagery data while
the pixel intensity of the black and white imagery data was
used as a single feature. Raw RGB (red, green, blue) color
data was inadequate for our approach due to its sensitivity to
illumination variations.

A feature containing the maximum response to a set of
Gabor filters of various orientations centered at each pixel
was also generated to capture texture in each type of imagery.
Additional features for the black and white imagery data were
generated by computing the means and standard deviations
in intensity within windows of various size around each pixel.
Additional elevation-based features (similar to those described
in [3]) were computed when such data was present. All
features were rescaled to the[−1, 1] range and a constant
features was also included.

Finally, clustering of all previously computed features was
performed that allowed the algorithm to identify patterns in the
feature input space that are relevant to the output regression.
The Gaussian Mixture Model algorithm was chosen to cluster
the input data because of its ability to generate membership
features by assigning each data point a fractional degree of

membership in each output cluster (see Figure4). Six clusters
were used in our implementation.

Similar techniques may be used to generate features from
any combination of data sources gathered through a variety of
methods. We point out that our approach is quite robust to the
number of clusters and the removal of features.

(a) (b)

Fig. 4. Sample clustering results from using the Gaussian Mixture Model
algorithm on generated features. Overhead color imagery data (a) used to
generate features and resulting clustering into six clusters (b). Membership
features were generated by computing the fractional degree of membership
of each pixel in each cluster.

D. Training and Prediction

Traversal cost is difficult to quantify, so choosing appro-
priate values often requires careful engineering. In orderto
produce desired behavior when used with a path planning
algorithm such as D*, traversal costs for undesirable areas
such as heavy vegetation must be higher than traversal costs
for ideal areas such as roads (our robot works with traversal
costs in the range of16 to 65535). For example, the robot’s
on-board perception system assigns traversal costs of16 (the
minimum) to roads while grass is assigned a traversal cost of
48, implying the robot would be willing to take a detour of
three times the distance in order to stay on a road as opposed
to driving over grass. Meanwhile, dense vegetation is often
assigned traversal costs of over10000 in order to encourage
the robot to traverse elsewhere except under extreme necessity.
Because of these traversal distance ratios, errors in traversal
cost estimates in low-cost areas are more detrimental than
similar errors in high-cost areas. An error of100 to an area
of extremely high traversal cost would have negligible effect,
while the same error at an area of desirable terrain would
radically change the behavior of the robot.

In order to work with a linear model, we deal with traversal
costs within our algorithm on a logarithmic scale, converting
from the normal traversal cost space for the purposes of train-
ing and prediction. The Gaussian error assumption embedded
in our probabilistic model is a much better approximation
when we measure error on this scale. Unlike in the regular
traversal cost space, small errors in the log space lead to small
errors in the traversal distance ratios.

Training examples are constructed from a vector of overhead
imagery feature values (xi) and the average of all traversal cost
estimates that have been calculated within the corresponding
area (̃ci). As with many robotic systems, the performance of
our robot’s on-board perception system quickly degrades asthe



distance from the robot increases (due to the lowered accuracy
and density of sensor data), so the quality of a training
example is measured by its proximity to the robot. Rather than
struggling to decide at which point to utilize an example for
training, the reversible learning capabilities of our algorithm
allow us to maintain an optimal level of predictive abilities by
ensuring that only the highest quality data available impact its
state. As the robot approaches locations that had previously
been used for training, obsolete examples areunlearned in
favor of higher quality training examples available for those
areas. An example of this training process can be seen in
Figure5. Estimates greater than12 meters from the robot are
ignored since such estimates are unreliable and would only
corrupt the quality of training in cases where they cannot be
replaced with better estimates.

As the algorithm acquires more training data, its predictive
performance improves, allowing it to revise previously made
traversal cost estimates. The algorithm specifies a degree
of confidence for each prediction based on the similarity
of the example to past training data (as indicated by the
variance estimate), so predictions in which the algorithm lacks
confidence can be ignored in favor of an alternative source of
predictions or a default value (see Figure5b).

(a) (b)

(c) (d)

Fig. 5. Training progress of online learning algorithm using overhead color
imagery data for traversal of environment shown in (a) is shownin (b) -
(d). Dimensions of shown areas are150 m × 150 m. Accumulated ground
truth traversal costs computed by robot’s on-board perception system and
vehicle path (shown in red) are overlaid on estimated traversal costs generated
by the algorithm. Lower costs appear as darker colors and predictions that
the algorithm lacks confidence in (due to insufficient representative training
examples) are shown in blue.

E. Applications of Trained Algorithm

This algorithm can be used in a variety of ways to aid in
unmanned ground vehicle navigation, both in real-time on-
board a robot and offline once it has been trained. In the case
of online terrain traversal cost prediction, the algorithmcan
be used to periodically update traversal cost estimates within
a region around the robot so that a real-time path planning
algorithm such as D* can revise the vehicle’s global path to
account for the changes. As shown in the following section,
the use of this algorithm to extend the robot’s field of view
results in significantly shorter and more intelligent paths.

Since the predictive state of the algorithm can be captured
at any time by the vectorβ at that moment, one can make
traversal cost predictions for a large area without ever having
to traverse or acquire training examples from that area before-
hand. Instead, as long as identical features are computed for
the two areas, one can simply drive through a representative
area for a short period of time in order to train the algorithmto
make predictions in a much larger area. The following section
will also show that a priori traversal cost maps produced by
this technique are more accurate than even those produced
from hand-trained techniques that utilize superior data sources.

Even slight mis-registration between overhead data and the
estimated position of the robot can significantly hinder the
performance of algorithms such as ours that are sensitive to
such errors. An advantage of using an online Bayesian linear
regression model is the ability to detect such misalignments.

When predicting a new traversal costcj , the model creates a
predictive distributionp(c) with a meanµp and a varianceσ2

p.
Evaluating the predictive distribution at the traversal cost ci of
a training example gives the probability of having seen thattra-
versal cost given its corresponding feature vector. We can use
the probability of having seen all of our data,p(c̃1, . . . , c̃n), to
detect map misalignments between overhead data sources and
estimated vehicle positions by searching through a space of
potential alignments for the one that maximizes the probability
of the data.

Sincep(c̃1, . . . c̃n), can be computed via the chain rule as
the product of the predictive distributions evaluated at every
c̃i used for training, an estimate of the log data probability is
the cumulative sum of− log σp −

(y−µp)2

σ2
p

for every predic-
tive distribution. After all examples have been received, the
average log data probability over all training examples can
be used to compare the quality of an alignment against other
alignments. As shown in the following section, correcting such
misalignment produces traversal cost maps with better defined
obstacles that more accurately reflect the true environment.

IV. RESULTS

A. Field Test Results

The algorithm was tested in real-time on-board our un-
manned ground vehicle to measure its impact on naviga-
tion performance. The test environments contained a large
variety of vegetation, various-sized dirt roads (often lead-
ing through narrow passages in dense vegetation), hills, and



ditches. The vehicle traversed a set of courses defined by
series of waypoints first by using only its on-board perception
system for navigation and also with the help of our online
learning algorithm with40 cm resolution overhead imagery
and elevation data to supplement the on-board perception
system with traversal cost updates computed within a75 m
radius once every2 seconds. The algorithm was initialized for
each course with no prior training (see Figures6 and 7 for
sample results). As shown in TableI, our algorithm allowed
the vehicle to complete the courses in26.94% less time
while traversing7.38% less distance. We found that with our
algorithm, the vehicle chose to drive further distance on more
preferable terrain in order to avoid difficult or dense areas.
Most importantly, while we were forced to manually intervene
during the tests with only the perception system in order
to correct the vehicle’s heading when it became trapped in
heavy vegetation and could not escape on its own, no manual
interventions were necessary when using our algorithm.

TABLE I

STATISTICS FORCOURSETRAVERSALS WITH AND WITHOUT THE

ONLINE LEARNING ALGORITHM

Without Algorithm With Algorithm
Total Traversal Time (sec) 1369.86 1000.82

Total Distance Traveled (m) 1815.71 1681.73
Average Speed (m/s) 1.33 1.68

Number of Interventions 1 0

Fig. 6. Comparison of paths executed by our unmanned ground vehicle for
shown course when using only on-board perception (in solid red) and with
our online learning algorithm used in real-time on-board therobot (in dashed
blue). Notice how the online learning path quickly learns toavoid the difficult
area near the cul-de-sac and instead chooses to follow the road to the goal.

B. Field Test Data Post-Processing Results

The algorithm was also used to produce a priori traversal
cost maps for a multi-kilometer course over a large area of
complex terrain with heavy vegetation and elevation obstacles.
The algorithm was trained for about7 minutes using overhead
imagery data by driving the vehicle by remote control through

(a) (b)

(c) (d)

Fig. 7. Comparison of paths executed for shown situations when using
only on-board perception (in solid red) and with our algorithm (in dashed
blue) are shown in (a) and (c). Predictions of terrain traversal costs for the
environment by our algorithm at the time the vehicle chose to avoid the large
obstacles in front of it are shown in (b) and (d). Traversal costs are color-
scaled for improved visibility. Blue and red correspond to lowest and highest
traversal cost areas, respectively, with roads appearing in black. In (a) the
online learning path chose to travel slightly further on road in order to avoid
the difficult passage to the left and in (b) our algorithm helped the vehicle
avoid the cul-de-sac by executing a path that is42.89% shorter in72.62%

less time.

an entirely separate area that was similar to the main course.
The trained algorithm was then used off-line to generate a
traversal cost map and plan an initial path through the much
larger course. Closeups of generated traversal cost maps and
resulting planned paths can be seen in Figure8. For compar-
ison, we also included the resulting path from a traversal cost
map generated by a supervised learning algorithm with human-
picked examples from the actual course and features generated
from both overhead imagery and high-density elevation data
(see TableII for a description of data sources) [3].

TABLE II

TYPES OFOVERHEAD DATA USED BY ONLINE LEARNING (OLL) AND

HAND-TRAINED ALGORITHMS USED TO PRODUCEPRIOR COST MAPS

Algorithm Data Used Resolution

OLL (color) Color imagery 0.35 m

OLL (B & W) Terraserver B & W imagery 1.0 m

Human-Supervised Color imagery 0.35 m

Elevation < 0.2 m

We evaluated the performance of our online learning algo-
rithm against the human-trained technique by accumulating
all the traversal costs generated by the vehicle’s on-board
perception system during a traversal of the course shown in
Figure8 and comparing those costs to the estimates from each
of the generated prior cost maps. The average absolute error
in traversal cost (on a log scale as described earlier) for each



(a)

(b) (c) (d)

Fig. 8. Circular course with the GPS waypoints for which a priori paths were planned is shown in (a). Shown area is2000 m × 750 m. Our algorithm was
trained during a short traversal of a similar but entirely separate course. Paths generated by the human-trained algorithm (solid red), our algorithm using color
imagery data (dashed cyan), and our algorithm using black andwhite imagery data (dotted blue) are shown. Traversal cost maps produced by our algorithm
for the closeup area in (b) using overhead color imagery and black and white imagery are shown in (c) and (d) respectively. See TableII for description of
data sources. Traversal costs are color-scaled for improvedvisibility where blue and red correspond to lowest and highest traversal cost areas respectively.

method is shown in Figure9 as a function of training time. Our
algorithm is shown to outperform the human-trained algorithm
using only imagery data after only a short period of training.
However, it should be pointed out that maintaining a tight
correspondence from traversal costs assigned by the human-
trained algorithm to those assigned by the perception system
was difficult to strictly enforce. This highlights another ad-
vantage of the online learning approach over a human-trained
approach: by relieving the need for manual manipulations of
traversal cost values, the entire system is more adaptable to
changes in both the environment and the perception system.

During post-analysis of this test, we discovered that the
overhead imagery data and the estimated position of the
vehicle were in fact misaligned by about1.5 meters. While
this result shows that our algorithm is robust to such map
misalignment, this paper also demonstrates how our algorithm
can be used to detect such errors in alignment in order to
achieve optimal performance.

C. Offline Map Alignment

We applied our map alignment technique to a manually
misaligned log of perception data and overhead imagery

Fig. 9. Average absolute error between log scale traversal costs computed
by unmanned ground vehicle’s on-board perception system over the course
of a multi-kilometer traversal of terrain and traversal cost estimates computed
using three techniques: human-trained supervised learningalgorithm using
high resolution imagery and elevation data (solid red) and our algorithm using
only color imagery (dashed cyan) and black and white imagery (dotted blue)
as a function of training time by driving in a similar environment. See TableII
for a description of data sources.



features. A brute force search across all potential map align-
ments in 0.35m increments in the four cardinal directions
detected a misalignment of3.85 m west and4.9 m north.
Computed probabilities of observed perception data and the
corresponding improvement in traversal cost estimates canbe
seen in Figure10. As expected, correcting the misalignment
improved the definition of obstacles in the traversal cost maps
and resulted in a stronger correspondence with the actual
environment, correctly showing that the traveled path is clearly
on the road.

(a)

(b)

(c)

(d)

Fig. 10. Example of how misalignment between overhead data sources and
estimated vehicle position can be detected using our algorithm. Computed
log probability of the perception system sensor data encountered over a
12.6 m × 12.6 m search space of alignment shifts is shown in (a). Sample
cost prediction for area shown in (b) before alignment correction and after
correcting detected misalignment of3.85 m west and4.9 m north) appear in
(c) and (d) respectively (best alignment is assumed to be that which produces
the highest probability of seen perception data). Darker colors in the images
correspond to lower traversal costs.

V. CONCLUSION

We have proposed a self-supervised online learning algo-
rithm to learn and infer between different types of data sources

that vary in density, reliability, and scope. By applying the
scoped learning model, we were able to generalize from one
type of data source to be able to work with another which may
be difficult to generalize to new environments. As a result, we
were able to extend the scope of such features to many possible
domains.

We showed how the algorithm can be used to improve the
navigation capabilities of unmanned ground vehicles by learn-
ing in real-time to interpret overhead imagery data to predict
terrain traversal costs generated from an on-board perception
system. We demonstrated this approach through actual field
tests on-board a large robot in complex natural environments.
Both online and offline results were given to demonstrate
several applications of the algorithm. While performance could
be hampered because of limitations in the available features
or availability of representative training examples, the use of
this algorithm was shown to improve the quality of robot
navigation performance. Allowing robots to adapt to and
improve their performance in diverse environments without
human involvement through such techniques greatly expands
effectiveness and potential applications of robotic systems.
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