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Abstract— In mobile robotics, there are often features that,
while potentially powerful for improving navigation, prove dif-
ficult to profit from as they generalize poorly to novel situa-
tions. Overhead imagery data, for instance, has the potential to
greatly enhance autonomous robot navigation in complex out-
door environments. In practice, reliable and effective automatd
interpretation of imagery from diverse terrain, environmental
conditions, and sensor varieties proves challenging. We introduce
an online, probabilistic model to effectively learn to use these
scope-limited features by leveraging other features that, while
perhaps otherwise more limited, generalize reliably. We apply our
approach to provide an efficient, self-supervised leaming method Fig. 1. Sample results of terrain traversal cost predictiorg5 m resolution
that accurately predicts traversal costs over Iarge areas from Coﬁ’or Overhegd imagery used by our On”nepleaming algorittan and
overhead data. We present results from field testing on-board a ., responding predictions of terrain traversal costs Tiversal costs are

robot operating over large distances in off-road environments. coor-scaled for improved visibility. Blue and red corresgdto lowest and
Additionally, we show how our algorithm can be used offline to highest traversal cost estimates, respectively.

produce a priori traversal cost maps and detect misalignments

between overhead data and estimated vehicle positions. This

approach can significantly improve the versatility of many

unmanned ground vehicles by allowing them to traverse highly can reliably interpret overhead image data is far from easy.

varied terrains with increased performance. Additionally, such estimates must be well calibrated with
other on-board perception estimates of the terrain, oregayst
l. INTRODUCTION performance may suffer.

A common problem that arises in mobile robotics is that In this paper, we address the problem of learning and
potentially powerful sensor data and features are oftditdlif inferring between two heterogeneous data sources that vary
to take advantage of because they are situation or locationdensity, accuracy and scope of influence. The objective
specific. For instance, camera imagery can potentiallyctletés to generalize from one data source, viewed as a reliable
unpaved road in the desert significantly farther than sorestimate, to be able to work with another, which may be high
ladar-based systems can. Detecting such roads from achstaperformance (e.g., long range or high accuracy) but difficul
proved to be a crucial component in Stanford Racing’s wile generalize to new environments. We frame the problem
ning Grand Challenge entry [1]. Unfortunately, such data cas a simple, linear probabilistic model for which inference
prove very resistant to automated interpretation. In paldi, results in a self-supervised online learning algorithm thaes
classifiers that prove to be powerful indicators of road in the estimates from the two data sources. We discuss the
particular area often do not generalize to new conditions. advantages of this framework including reversible leagnin

Similarly, outdoor robot navigation can benefit from théeature selection, data alignment capabilities, reliaide of
now widespread availability of high quality overhead imgge multiple estimates, as well as confidence-rated predistion
and elevation data from satellite and aircraft [2][3]. Rrety, Furthermore, we demonstrate the approach in the context
nearly the entire world has been surveyed at accuracy, with of long range navigation of a large, unmanned ground vehicle
higher resolution (better tha&% cm accuracy) data available induring various field tests in complex natural environments.
certain areas. With this overhead data, many of the diffeuilt As it traverses an environment, the vehicle utilizes its on-
associated with autonomous robot operation are alleviatédard perception system and overhead imagery and elevation
even with the coarsest of terrain resolution. Systems can tidata to learn the mapping from overhead data features to
dispense with myopic exploration and instead pursue routesmputed terrain traversal costs in order to predict tisler
that are likely to be effective. costs elsewhere in the environment where only overhead data

Unfortunately, leveraging this tremendous resource on @navailable, effectively extending the range of the vedigl
autonomous robot proves difficult. Building systems thabcal perception system and allowing more effective naioga



of the environment. This approach removes the necessitytbé distribution forc givenz as a Gaussian with mean a linear
human involvement and parameter engineering, which limitsnction of z and with a variance of? :
the versatility of many robotic systems.

E(c|B,x) = Tz 1)
Il. APPROACH We assume that the estimates from the general feature-based
A. Formalization predictors have Gaussian noise and thus are distributed:
We approach the problem of leveraging the powerful, but ¢ ~ Normal(c, af])

difficult to generalize, features in a Bayesian probalidist take th dor to be h ters Ivi tsid
framework using the notion of scoped learning [4]. The sdopgje ake theo, ando; 10 be hyper-parameters lying outside

learning model admits the idea of two types of feature Je locale-specific plate.
“global” and “local”. Global features are generally usefahd
their predictive power extends well to new domains, while
local ones, which, although often very powerful, typically
generalize poorly and are more difficult to take advantage of
in a consistent way. These local features hagepethat is
limited to one particular domain. We wish to apply our system
to extend the scope of such features to many possible domains
For our canonical problem of learning to leverage the ex@¢dnd
range of overhead data, these names may prove counter-
intuitive, so we refer to them instead generaland locale-
specificfeatures. Features generated from dense, vehicle-ba§@g2: Graphical depiction of the scoped learning model. dyarameters,

. . including priors on the locale-specific parametgrand noise variances, lie
ladar perception serve as our general features, while rEsatuyside the plate indexed b and are not depicted.
generated from overhead based imagery and elevation data
serve as our locale-specific features. The latter are péatlyg 2) Inference: We develop the inference for the model in
valuable to mobile robots because of their extended rande ah online fashion. Given a new data poifjtestimating the
widespread availability. true variablec;, our goal is to compute new estimatesf

1) Model: The scoped learning approach is a very simhe variablesc;, assuming we have already seen data—
ple probabilistic model (shown graphically in Figug that {{x}, ,,{c}1. ._1}. We can compute this by integrating over
captures this notion of features that have scope. The oufie¢ uncertain parameter$ which describe the relationship
plate L represents in graphical model notation that there abetween the true variable and the local features.
independent locales in which the model will be applied [5].

These correspond to new areas of the world in which our robot
will operate. p(cjléi, @i, D) = /dﬁ p(cj|B, ¢, zi)p(Bléi, i, D)

Within the plate, we see a sequence of locale-specific
features and corresponding general feature-based estimat
At each point in the sequence, we wish to make predictions . s ‘ ‘
about ¢ (gither all or a gubset of them.) Here,is thpe true p(Blé, 2, D) O(p(mD)/dcl p&leip(elf, 2:)
variable we wish to predict, arids an estimate of that variablem our linear-Gaussian model, this can be understood as

coming from the general features, while are our locale- revising the posterior distribution from(3|D) in light of a
specific features. The parametesscommon to the locale Gaussian likelihood that takes into account noise from both
(plate) capture the relationship between locale-spe@fitures general and locale-specific features.
and the variables of interest The length of our sequence is  Our computation of the posterior distributigns|é;, z;, D)
n. is as follows. We first initialize our distribution to the pridis-
This learning model captures the idea of self-supervis@gbutionp(3). Then, for every training exampiewe multiply
learning [6] in a Bayesian framework and extends the idea &@r distribution byp(é;|3, z;). Since the prior distribution and
integrate both the general feature-based estimates arseltfhe j(¢|3, z;) are normal, the posterior distribution is also normal.
supervised locale-specific estimates. Driven by our apptio, \We use the notation to represent the mean of the posterior
we are particularly interested in the onlinegressioncase distribution andl; to represent the variance. Thus, computing
where the goal is to infer the true continuous valug# an p(B|é, x;, D) is performing a self-supervised learning using a
online fashion as general feature-based estimatézecome Bayesian linear regression model with noise variangte o2.
available. We choose a simple model fols a function of  Wwe use our current estimate of the posterior distribution
the k locale-specific features = («',....2*) by modeling when we want to predict a future outcomge We are interested

We can compute the required distribution oyeas:

1The original scope learning work [4] was developed in thetexinof 2We assume that our prior ofi is a priori independent of the features
classification using discrete features, generative desmns of those features, so that inference will remain the same even in the case wheréeéteres
and in batch. become available in some sequence.



in predictions in two cases: first, when we have no general I1l. APPLICATION TO GROUND ROBOTICS
feature-based estimaté; for a particularc;, and second, po context

when such an estimate is available. In tpe first case, theA wral licati f lgorithm is to the | t
predictive distributionp(c) has mearr,, = 273 and variance hatural application ot our aigorithm is to the improvemen

02 = o2 + 7V, [7]. When we also have an estimate, of autonomous navigation capablhtles for unmanne_d ground
B vehicles. Our algorithm lends itself well to addressing ynan

inference combines these two estimates: ; . . L .
o of the issues that arise due to the diversity in the envirarime
5

p(cj) = Normal(gf(% +-5), o) and data that robotic systems must encounter. In many wboti
9 g systems, variables most relevant to an unmanned groune vehi
where cle, such as terrain traversal cost, are computed diregtid
0;2 — 1711 vehicle’s on-board perception system through the proogssi
oz + oz of high density ladar data gathered by on-board sensors.

We note that it is possible to compute the posterior distr]’_echniques to process such data are often generalizable to

bution in batch, but we prefer to maintain an estimate of tff82ny environments so that the vehicle’s perception system
posterior distribution as we receive general featuredasst 90€S NOt require much adjustment when dealing with new

estimates so that we may immediately apply our algorithm [Srralp, yet the I'm_'ted range for this type of data source is
a major shortcoming. While data sources such as overhead

new data. . . i a S i
. . imagery are widely available with high accuracy, develgpin
B. Advantages of the Bayesian Learning Approach fixed techniques to process such locale-specific data source
Using the online Bayesian scope learning model providedsadifficult because even though they may be extremely useful
number of important benefits. in specific areas, they do not generalize well to new domains

1) Confidence Rated PredictionThe variance estimate due to variations in terrain, lighting conditions, weathamd
provided by our algorithm for the probability of eacttan be even time of data gathering.
used as a metric of confidence in the prediction. If a sitmatio We demonstrate how our algorithm can be applied to the
arises in which we must choose which one of several predicté@dmain of mobile robotics in order to derive the most benefit
outcomes to trust, we could simply use the one with ttfeom the availability of both general and locale-specifidada
smallest variance. sources without any human involvement. The performance of

2) Learning of the Hyper-Prior and Feature Selectio@ur our algorithm is evaluated through actual field testing in a
algorithm depends on a number of hyper-parameter terms thamplex off-road environment on-board a rugged, all-tarra
may be chosen based on data from multiple locales. We discusgnanned ground vehicle. Our results show how combining
ways to choose the noise variance tempsindo, in section the adaptive performance of our algorithm with the inherent
II-A and the prior distribution on parametetsn sectionlll-A.  mobility of such a vehicle leads to more efficient navigatdn
It is important to note that the prior g may also be chosen complex environments. Additionally, we show how our algo-
as hyper-parameters on multiple locales by adapting Tgppin rithm can be used to detect misalignments between overhead
sparse hyper-parameter re-estimation procedlito®ur setting data and the vehicle’s estimated position, a common problem
[8]. In this way, we can both automate feature selection aifel many such robotic systems.
bias our algorithm to prefer certain features for new logale For the results in section IV, we chose the hyper-parameter

3) Reversible Learning:A problem that often arises infor noise variances? with ML-Il and chose an isotropic
online learning is the handling of multiple estimates of &aussian with high variance for the prior gn[7].
particular quantity. For instance, in our canonical examnpl
our general feature-based estimatgsmay improve as we
get closer and denser laser readings of the terrain. It is n(
appropriate to treat these as independent training examples
while they may differ in their variance, they are generally
highly correlated. Neither is it useful to simply take thestir
estimate available: often this is a poor substitute for ladl t 2
data. In our model, since we maintain an exact posterior @) (b)
distribution that lies inside the exponential family, we yma i o _ oy

. .. . Fig. 3. Robot used for all field tests in its typical operategvironment
eﬁeCtlvely removethe effects of training on a data point by(a) and an illustration of how the online learning algoritlions on-board
dividing out the likelihood term we had used to include itliet the robot (b). Algorithm learns mapping from local-specificedhead data
posterior [7]. In this way, we always have an estimate of tHeatures to locally com_pu_ted terrain tra\_/ersal costs (coatptitom general
. L . . . features) to make prediction elsewhere in the environment.

posterior distribution of3 using the current best estimatg
Minka has developed an alternate use of this “removal trick”
for approximate inference [9]. B. Terrain Traversal Cost Prediction

3The procedure finds the ML-II estimate for the precision (iseevariance) .Our robot performs local sens_lng using ladar sensors, as-
of each weights;. signs traversal costs to the environment from features com-

ITraversaI Costs (Local)

Traversal Costs (Global)



puted by interpreting the position, density, and point didis- membership in each output cluster (see FighteSix clusters
tributions of sensed obstacles (these features geneealipss were used in our implementation.
most domains and therefore serve as generalfeatures as  Similar techniques may be used to generate features from
defined in Sectiorll-A). The robot re-plans in real-time byany combination of data sources gathered through a varfety o
finding minimum cost paths through the environment usingethods. We point out that our approach is quite robust to the
the D* algorithm (see Figur8) [10]. We demonstrate how our number of clusters and the removal of features.
algorithm can learn to predict terrain traversal costs astexqb
by the on-board perception system of our unmanned groun
vehicle from overhead data. We also compare the predictiv g
performance of our algorithm to that of a hand-trained élass
fier using superior data sources. We chose to predict tralvers
cost rather than intermediate results such as slope, geosit
presence of vegetation because traversal cost is the rtedtic
most closely governs a vehicle’s navigation strategy tghou s A
an environment. Our robot’s perception system is proficant (@) (b)
effectively assessing terrain traversal costs, so it isralele
to be able to mimic its predictive abilities. We will theredo Fig. 4. Sample clustering results from using the GaussiartuviixModel
. . algorithm on generated features. Overhead color imagery @9t used to
use estimates from the robot's perception system to ev&alugfnerate features and resulting clustering into six diaste). Membership
the accuracy of traversal cost predictions. features were generated by computing the fractional degresembership
The characteristics of an environment change with varyiry&ach pixel in each cluster.
conditions. However, even outdated data can be useful since
most distinct areas in an environment will maintain unifaym
in their characteristics despite these variations. Byxiatp
restrictions on the recency of overhead data, our algorithmTraversal cost is difficult to quantify, so choosing appro-
further increases its impact on improving robot navigatiofriate values often requires careful engineering. In otder
Overhead data is relatively inexpensive and availableraws produce desired behavior when used with a path planning
resolutions for the entire world, so as the quality of globallgorithm such as D*, traversal costs for undesirable areas
surveying improves, the applications of such research wdlich as heavy vegetation must be higher than traversal costs

D. Training and Prediction

greatly expand. for ideal areas such as roads (our robot works with traversal
costs in the range of6 to 65535). For example, the robot’s
C. Features on-board perception system assigns traversal costs ¢the

A set of feature maps for the vehicle’s environment waminimum) to roads while grass is assigned a traversal cost of
generated from each overhead data source for use as input$ltoimplying the robot would be willing to take a detour of
the algorithm (these are olocale-specifideatures as defined three times the distance in order to stay on a road as opposed
in Sectionll-A). In our implementation, HSV (hue, saturationfo driving over grass. Meanwhile, dense vegetation is often
value) features were used to represent color imagery data wiassigned traversal costs of ovEI000 in order to encourage
the pixel intensity of the black and white imagery data watke robot to traverse elsewhere except under extreme rigycess
used as a single feature. Raw RGB (red, green, blue) coRecause of these traversal distance ratios, errors inrgave
data was inadequate for our approach due to its sensitivityaost estimates in low-cost areas are more detrimental than
illumination variations. similar errors in high-cost areas. An error o0 to an area

A feature containing the maximum response to a set of extremely high traversal cost would have negligible etffe
Gabor filters of various orientations centered at each pixehile the same error at an area of desirable terrain would
was also generated to capture texture in each type of imagegglically change the behavior of the robot.

Additional features for the black and white imagery dataever In order to work with a linear model, we deal with traversal
generated by computing the means and standard deviationsts within our algorithm on a logarithmic scale, conveyti

in intensity within windows of various size around each pixefrom the normal traversal cost space for the purposes of-trai
Additional elevation-based features (similar to thosecdbed ing and prediction. The Gaussian error assumption embedded
in [3]) were computed when such data was present. All our probabilistic model is a much better approximation
features were rescaled to the1,1] range and a constantwhen we measure error on this scale. Unlike in the regular
features was also included. traversal cost space, small errors in the log space leadat sm

Finally, clustering of all previously computed featuresswaerrors in the traversal distance ratios.
performed that allowed the algorithm to identify pattenmshie Training examples are constructed from a vector of overhead
feature input space that are relevant to the output regmessiimagery feature values:() and the average of all traversal cost
The Gaussian Mixture Model algorithm was chosen to clustestimates that have been calculated within the correspgndi
the input data because of its ability to generate membershia €¢;). As with many robotic systems, the performance of
features by assigning each data point a fractional degreeoof robot’s on-board perception system quickly degradéseas



distance from the robot increases (due to the lowered acgur&. Applications of Trained Algorithm

and density of sensor data), so the quality of a training this aigorithm can be used in a variety of ways to aid in
example is measured by its proximity to the robot. Rathemn thg,manned ground vehicle navigation, both in real-time on-

struggling to decide at which point to utilize an example fQ5,514 4 robot and offline once it has been trained. In the case
training, the reversible learning capabilities of our alfon ot onjine terrain traversal cost prediction, the algoritican
allow us to maintain an optimal level of predictive abilitiBy e ysed to periodically update traversal cost estimatetsirwit
ensuring that only the highest quality data available imfiac 5 region around the robot so that a real-time path planning
state. As the robot approaches locations that had preyioug|qorithm such as D* can revise the vehicle’s global path to
been used for training, obsolete examples anéearnedin - 4ccqunt for the changes. As shown in the following section,
favor of higher quality training examples available for $B0 e se of this algorithm to extend the robot's field of view
areas. An example of this training process can be seeniniis in significantly shorter and more intelligent paths
FigureS. Estimates greater thar2 meters from the robot are  gjnce the predictive state of the algorithm can be captured
ignored since such estimates are unreliable and would O'&'ﬁ’any time by the vectos at that moment, one can make

corrupt the quality of training in cases where they cannot b, ersa| cost predictions for a large area without eveirigav

replaced with better estimates. to traverse or acquire training examples from that arearbefo
As the algorithm acquires more training data, its predéctihand. Instead, as long as identical features are computed fo
performance improves, allowing it to revise previously madhe two areas, one can simply drive through a representative
traversal cost estimates. The algorithm specifies a degasea for a short period of time in order to train the algoritiom
of confidence for each prediction based on the similarithake predictions in a much larger area. The following sectio
of the example to past training data (as indicated by théll also show that a priori traversal cost maps produced by
variance estimate), so predictions in which the algorithok$é this technique are more accurate than even those produced
confidence can be ignored in favor of an alternative source fedm hand-trained techniques that utilize superior datases.
predictions or a default value (see Figuite). Even slight mis-registration between overhead data and the
estimated position of the robot can significantly hinder the
performance of algorithms such as ours that are sensitive to
such errors. An advantage of using an online Bayesian linear
regression model is the ability to detect such misalignsient
When predicting a new traversal cest the model creates a
predictive distributiorp(c) with a meary:,, and a variancerf,.
Evaluating the predictive distribution at the traversadteg of
a training example gives the probability of having seen tizat
versal cost given its corresponding feature vector. We can u
the probability of having seen all of our dajd¢s, ..., ¢,), to
detect map misalignments between overhead data sources and
\ estimated vehicle positions by searching through a space of
(a) (b) potential alignments for the one that maximizes the prdivabi
of the data.
Sincep(éy, ... ¢,), can be computed via the chain rule as
the product of the predictive distributions evaluated arev
¢; used for training, an estimate of thezlog data probability is
the cumulative sum of-log o, — (y%f’) for every predic-
tive distribution. After all examples have been receivét t
average log data probability over all training examples can
be used to compare the quality of an alignment against other
alignments. As shown in the following section, correctingls
misalignment produces traversal cost maps with better etifin
© @ obstacles that more accurately reflect the true environment

Fig. 5. Training progress of online learning algorithm wsoverhead color

imagery data for traversal of environment shown in (a) is shavigb) -

(d). Dimensions of shown areas ar80 m x 150 m. Accumulated ground A Field Test Results
truth traversal costs computed by robot’s on-board peroepsystem and

vehicle path (shown in red) are overlaid on estimated travecsts generated ~ The algorithm was tested in real-time on-board our un-
by the algorithm. Lower costs appear as darker colors andqies that  anned ground vehicle to measure its impact on naviga-
the algorithm lacks confidence in (due to insufficient repnéative training . . .
examples) are shown in blue. tion performance. The test environments contained a large

variety of vegetation, various-sized dirt roads (oftendlea

ing through narrow passages in dense vegetation), hild, an

IV. RESULTS



ditches. The vehicle traversed a set of courses defined
series of waypoints first by using only its on-board peraepti
system for navigation and also with the help of our online
learning algorithm with40 cm resolution overhead imagery
and elevation data to supplement the on-board percepti
system with traversal cost updates computed withifsan

radius once everg seconds. The algorithm was initialized for
each course with no prior training (see Figu@snd 7 for

sample results). As shown in Tableour algorithm allowed

the vehicle to complete the courses 26.94% less time

while traversing7.38% less distance. We found that with our
algorithm, the vehicle chose to drive further distance omano
preferable terrain in order to avoid difficult or dense areas
Most importantly, while we were forced to manually intereen
during the tests with only the perception system in orde
to correct the vehicle’s heading when it became trapped i
heavy vegetation and could not escape on its own, no manu
interventions were necessary when using our algorithm.

(©) (d)

TABLE |
STATISTICS FORCOURSE TRAVERSALS WITH AND WITHOUT THE Fig. 7. Comparison of paths executed for shown situationsnwimgng
only on-board perception (in solid red) and with our aldurit (in dashed
blue) are shown in (a) and (c). Predictions of terrain trsakcosts for the
environment by our algorithm at the time the vehicle chose tadathe large

ONLINE LEARNING ALGORITHM

' Without Algorithm | With Algorithm obstacles in front of it are shown in (b) and (d). Traversaitsare color-

Total Traversal Time (sec) 1369.86 1000.82 scaled for improved visibility. Blue and red correspond teést and highest
Total Distance Traveled (m 1815.71 1681.73 traversal cost areas, respectively, with roads appearingldck. In (a) the
Average Speed (m/s) 133 1.68 online learning path chose to travel slightly further ondda order to avoid
Number of Interventions 1 0 the difficult passage to the left and in (b) our algorithm keelhe vehicle

avoid the cul-de-sac by executing a path that2s89% shorter in72.62%
less time.

an entirely separate area that was similar to the main course
The trained algorithm was then used off-line to generate a
traversal cost map and plan an initial path through the much
larger course. Closeups of generated traversal cost maps an
resulting planned paths can be seen in FigirEor compar-
ison, we also included the resulting path from a traversat co
map generated by a supervised learning algorithm with heman
picked examples from the actual course and features gederat
from both overhead imagery and high-density elevation data
(see Tabldl for a description of data sources) [3].

TABLE I
TYPES OFOVERHEAD DATA USED BY ONLINE LEARNING (OLL) AND
HAND-TRAINED ALGORITHMS USED TO PRODUCEPRIOR COSTMAPS

Algorithm Data Used Resolution
Fig. 6. Comparison of paths executed by our unmanned groundledbr OLL (colon) Color imagery 0.35 m
shown course when using only on-board perception (in s@ and with OLL (B & W) Terraserver B & W imagery| 1.0 m
our online learning algorithm used in real-time on-boardrthteot (in dashed - - :
. h - 3 " o Human-Supervised Color imagery 0.35 m
blue). Notice how the online learning path quickly learngtoid the difficult Elevation <02m

area near the cul-de-sac and instead chooses to follow #tetoothe goal.

We evaluated the performance of our online learning algo-
B. Field Test Data Post-Processing Results rithm against the human-trained technique by accumulating
The algorithm was also used to produce a priori traversall the traversal costs generated by the vehicle’s on-board
cost maps for a multi-kilometer course over a large area pérception system during a traversal of the course shown in
complex terrain with heavy vegetation and elevation oltstac Figure8 and comparing those costs to the estimates from each
The algorithm was trained for abottminutes using overhead of the generated prior cost maps. The average absolute error
imagery data by driving the vehicle by remote control thitougn traversal cost (on a log scale as described earlier) foh ea



Fig. 8. Circular course with the GPS waypoints for which aprpaths were planned is shown in (a). Shown arez0i30 m x 750 m. Our algorithm was
trained during a short traversal of a similar but entirelyasate course. Paths generated by the human-trained atgqstiid red), our algorithm using color
imagery data (dashed cyan), and our algorithm using blackwant® imagery data (dotted blue) are shown. Traversal cossmapduced by our algorithm
for the closeup area in (b) using overhead color imagery aadkbénd white imagery are shown in (c) and (d) respectivelg. Bblell for description of

data sources. Traversal costs are color-scaled for impreigdullity where blue and red correspond to lowest and hsglieversal cost areas respectively.

200

method is shown in Figur@ as a function of training time. Our
algorithm is shown to outperform the human-trained altonit o </~ (= Shedlic e
using only imagery data after only a short period of training ., il
However, it should be pointed out that maintaining a tig@ | e
correspondence from traversal costs assigned by the hums ™
trained algorithm to those assigned by the perception systs = ‘
was difficult to strictly enforce. This highlights anothed-a <. e N
vantage of the online learning approach over a human-tair -
approach: by relieving the need for manual manipulations
traversal cost values, the entire system is more adaptable *7 '
changes in both the environment and the perception syster ‘ ‘

I
50 100 150

200 250
During post-analysis of this test, we discovered that the Treining Time (seconds)

Ove_rhead |ma}gery dat,a "’_‘nd the estimated position _Of tﬁs 9. Average absolute error between log scale traverssts computed

vehicle were in fact misaligned by about5 meters. While by unmanned ground vehicle’s on-board perception system threecourse

this result shows that our algorithm is robust to such majf,a multi-kilometer traversal of terrain and traversal cadireates computed
S

. . .. using three techniques: human-trained supervised leamliggrithm using

misalignment, this paper also demonsltrate_s how Ou.r algorit high resolution imagery and elevation data (solid red) andatgorithm using

can be used to detect such errors in alignment in order dly color imagery (dashed cyan) and black and white imagesttéd blue)

achieve optimal performance. as a function of training time by driving in a similar environme®ee Tablél
for a description of data sources.

Driving off-road
(greater variety
of terrain)

80+

Averag

| I I
300 350 400 450

C. Offline Map Alignment

We applied our map alignment technique to a manually
misaligned log of perception data and overhead imagery



features. A brute force search across all potential mam-alighat vary in density, reliability, and scope. By applying th
ments in 0.35m increments in the four cardinal directionsscoped learning model, we were able to generalize from one
detected a misalignment ¢f.85 m west and4.9 m north. type of data source to be able to work with another which may
Computed probabilities of observed perception data and the difficult to generalize to new environments. As a result, w
corresponding improvement in traversal cost estimateshbeanwere able to extend the scope of such features to many pessibl
seen in Figurel0. As expected, correcting the misalignmentiomains.

improved the definition of obstacles in the traversal cogpsna We showed how the algorithm can be used to improve the
and resulted in a stronger correspondence with the actoavigation capabilities of unmanned ground vehicles bynlea

environment, correctly showing that the traveled pathesudy
on the road.

-690.995

-691

-691.005

-691.01

-691.015

Log-Probability of Perception Data

Fig. 10. Example of how misalignment between overhead dataeswand
estimated vehicle position can be detected using our afgoriComputed
log probability of the perception system sensor data erteoed over a

12.6 m x 12.6 m search space of alignment shifts is shown in (a). Sample

cost prediction for area shown in (b) before alignment cdivacand after
correcting detected misalignment 85 m west and4.9 m north) appear in
(c) and (d) respectively (best alignment is assumed to be thatwroduces
the highest probability of seen perception data). Darkéoredn the images
correspond to lower traversal costs.

V. CONCLUSION

. . . [
We have proposed a self-supervised online learning algo-
rithm to learn and infer between different types of data sesir

ing in real-time to interpret overhead imagery data to ptedi
terrain traversal costs generated from an on-board péocept
system. We demonstrated this approach through actual field
tests on-board a large robot in complex natural environment
Both online and offline results were given to demonstrate
several applications of the algorithm. While performanceldo

be hampered because of limitations in the available festure
or availability of representative training examples, tlse of

this algorithm was shown to improve the quality of robot
navigation performance. Allowing robots to adapt to and
improve their performance in diverse environments without
human involvement through such techniques greatly expands
effectiveness and potential applications of robotic syste
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