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Abstract— Recentwork hasshown that the probabilistic SLAM
approach of explicit uncertainty propagation can succeed in
permitting repeatable 3D real-time localization and mapping
even in the `pure vision' domain of a single agile camera
with no extra sensing. An issue which has causeddif�culty in
monocular SLAM however is the initialization of features,since
information fr om multiple imagesacquired during motion must
be combined to achieve accurate depth estimates.This has led
algorithms to deviate fr om the desirable Gaussian uncertainty
representationof the EKF and relatedprobabilistic �lters during
special initialization steps.

In this paper we present a new uni�ed parametrization for
point features within monocular SLAM which permits ef�cient
and accurate representation of uncertainty during undelayed
initialisation and beyond, all within the standard EKF (Extended
Kalman Filter). The key concept is dir ect parametrization of in-
versedepth, where there is a high degreeof linearity. Importantly ,
our parametrization can cope with features which are so far
fr om the camera that they presentlittle parallax during motion,
maintaining suf�cient representativeuncertainty that thesepoints
retain the opportunity to `come in' fr om in�nity if the camera
makes larger movements.We demonstrate the parametrization
using real image sequencesof large-scaleindoor and outdoor
scenes.

I . INTRODUCTION

A monocularcamerais a projective sensorwhich measures
the bearingof imagefeatures.To infer the depthof a feature
the cameramustobserve it repeatedlyas it translatesthrough
the scene,eachtime capturinga ray of light from the feature
to its optic center. The angle betweenthe capturedrays is
the feature's parallax — this is what allows its depth to be
estimated.

In computer vision, the well-known concept of a point
at in�nity is a feature which exhibits no parallax during
cameramotion due to its extremedepth.A star for instance
would be observed at the sameimage location by a camera
which translatedthrough many kilometerspointed up at the
sky without rotating. Such a feature cannot be used for
estimatingcameratranslationbut is a perfectbearingreference
for estimatingrotation.The homogeneouscoordinatesystems
of visual projective geometryallow explicit representationof
points at in�nity , and they have proven to play an important
role during off-line optimization-basedstructureand motion
estimationfrom imagesequences.

Recentresearchhasshown that the way to improve on off-
line sequenceestimationand achieve sequential,repeatable

motion and structure estimation with a moving camerais
to adopt the probabilisticSLAM (SimultaneousLocalization
and Mapping) approachof explicit uncertaintypropagation
familiar from mobile robotics. Davison [2] proved that the
standardEKF formulation of SLAM can be very successful
even when the only sourceof information is the video from
an agile singlecamera,demonstratingreal-time30Hz motion
andstructureestimationin 3D.

A signi�cant limitation of Davison's approach,however,
was that it could only make use of featureswithin close
range of the camera which exhibited signi�cant parallax,
and was thereforepractically limited to room-scalescenes.
The problem was in initialising uncertain depth estimates
for distantfeatures.Acknowledging that featuredepthuncer-
tainty during initialisation is not well-modelledby a standard
Gaussiandistribution in Euclidean space,Davison used a
particleapproachto representa feature'sdepthcoordinateuntil
conversion to Gaussianrepresentationwhen the distribution
had collapsed suf�ciently . Aside from being able to deal
only with featuredepthswithin the small pre-de�ned range
along which particles were spread(around 1 to 5 meters),
this `delayed' style of initialisation meant that observations
of featureswerenot usedto updatethe cameraposeestimate
until their conversioninto fully initialised features.

It would be relatively simple to dealwith pointsat in�nity
in SLAM if it were known in advancewhich featureswere
at in�nity and which were not. Those at in�nity would be
modelledwith a special`direction' parametrization,ignoring
their depth,while �nite featuresmaintainedthestandardform.
Montiel [8] showed that in the specialcasewhereall features
are knownto be in�nite — in very large scaleoutdoorscenes
or when the camerarotateson a tripod — SLAM in pure
angularcoordinatesturns the camerainto a real-time visual
compass.

In the more generalcase,the dif�culty is that we do not
know in advancewhich featuresare in�nite and which are
not. We shouldclarify thediscussionby de�ning themeaning
of `in�nity' in the current context. Of courseno observable
featureis truly in�nitely far from the camera(even a star of
coursehas a �nite depth). A point at in�nity is simply far
enoughaway relative to the camera motionsinceit hasbeen
observedthat no parallaxhasbeenobserved.

Let us imaginea cameramoving througha 3D scenewith



observable featuresat a rangeof depths.From the estimation
point of view, we can think of all featuresstartingat in�nity
and `coming in' as the cameramoves far enoughto measure
suf�cient parallax. For nearby indoor features,only a few
centimetresof movementwill be suf�cient. Distant features
mayrequiremany metersor evenkilometersof motionbefore
parallax is observed. It is important that thesefeaturesare
not permanentlylabelled as in�nite — a featurethat seems
to be at in�nity should always have the chanceto prove its
�nite depthgiven enoughmotion,or therewill be the serious
risk of systematicerrors in the scenemap. Our probabilistic
SLAM algorithm must be able to representthat uncertainty
in depthof seeminglyin�nite features.Observingno parallax
for a featureafter10 metersof cameratranslationdoestell us
somethingaboutits depth— it givesa reliable lower bound.
We feel that this considerationof uncertainlyin locationsof
points hasnot beenpreviously requiredin off-line computer
vision algorithms,but that now we have a methodfor dealing
with it in the moredif�cult on-line case.

Our contribution in this paperis to show that in fact thereis
a uni�ed andstraightforward parametrizationfor featureloca-
tionswhichcanhandlebothinitialisationandstandardtracking
of both close and very distant featureswithin the standard
EKF framework. An explicit parametrizationof the inverse
depth allows a Gaussiandistribution to cover uncertaintyin
depthwhich spansa depthrangefrom nearbyto in�nity , and
permits seamlesscrossingover to �nite depth estimatesof
featureswhich have beenapparentlyin�nite for long periods
of time.

The fact is that the projective natureof a camerameans
that the image measurementprocessis nearly linear in this
inverse depth coordinate.This is a principle which should
perhapshave beennoted soonerin SLAM, becauseinverse
depthis a conceptusedwidely in computervision: it appears
in therelationbetweentheimagedisparityandapointdepthin
stereovision; it is interpretedastheparallaxwith respectto the
planeat in�nity in [4]; inversedepthis alsousedto relatethe
motion �eld inducedby scenepointswith thecameravelocity
in optical �o w analysis[5], andin Structurefrom Motion error
analysis[9], [1].

Theuni�ed representationmeansthatouralgorithmrequires
no specialinitialisation processfor features.They aresimply
tracked right from the start, immediately contribute to im-
proved cameraestimatesand have their correlationswith all
other featuresin the map correctly modelled.That this can
be achieved within the standardEKF meansthat all the great
bene�ts it offers are maintainedin terms of highly ef�cient
representationof correlateduncertainty. We strongly believe
that EKF maps,or networks of EKF submaps,will continue
to have a central role in SLAM. When parametrizations
are chosencarefully, there is often no needto use �ltering
techniquesusing particles (e.g. [7]) for instancewhich can
explicitly representnon-Gaussiandistributions but have their
own disadvantages.Note that our parameterizationwould be
equally compatiblewith other variantsof Gaussian�ltering
suchassparseinformation �lters.

Sola et al. [10] also recentlyproposedan interestingnew
approachto monocularfeature initialization. In their work,
an undelayedinitialization of new pointswasbasedon main-
tainingseveraldepthhypothesesasGaussianvolumesfor each
initialized featurespreadin a geometricsum— a development
of the particle method of Davison but taking advantageto
someextent of the inversedepthconcept.As the estimation
proceeds,the hypothesesareprunedandan approximationto
the GaussianSum Filter is proposedkeepthe computational
overheadlow. Their resultsarevalidatedwith 2D simulations
combiningodometryandvision andappearimpressive. How-
ever, we believe that our approachhassigni�cant bene�ts in
termsof uniformity, clarity andsimplicity. Further, they make
no claimsaboutbeingableto copewith featuresat very large
`in�nite' depths.

In very recentwork, Eadeand Drummondhave presented
an inversedepth initialisation schemewithin the context of
theirFastSLAM-basedsystemfor monocularSLAM [3]. Their
methodwhich sharesmany similaritieswith our approach,and
they offer someof the sameargumentsabout advantagesin
linearity. The positionof eachnew partially initialised feature
added to the map is parametrizedwith three coordinates
representingits direction and inverse depth relative to the
cameraposeat the �rst observation, and estimatesof these
coordinatesarere�ned within a setof KalmanFilters for each
particle of the map. Once the inverse depth estimationhas
collapsed,thefeatureis convertedto a fully initialisedstandard
Euclideanrepresentation.While retaining the differentiation
betweenpartially andfully-initialised features,they go further
and are able to use measurementsof partially initialised
featureswith unknown depthto improve estimatesof camera
orientationvia a specialepipolarupdatestep.

Their approachcertainlyappearsappropriatewithin a Fast-
SLAM implementation.However, it lacks the satisfyinguni-
�ed quality of the parametrizationwe presentin this paper,
where the transition from partially to fully initialised need
not be explicitly tackled and full use is automaticallymade
of all of the informationavailable in measurements.It is this
which makes it suitablefor direct usein an EKF framework
for sparsemapping, with all the advantagesthat offers in
terms of completeand correct representationof uncertainty
and correlations.Besides,our systemis able to code in the
map distantpoints, in which the inversedepthcoding never
collapsesand cannotbe codedwith the standardEuclidean
representation.

SectionII is devoted to the cameramotion model,and the
parametrizationof inversedepthis detailed.Themeasurement
equationis describedin section III, and a discussionabout
measurementequationlinearizationerrors is included.Next,
featureinitialization from a single featureobservation is de-
tailed in SectionIV. Thepaperendswith experimentalvalida-
tion (SectionV) over real imagesequencescapturedat 30Hz
in large scaleenvironmentsboth indoorsand outdoors;links
to movies describingthe systemperformanceareprovided.



I I . STATE VECTOR DEFINITION

A constantangularandlinearvelocity modelis usedto code
the hand-heldcameramotion, so the camerastatex v is com-
posedof location:r W C cameraopticalcenter, qW C quaternion
de�ning orientation;velocity v W andangularvelocity ! W :

x v =
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C
A : (1)

At every stepit is assumedan unknown linear andangular
accelerationzero mean Gaussianprocesses,aW and ®W ,
producingan impulseof linear andangularvelocity:
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The stateupdateequationfor the camerais:
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the quaternionde�ned by the ro-

tation vector
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¢ t.
A scene3D point i is de�ned by the dimension6 state

vector (seeFig1):

y i =
¡

x i yi zi µi Ái ½i
¢>

(4)

which modelsa 3D point locatedat (seeFig1):
0
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x i
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zi

1

A +
1
½i

m (µi ; Ái ) : (5)

The statecodesthe ray for the �r st point observationas:
x i ; yi ; zi , the cameraoptical centerwhere the 3D point was
�rst observed; andµi ; Ái azimuthandelevation (codedin the
absolutereference)for the ray directional vector m (µi ; Ái ).
The point depthalongthe ray di is codedby its inverse½i =
1=di .

The featuresy i are consideredas constantalong the esti-
mate. It is assumedno unknown input acting on the feature
location.

The whole statevector x is the composedof the camera
andall the mapfeatures:

x =
¡
x>

v ; y >
1 ; y >

2 ; : : : y >
n

¢>
: (6)

I I I . MEASUREMENT EQUATION

Each observed feature imposesa constraintbetweenthe
cameralocationandthecorrespondingmapfeature(seeFig1).
The rotationis codedin the rotationmatrix RC W

¡
qW C

¢
, de-

pendingon thecameraorientationquaternion.Theobservation

Fig. 1. Featureparametrizationandmeasurementequation.

of a point y i from a cameralocationde�nes a ray expressed
in the cameraframeashC =

¡
hx hy hz

¢>
:

hC = R C W
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which is almostequivalentto thenext expressionif codedwith
di :

hC = R C W
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The differenceis that (7) cancodea point at in�nity using
½i = 0, even in that case,(7) canbe rewritten as:

hC = R C W
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1
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analogously, (8) cancodea point at zerodepthwhile not (7)
nor (9) can.

Thecameradoesnot observe directly hC , but its projection
in the the image accordingto the pinhole model. First, the
projectionis modeledon the normalizedretina:

À =
hx

hz
(10)

º =
hy

hz
(11)

and then it is applied the cameracalibration to producethe
pixel coordinatesfor the observed point:

h =
µ

u
v
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dy

º
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(12)



Fig. 2. Observation of a point by two cameras.The geometryhas been
de�ned with respectto the epipolarplane.Bottom sub�gure shows the same
geometryasobserved by the cameras

where,u0,v0 are the cameracenterin pixels, f is the focal
lengthand,dx anddy the pixel size.

Finally, a radial distortionmodelhasto be appliedin order
to dealwith realcameralenses.In this work we have usedthe
standardphotogrammetrytwo parametersdistortionmodel[6].

It is worth noting, that the measurementequationhas a
sensitive dependency on the parallaxangle® (seeFig.1). In
our calibratedcameracontext, theparallaxis theanglede�ned
by thetwo raysde�ned by thesamescenepointwhenobserved
from two differentview points.At low parallax,both raysare
almostparalleland:

½i

0

@
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@
x i
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zi

1

A ¡ r W C

1

A + m (µi ; Ái ) ¼ m (µi ; Ái )

what implies that equation(9) canbe approximatedby:

hC ¼ R C W (m (µi ; Ái ))

and the measurementequation only provides information
aboutthe cameraorientationandaboutthe directionalvector
m (µi ; Ái ) . This particularcasehasbeenexploited in [8] to
build a visual compassbasedon SLAM.

A. Measurementequationlinearity

We are using the EKF to estimatethe state. The more
linear the measurementequationis, the better performance
is expectedfrom the Kalman �lter . Next, we show how at
low parallax angles,equation(7), codedin ½, improves the
linearizationwhen comparedwith equation(8), codedin d.
Becauseof that we parameterizeon the inversedepth.

We focuson theobservationof a point from two cameralo-
cations(seeFig2) C1 (absoluteframe)andC2. Thereferences
arealignedwith respectto the epipolarplane(de�ned by the
scenepoint and the two camerasoptical centers,see[4] for
a detailedexplanation)to simplify the measurementequation.
TheZ axisis alignedwith theray de�ned by theopticalcenter
and the observed point. The Y axis is normal to the epipolar
plane.Given a point imagedin C1 as xC1 its imageon C2,
xC2 is constrainedto be (if in front of the cameras)on the

epipolarsegmentde�ned by the epipole(the imageof C1 on
C2) and x1 (the imageon xC2 if the scenepoint whereat
in�nity). Hencethe measurementequationis de�ned by:

y =
µ

0; 0; 0; 0; 0;
1

dc1

¶ T

(13)

R C2 C1 =

0
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¡ sin® 0 cos®

1

A (14)

r C W = (r x ; 0; r z ) : (15)

Applying equation (10) to the two different parameter-
izations, (7) or (8) we obtain correspondingmeasurement
equationsfor the two parameterizations:À(½) andÀ(d).

We proposeto comparethe two parameterizationsin terms
of their linearity, �rst we focus on À(½) then the analysisis
extendedto À(d) and �nally a comparisonis made.

If À(½) were perfectly linear in ½, then @À
@½ should be

a constant,modeling ½ as Gaussian,its variation around
the linearization point ½0 is expectedto be in the interval
[½0¡ 2¾½; ½0+ 2¾½]. Next weanalyzethe�rst derivativechange
in that interval.

A �rst order approximationfor the �r st derivative in the
interval [½0 ¡ 2¾½; ½0 ¡ 2¾½] is given by the �rst orderTaylor
expansionaround½0:
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We proposeto use the dimensionlessratio betweenthe
derivative incrementat the interval extreme @2 À

@½2

¯
¯
¯
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2¾½ and

the derivative in the linearizationpoint @À
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¯
¯
¯
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as a linearity

measurement.So:
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@À
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¼ 0 (17)

in order to have an acceptablelinearization.
We computethe dimensionlessratio for the ½parametriza-

tion:
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½0
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µ
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Which says that, at low parallax, and when dC 1
dC 2

¼ 1, the

term
³

1 ¡ dC 1
dC 2

cos®
´

¼ 0 and low linearizationerror canbe

achieved even if 2¾½

½0
À 0. So hugeinitial uncertaintyregions

can be codedGaussianly. For example,considering® = 5±

¾½ = 0:5; ½0 = 0:5 the codedacceptanceregion extendsfrom
[0:67; 1 ], and the ratio is only 0:8%.

When the parallax angle increases,
³

1 ¡ dC 1
dC 2

cos®
´

also

increases,but the uncertaintyin ½reducesand hence 2¾½

½ is
reducedandcondition (18) is ful�lled even with moderateor
high parallaxangles.

Whenwe compute(17) for the d parametrization:

2¾d

dC2

(2 cos®) ¼ 0 (19)



Fig. 3. Simulation of a point reconstructionfrom two low parallax
observations.It is show how thereconstructionerrorcodedin ½;µ is Gaussian
while codedas cartesianX Z is not Gaussian.Red ellipsesrepresentlinear
uncertaintypropagation from the raysGaussianerror

so,at low parallax,cos® ¼ 1, andhencea goodlinearization
canbe achieved only if:

2¾d

dC2

¼ 0 ) ¾d ¿ dC2 (20)

which makesdif�cult codinghugeinitial uncertaintyregions.
For example,® = 5±; dC1 = 20; ¾d = 10 codean acceptance
interval [0; 40] and the ratio is 200%.

As an example of the improvement in the measurement
equationlinearization,�gure 3 shows a simulation of a low
parallax (0:5±) point reconstructionwhen observed by two
camerasat known locations.The camerasobserve the rays
with a Gaussianerror, ¾ = 0:1±. It is shown the 3D point
reconstructionmodeledwith XZ cartesiancoordinatesor with
½;µ coordinates.The95%uncertaintyregion propagatedfrom
the imageerror is plottedaswell. It is shown the Gaussianity
in ½;µ but not in X Z .

IV. FEATURE INITIALIZATION

It is a remarkablequality of our proposalthat new features
are initialized using only one image, the image where the
feature is �rst observed; the initialization includesboth the
feature state initial values and the covariance assignment.
Despitetheinitial uncertaintyregioncoversahugerangedepth
([1; 1 ] in our experiments)becauseof the low linearization
errors(18) the uncertaintyis successfullycodedasGaussian;
onceinitialized, thefeatureis processedwith thestandardEKF
prediction-updateloop.

It is worth noting, that thanksto the proposedparametriza-
tion, while the featureis observed at low parallax,the feature
will be usedmainly to determinethe cameraorientationbut
the featuredepthwill be kept quite uncertain,including in its
uncertaintyregion the even in�nity; if the cameratranslation
is ableto producea parallaxbig enoughthenthefeaturedepth
estimationwill be improved.

The initial location for the observed featureis de�ned as:

ŷ
³

r̂ W C ; q̂W C ; h; ½0

´
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¡
x̂ i ŷi ẑi µ̂i Á̂i ½̂i

¢>

(21)

from the cameralocation estimateat step k (the k indexes
have beendroppedfor simplicity), and the observation of a
new feature:h =

¡
u v

¢>
and,the initial ½0.

The projectionray initial point (seeFig1) is directly taken
from the currentcameralocationestimate:
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kjk (22)

The projectionray directionalvector is computedfrom the
observed point, expressedin the absoluteframe:

hW = R W C
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being À and º the image in the normalizedretina. Despite
beinghW a non-unitarydirectionalvector, the anglescanbe
derived as:
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The covariance for x̂ i ; ŷi ; ẑi ; µ̂i , and Á̂i is derived from
the image measurementerror covarianceR j and the state
covarianceestimateP̂ k jk .

The initial value for ½0 is derived heuristicallyto cover in
its 95% acceptanceregion a working spacefrom in�nity to
a prede�nedclosedistance,dmin expressedas inversedepth:h

1
dmin

; 0
i
, so:

½̂0 =
½min

2
¾½ =

½min

4
½min =

1
dmin

: (25)

In our experimentsdmin = 1; ½̂0 = 0:5; ¾½ = 0:25.
The statecovarianceafter featureinitialization is:
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V. EXPERIMENTAL RESULTS

The performancehasbeentestedon real imagesequences
acquiredwith hand-heldlow costUnibrain IEEE1394camera,
with a 90± �eld of view and320£ 240resolutionmonochrome
at 30 fps.

Our current experimentsare run in Matlab; however we
believe that 30Hz performancecould be achieved in real
time.CurrentC++ implementationsfor monocularSLAM with
dimension3 for every point featurecanrun at 30 Hz. for maps
up to 100 features.Our featureis dimensionsix. However our
systemoffers computationalload advantages:i) the simple
feature intialization is cheaperthan the current approaches.
ii) Several featurescan initialized from a frame and rotation
information is obtained from the secondtime a feature is



Fig. 4. First (a) and last((b) imagesof the sequence.To display a map that containsfeaturesat very different depths,two top views at different scales
are plotted.The top view plotted at bottom left sub�gure displaysthe closefeatures;the top view plotted at the bottom right sub�gure displaysthe distant
features.Both top views compareour inversedepthGaussianparametrizationwith the standardXYX Gaussianparametrizationby the comparisonof their
uncertaintyregions.The Gaussianinversedepthacceptanceregions are plotted in XYZ as a cloud of black dots numericallypropagatedfrom the Gaussian
6 dimensionalsuperellipsoidalacceptanceregion codedin inversedepth.The standardGaussianXYZ acceptanceellipsoidsare linearly propagatedfrom the
6 dimensionalGaussiancodedin inversedepthby meansof the Jacobian.The cameratrajectoryand its uncertaintyis shown in blue. At the initial step(a),
most the featuresare at low parallax.At the �nal step(b),parallaxenoughhasbeengatheredfor the majority of the featuresand the featureuncertaintyis
low.

observed, becauseof that the searchregions for matchesare
reducedand hencethe processingtime is reduced.iii) when
thefeaturesareobservedwith amoderateparallax,thefeatures
canbe codedwith a dimension3 XYZ state.So we expectto
achieve real time performanceat 30 Hz. for reasonablemap
sizes.

The �rst experiment, is a 500 framesmovie of a lecture
theater. The secondexperiment is 870 frames movie of an
outdoorsscenewherecloseobjectstemporarilyoccludedistant
features.

A. Indoor sequence

The movie showing the input sequence
and the estimation history can be reached at
http://webdiis.unizar.es/%7Ejosemari/in.avi

The purposeof the experimentwas to analyzethe perfor-
mancein anenvironmentwith featuresat differentdepths.We
particularlyanalyzeinitialization for threefeaturesinitialized
in the sameframebut locatedat differentdepths.

Figure 4 shows the imagewherethe analyzedfeaturesare
initialized (frame18 in thesequence)andthelast imagein the
sequence;the top view of themapwith the featurecovariance
is plotted as well. To display a map that containsfeatures
at very different depths, two top views at different scales
are plotted. The top view plotted at bottom left sub�gure
displaysthe closefeatures;the top view plottedat the bottom
right sub�gure displaysthe distant features.Both top views
compareour inversedepthGaussianparametrizationwith the
standardXYX Gaussianparametrizationby the comparison
of their uncertaintyregions. The Gaussianinversedepth ac-
ceptanceregions are plotted in XYZ as a cloud of black
dotsnumericallypropagatedfrom theGaussian6 dimensional

superellipsoidalacceptanceregion coded in inverse depth.
ThestandardGaussianXYZ acceptanceellipsoidsarelinearly
propagatedfrom the 6 dimensionalGaussiancodedin inverse
depthby meansof the Jacobian.

At the beginning of the sequence,the depthuncertaintyis
huge,even including the in�nity , dueto the small translation,
no parallaxis observed in the features.It is worth noting that
Gaussianityin inversedepthis not mappedto a Gaussianin
XYZ, so the red ellipsoidsarefar from representingthe XYZ
distribution error, especiallyin depth.As statedby equation
(18), is at low parallaxwhentheinversedepthparametrization
playsa key role.

As the cameramoves, the translationproducesparallax,
the featuresdepth estimateimproves, so in the last image,
most of the map featureshave reducedtheir uncertainty. As
a result the both the uncertaintyin XYZ andin inversedepth
are Gaussianand the black and the red uncertaintyregions
becomecoincident.

Figure5 focuson the evolution of the estimatecorrespond-
ing to features11, 12 and 13 at frames1, 10, 25, 50, 100
and 200 countedsince feature initialization. In top view it
is plotted both the XYZ Gaussianuncertainty(red ellipsoid)
and the region in inversedepth(black dots); the parallaxfor
eachfeatureat every stepis alsodisplayed.Wheninitialized,
the ½Gaussian95% acceptanceregion includes½= 0 so the
in�nite is considered.The correspondingacceptanceregion
in depth is quite asymmetric,excluding low depthsbut that
extends at high depth down to in�nity , and even negative
depthscorrespondingto negative ½(negative depthsare not
represented).As raysproducingbiggerparallaxaregathered,
the uncertaintyin ½becomesnarrower but still mapsto a non
Gaussiandistribution in XYZ. Eventually, both ½and XYZ



Fig. 5. Featureinitialization. Every row shows the evolution of a featureestimationin top view. Pereachfeature,the estimationafter 1, 10, 25, 50, 100 and
200 framessinceinitialization are plotted; the parallaxbetweenthe initial observation and the currentframe is detailedon top of every subplot.Black dots
area numericalrepresentationfor the 95% uncertaintyregion gaussianin the inversedepth.The red ellipsoid is the uncertaintyregion codedasGaussianin
XYZ.

regions becameboth narrow and Gaussianbecauseenough
parallaxis available.

Let us focus on the distant features.The cameratrans-
latesafter initialization but this translationdoesnot produce
parallax becausethe feature is distant. This information is
codedin ½shifting its value towardszero and narrowing its
uncertainty; in the XYZ spacethis implies having still an
asymmetricalacceptanceregion but thatnow excludesthe low
depths.Intuitively, if thecamerahastranslatedandno parallax
hasbeendetected,then the observed featurecannotbe close,
so even if the depthcannotbe estimatedbecausethe feature
is distant,someinformationaboutits depthhasbeencodedin
the estimate.

As the estimationproceeds,whenenoughparallaxis even-
tually available, the estimationevolves to a narrow Gaussian
in ½that whentransformedto XYZ cutsdown the probability
correspondingto high depthscollapsing�nally to a Gaussian
estimateboth in inversedepthand in XYZ.

B. Outdoorsequence

Given thesystemability to dealwith both closeanddistant
features,it hasa niceperformanceoutdoors.Thewholeexper-
iment sequencealongwith the estimatedmapcanbe reached
at http://webdiis.unizar.es/%7Ejosemari/out.avi .
Figure 6 shows three frames of the movie illustrating the
performance.It displaysaswell the mapafter processingthe
whole movie. As in SectionV-A, the maprepresentedby two
top views at differentscales.

Two of the problemsthat have to be tackledoutdoorsare

distantfeaturesandpartial occlusiondueto the fact that there
areobjectsat quite differentdepthsdisplayingratherdifferent
parallaxas the cameramoves.

For most of the features,the cameraends up gathering
enoughparallaxto estimatetheir depth.However, being out-
doors,thereare ratherdistantfeaturesproducingno parallax.
It shown how distant features,e.g 24 or 39, in the buildings
at thebackgroundarepersistentlytrackedalongthesequence;
however the depthcannotbe estimated.The estimationerror
codedas gaussianin inversedepth is successfullymanaged
by the EKF, and the featuresbehaves as points at in�nity . It
can be noticedas well the poor error representationif coded
asGaussianin XYZ.

Regarding partial occlusion,The signaledfeaturein Fig6,
labeledas36, shows the systemability to reobserve features,
from a differentpoint of view after long partial occlusion.

VI . CONCLUSION

We have presenteda parametrizationfor monocularSLAM
which permitsoperationbaseduniquelyon the standardEKF
prediction-updateprocedureat every step,unifying initializa-
tion with the tracking of known features.Our inversedepth
parametrizationfor 3D points allows uni�ed modelling and
processingon for any point in the scene,close or distant,
or even at `in�nity'. In fact, close,distant or just-initialized
featuresareprocessedwith the routineEKF prediction-update
loop without makingany binary decisions.

The key factor is that dueto the inversedepthparametriza-
tion our measurementequation has low linearization error



Fig. 6. Sub�gures(a) and(b) displayframes197and454,showing how sceneswith objectsat quitedifferentdistancesarelikey to producepartialocclusion.
The systemcannicely reobserve themafter the occlusionasshown in the signaledfeature(labeledas36) on the treebasis.Sub�gure (c) Shows the system
ability to track successfullydistantfeaturesalonghundredsof frames,beingGaussianin lambdabut not Gaussianin XYZ. The lines pairs the imageof the
featureswith the top view reconstruction.

at low parallax,and hencethe estimationuncertaintyis ac-
curately modeledas Gaussianin inverse depth. In Section
III-A we presenteda simpli�ed model which approximately
quanti�es the linearization error. It provides a theoretical
understandingof the impressive performanceof theEKF with
the proposedparametrization.

The inversedepth parametrizationimplies a dimension6
statevectorperfeaturecomparedto dimension3 for Euclidean
XYZ coding. This doubles the the size of the map state
vector, andhenceproducesa 4-fold increasein computational
cost if all featuresretain the new parametrization.However,
our experimentsshow that the uncertaintiesin close feature
locationscollapseafter several framesto accurateGaussian
distributionsin Euclidean3D space,indicatingtheopportunity
to safelyconvert thesefeaturesback to an XYZ parametriza-
tion and return to dimension3, meaningthat the long-term
computationalcost would not signi�cantly increase.Further,
however, the value of immediateinitialization that the new
parametrizationprovidesmeansthatright throughtrackingthe
amountof uncertaintyin the systemwill be lower (removing
jitter from camerapose estimation) and this will lead to
computationalbene�ts in termsof smallersearchregionsand
improved imageprocessingspeed.

The experimentspresentedhave validatedthe methodwith
real imagery, using a hand-heldcameraas the uniquesensor
both indoorsandoutdoors.Our currentexperimentshave been
run off-line programmedin Matlab, but we are con�dent in
achieving real-time performancein C++ in the near future
for numbersof featuresup to perhaps100 using currentPC
hardware — enoughto map large roomsor partsof outdoor

scenesin practicalscenarios.
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