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Abstract— Stable, nonlinear closed-loop control of a gravity-
assisted underactuated robot arm with2

nd order non-holonomic
constraints is presented in this paper. The joints of the hyper
articulated arm have no dedicated actuators, but are activated
with gravity. By tilting the base link appropriately, the gr avita-
tional torque drives the unactuated links to a desired angular
position. With simple locking mechanisms, the hyper articulated
arm can change its configuration using only one actuator at the
base. This underactuated arm design was motivated by the need
for a compact snake-like robot that can go into aircraft wings
and perform assembly operations using heavy end-effecters. The
dynamics of the unactuated links are essentially2nd order non-
holonomic constraints, for which there are no general methods
for designing closed loop control. We propose an algorithm for
positioning the links of an n-link robot arm inside an aircraft
wing-box. This is accomplished by sequentially applying a closed
loop point-to-point control scheme to the unactuated links. We
synthesize a Lyapunov function to prove the convergence of
this control scheme. The Lyapunov function also provides us
with lower bounds on the domain of convergence of the control
law. The control algorithm is implemented on a prototype 3-
link system. Finally, we provide some experimental resultsto
demonstrate the efficacy of the control scheme.

I. I NTRODUCTION

Most assembly operations in aircraft manufacturing are cur-
rently done manually. Although aircraft are small in lot size,
numerous repetitive assembly operations have to be performed
on a single aircraft. The conditions are often ergonomically
challenging and these result in low productivity as well as
frequent injuries. Thus, there is a need to shift from manual
assembly to automated robotic assembly. The following wing-
box assembly illustrates this.

Fig. 1 shows a mock-up of the cross-section of an air-
craft wing-box. Several assembly operations, such as burr-less
drilling and fastener installations, have to be carried outinside
the wing-box after the upper and lower skin panels are in
place. The interior of the wing-box is accessibleonly through
small portholes along its length. The portholes are roughly
rectangular with dimensions of 45 cm by 23 cm. The wing-
box also has a substantial span, which varies from 1 m to 3
m depending upon the size of the aircraft. The height of the
wing-box varies from about 20 cm to 90 cm, depending upon
the size of the aircraft. Presently, the assembly operations are
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Fig. 1. Cross section of aircraft wing-box

carried out manually. A worker enters the wing-box through
the small portholes and lies flat on the base, while carrying
out the assembly operations. Evidently, the working conditions
are ergonomically challenging.

Fig. 2. Structure of robot arm

We have proposed a “Nested-Channel” serial linkage mech-
anism capable of operating inside an aircraft wing box [20].
The links are essentially C-channels with successively smaller
base and leg lengths, as shown in Fig. 2. They are connected



by 1 d.o.f rotary joints, the axes of which are parallel. The use
of channel structures is advantageous for a number of reasons.
The channels can fold into each other resulting in an extremely
compact structure during entry through the porthole, as shown
in Fig. 2. Once inside the wing-box, the links may be deployed
to access distal points in the assembly space. The open channel
structure also facilitates the attachment of a payload to the last
link without increasing the overall dimensions of the arm.

The lack of a compact, powerful and high stroke actuation
mechanism is the primary bottleneck in the development of the
hyper articulated arm. In our previous work, we have proposed
an underactuated design concept, which obviates the use of
dedicated actuators for each joint. Instead, we utilize gravity
for driving individual joints. This drastically reduces the size
and weight of the manipulator arm. The methodology requires
a single actuator for tilting the arm at the base. This single
actuator can be placedoutsidethe wing-box and can be used
in conjunction with simple locking mechanisms to reconfigure
the serial linkage structure.

The reconfiguration scheme is illustrated in Fig. 3, which
shows a schematic of ann-link robot arm. The base link (link
1) is the only servoed link. It may be rotated about a fixed axis
Z0, which is orthogonal to the direction of gravity. All other
joint axes (Zj , j 6= 0) are orthogonal toZ0. They are equipped
with simple on-off locking mechanisms only. The goal is to
rotate linki aboutZi−1 by actuating link1 appropriately. All
unactuated links except linki are locked. Link1 starts in the
vertical upright position. Then it is rotated, first clockwise
and then counter-clockwise, before being brought back to its
vertical position. This tends to accelerate and then decelerate
link i due to gravity and dynamic coupling with link1. By
controlling the tilting angle of link1, link i can be brought
to a desired position with zero velocity. Linki may be locked
thereafter. This procedure can be repeated sequentially for
the other unactuated links. Contraction of the arm can be
performed by reversing the above deployment procedure.

A considerable amount of work has been done in the area of
underactuated systems [3]-[10]. Most of the work in this area
deals with the planar (vertical or horizontal) case where the ac-
tuated and unactuated joint axes are parallel. In our approach,
the actuated and unactuated joints are orthogonal and we can
modulate the effects of gravity by controlling the actuated
joint. The presence of gravity renders the nonlinear system
locally controllable, as can be seen from local linearization.
This ensures that we can go from any initial point to any final
point in the configuration space of the unactuated coordinate.
However, it is inefficient to patch together local linear control
laws to traverse the entire configuration space. Moreover, any
control design must ensure that the range of motion of the
actuated coordinate is small, because the arm operates inside
an aircraft wing-box. Earlier approaches [8]-[10] to the control
of underactuated systems generate constructive global control
laws applied to specific systems. Such constructive control
laws cannot be directly applied to our system.

In our earlier work [21], we have proposed several motion
planning algorithms suitable for the gravity-assisted under-

actuated robot arm. They include parameterized trajectory
planning for the actuated joint and feed-forward optimal
control. These areopen-loop techniques and work well in
the absence of disturbances. Also, an exact knowledge of the
system dynamics is needed. In particular, a good estimate of
Coulomb friction is necessary for accurate position control.
However, it is unrealistic to assume prior knowledge of such
state dependent unknown parameters. This necessitates the
development of aclosed-loopcontrol strategy for our system.

In this paper, we first explore the system dynamics to
develop an understanding of the relationship between the ac-
tuated and unactuated degrees of freedom. We make important
approximations to capture the dominant effects in the system
dynamics so as to facilitate control design. Next, we propose
a closed loop control strategy for point to point control of
the unactuated coordinate. We synthesize a Lyapunov function
to prove the convergence of the control law. The Lyapunov
function also provides us with lower bounds on the domain
of convergence of the control law. Finally, we present some
experimental results which demonstrate the efficacy of the
control law.

II. SYSTEM DYNAMICS

Fig. 3 shows a schematic of ann-link robot arm with
one actuated (link 1) andn − 1 unactuated links.X0Y0Z0

denotes the World Coordinate Frame. The coordinate frames
are attached according to the Denavit-Hartenberg convention
with the ith coordinate frame fixed to theith link. We seek
rotation of link i (i ≥ 2) about the axisZi−1 by rotating link
1 about the horizontal axisZ0. The angleθ1 denotes the tilt
of link 1 relative to the fixed vertical axisX0 and the angle
θi denotes the angular position of linki relative to link i− 1.

Fig. 3. Schematic ofn-link robot arm

In the current setup, all unactuated links except linki are
locked. The system dynamics may be written as:
[

H11 Hi1

Hi1 Hii

] [

θ̈1
θ̈i

]

+

[

F1

Fi

]

+

[

G1

Gi

]

=

[

τ1
0

]

(1)

θj = θj0 j 6= 1, i (2)



Here q = [θ2, . . . , θn]
T , [Hkl(q)] is the n × n symmet-

ric positive-definite inertia matrix,[F1(q, q̇, θ̇1), Fi(q, q̇, θ̇1)]
T

represents the2 × 1 vector of centrifugal and coriolis effects
and [G1(q, θ1), Gi(q, θ1)]

T represents the2 × 1 vector of
gravitational effects. The torque on the actuated joint axis Z0

is represented byτ1. We note thatθj0 is a constant because
the jth link (j 6= 1, i) is locked. UsingFi(q, q̇, θ̇1) = fi(q)θ̇

2
1

andGi(q, θ1) = gi(q)g sin θ1, the second row of (1) may be
written as:

θ̈i = −
Hi1(q)

Hii(q)
θ̈1 −

fi(q)

Hii(q)
θ̇2
1
−

gi(q)

Hii(q)
g sin θ1. (3)

As shown in [3], (3) is a2nd order non-holonomic constraint
and thus cannot be integrated to expressθi as a function of
θ1. Also, at any given time only one unactuated link (linki) is
in motion. Thus, then-link problem can be treated as a2-link
problem without loss of generality. Hereafter, to simplifythe
algebra, we deal exclusively with the2-link problem. For the
2-link case, we may write (3) as:

θ̈2 = −
H21(θ2)

H22(θ2)
θ̈1 −

f2(θ2)

H22(θ2)
θ̇2
1
−

g2(θ2)

H22(θ2)
g sin θ1, (4)

where:

H12 =M2(zc2 + d2)(yc2 cos θ2 + (xc2 + a2) sin θ2)

+ Iyz2 cos θ2 + Ixz2 sin θ2, (5)

H22 =Izz2 +M2((xc2 + a2)
2 + y2

c2), (6)

f2 =Ixy2 cos 2θ2 + 0.5(Iyy2 − Ixx2) sin 2θ2

+M2(a1 + (xc2 + a2) cos θ2 − yc2 sin θ2)

((xc2 + a2) sin θ2 + yc2 cos θ2), (7)

g2 = −M2((xc2 + a2) sin θ2 + yc2 cos θ2). (8)

M2 denotes the mass of link2. Ixy2 etc. denote the moments
of inertia of link 2 about a centroidal coordinate frame. The
parametersxc2, yc2, zc2 are the coordinates of the C.O.M of
link 2 in the link-attached frame. Also,a2, d2 refer to the
corresponding Denavit-Hartenberg parameters.

As seen in the next section, we may choose the control
torqueτ1 in (1) so as to converge exponentially to any bounded
trajectory for the actuated coordinateθ1. We refer to θ1
and its derivatives (̇θ1, θ̈1) in (4) as thepseudo input. The
terms involvingθ2 (H12/H22, f2/H22 andg2/H22) in (4) are
referred to as themodulating coefficients. Thesemodulating
coefficientsscale the various components of thepseudo input
(θ1, θ̇1, θ̈1) depending on the position of the unactuated link
2.

Fig. 4 shows the variation of themodulating coefficients
in the configuration space of the unactuated coordinate. The
simulation is based on parameter values taken from a2-
link version of our prototype system shown in Fig. 7. The
dominant term is the modulating coefficient due to gravity
(g2/H22), followed by the contribution of the inertial coupling
(H12/H22) and finally the contribution of the centrifugal
coupling (f2/H22). In view of these observations, we make
the following assumptions:

Fig. 4. Comparison of modulating coefficients over configuration space

1. Inertial coupling is neglected.
2. Centrifugal coupling is neglected.

These assumptions are valid as long as the gravitational com-
ponent of acceleration|g sin θ1| is of the same (or higher) order
of magnitude as compared to|θ̈1| and |θ̇2

1
|. We validate these

approximationsa posteriori in the section on experimental
results. Under these assumptions, the dynamics (4) may be
simplified as:

θ̈2 = −
g2(θ2)

H22

g sin θ1 (9)

Using (6) and (8), we may write (9) as:

θ̈ = A sin θ sin θ1, (10)

where:

θ = θ2 + α,

A =
M2g

√

y2
c2 + (xc2 + a2)2

Izz2 +M2(y2

c2 + (xc2 + a2)2)
,

α = atan2(yc2, xc2 + a2).

It is worthwhile to examine the physical significance of
the dynamics (10). It represents a pendulum in a modulated
“gravity” field. The strength of this field can be modulated as
g sin θ1 by controlling the angleθ1. The pendulum behaves
as a regular or inverted pendulum depending on the sign of
sin θ sin θ1. Also, the “gravity” field may be switched off by
settingθ1 = 0. This gives rise to a continuum of equilibria
given by [θ = θ̄, θ̇ = 0, θ1 = 0], whereθ̄ is arbitrary.

III. C LOSED LOOPCONTROL

A. Control Law

In this section, we propose a closed loop control law for
point-to-point control of the unactuated link. The goal is to
transfer the unactuated link from an initial angular position θ0
(= θ20+α) with zero initial velocity to a final angular position
θf (= θ2f +α) with zero final velocity. We treat the actuated
coordinateθ1 as apseudo inputand prescribe a feedback law
in terms of thepseudo input. The formal justification of this
treatment is deferred to Appendix A.



From (10), we see that the inputθ1 has a bounded effect on
the acceleration because| sin θ1| ≤ 1. We propose a feedback
control law of the form:

sin θ1 =
sin(k1(θf − θ) − k2θ̇) sin θ

k
, (11)

wherek ≥ 1 and k1, k2 > 0 are constants. Alsoθf is the
desired final angular position of the unactuated link. We note
that θ1 exists because| sin(k1(θf − θ) − k2θ̇) sin θ/k| ≤ 1.
Using (11) in (10) we get:

θ̈ =
A

k
sin(k1(θf − θ) − k2θ̇) sin2 θ. (12)

The intuition behind the control law (11) is to introduce a
virtual non-linear spring and damper into the system. These
virtual elements introduce a stable equilibrium point[θ, θ̇] =
[θf , 0] in the system dynamics. In the vicinity of the equilib-
rium point [θf , 0], the dynamics (12) may be approximated
as:

θ̈ ≈
A sin2 θf

k
(k1(θf − θ) − k2θ̇). (13)

The ratios k1/k and k2/k are measures of stiffness and
damping respectively. Further, the multiplicative termsin θ in
(11) ensures that thesign of the acceleration̈θ in (12) is not
affected by the regime of motion (sin θ > 0 or sin θ < 0). It
is only affected by the deviation from the desired final state
[θ, θ̇] = [θf , 0]. These intuitive notions are formalized in the
proof below.

B. Proof of Convergence

Let us consider a domainΩ = {[θ, θ̇] : |k1(θf −θ)−k2θ̇| ≤
π/2 and |θ| ≤ π/2}, and a Lyapunov function candidate
(defined onΩ ):

V (θ, θ̇) =
B

k1

∫ ψ

0

sinx sin2(
x+ k2θ̇

k1

− θf )dx+
1

2
θ̇2, (14)

whereψ = k1(θf − θ) − k2θ̇, B = A/k.
Proposition:
The control law (11) guaranteeslocal asymptotic convergence
of the state[θ, θ̇] in (12) to [θf , 0] (θf 6= 0). Further,∃ l > 0
for which a domain of attraction of the control law is the
largestconnected regionΩl = {[θ, θ̇] : V (θ, θ̇) < l} ⊂ Ω.
Proof:
The scalar functionV (θ, θ̇) defined in (14) is positive definite
in Ω because it satisfies the following conditions:

1. V (θf , 0) = 0.
2. V (θ, θ̇) > 0 in Ω ∀ [θ, θ̇] 6= [θf , 0].

The1st condition follows from direct substitution in (14) and
noting that[θ, θ̇] = [θf , 0] implies ψ = 0. The 2nd condition
follows by noting thatsinx > 0 for π/2 ≥ x > 0 andsinx <
0 for −π/2 ≤ x < 0. Thus, for0 < |ψ| ≤ π/2:

∫ ψ

0

sinx sin2(
x + k2θ̇

k1

− θf )dx > 0.

Henceforth, we abbreviateV (θ, θ̇) as V . It is convenient to
rewrite (14) as:

V =
B

2
[
k1(cosψ cos 2θ − cos 2( ψ

k1
+ θ)) − 2 sinψ sin 2θ

k2
1
− 4

]

+
B

2k1

(1 − cosψ) +
1

2
θ̇2, k1 6= 2. (15)

The time derivative of (15) is given by:

V̇ =
∂V

∂θ
θ̇ +

∂V

∂θ̇
θ̈

= −
B2k2 sin2 θ

k1(4 − k2

1
)
[(2 − k2

1 sin2 θ) sin2 ψ

+ k1 sinψ(sin 2θ cosψ − sin 2(
ψ

k1

+ θ))] (16)

It may be shown thaṫV ≤ 0 in Ω for all k1, k2 > 0. In the
interest of brevity, we just prove this assertion fork1 = 1 and
k2 > 0. We further show that∃ l0 > 0, such thatΩl0 ⊂ Ω.
Substitutingk1 = 1 in (16) and after some rearrangement we
get:

V̇ = −
B2k2

3
sin2 θ(1 − cosψ)[3 sin2 θ cosψ(1 − cosψ)

+ (2 sin θ cosψ + sinψ cos θ)2 + (sinψ cos θ + sin θ)2

+ sin2 θ cos2 ψ] (17)

We note the0 ≤ cosψ ≤ 1 in Ω. Thus, the expression in
square brackets in (17) is always non-negative. Hence,V̇ ≤ 0
in Ω. Also, from (17):

V̇ = 0

⇒ θ = 0 or ψ = 0 (18)

Using (18) in (12) we get:

V̇ = 0 ⇒ θ̈ = 0 (19)

From (18) and (19), the largest invariant set whereV̇ = 0 is
given by{[θ, θ̇] = [0, 0] ∪ [θf , 0]}. Using La Salle’s invariant
set theorem, we conclude that the state[θ, θ̇] converges to[θ =
0, θ̇ = 0] or [θ = θf , θ̇ = 0].

The choice ofl0 is illustrated graphically in Fig. 5. We used
(14) for the simulation with the parametersk1 = 1, k2 = 1,
B = 32 andθf = 30◦. For these parameters, we obtainl0 =
0.54 andΩl0 is the largest connected region withinΩ such that
V (θ, θ̇) < l0. Once again, it follows fromLa Salle’s invariant
set theoremthat Ωl0 is a domain of attraction for the largest
invariant set.

It remains to establish the stability of the equilibrium points.
We show that[θ = 0, θ̇ = 0] is unstable and[θ = θf , θ̇ = 0]
is a stable equilibrium point fork1 = k2 = 1. We note that
there are other choices ofk1, k2 for which these conclusions
hold and the current choice only serves to simplify the algebra.
From (15):

∂2V

∂θ2
= 0 and

∂3V

∂θ3
6= 0 at [θ = 0, θ̇ = 0].

This implies that[θ = 0, θ̇ = 0] is not a local minimum



Fig. 5. Domain of Convergence

Fig. 6. Stable and unstable equilibria of system dynamics

for V and thus anunstableequilibrium point. We note that
this conclusion does not follow from linearization becausethe
linearized system has zero eigenvalues at[θ = 0, θ̇ = 0]. Once
again, from (15):

∇2V =

[

B sin2 θf B sin2 θf
B sin2 θf B sin2 θf + 1

]

at [θ = θf , θ̇ = 0].

This implies that∇2V is positive definite and[θ = θf , θ̇ = 0]
is a local minimum forV and thus astableequilibrium point.
These ideas are illustrated in Fig. 6 for the casek1 = 1,
k2 = 1, B = 32 and θf = 30◦. Thus the state[θ, θ̇] in (12)
converges to[θf , 0] as long as it does not start from[0, 0].

IV. I MPLEMENTATION AND EXPERIMENTS

We conducted position control experiments on a prototype
system with 3 links which is shown in Fig. 7. The link
mechanism, which operates inside the wing-box, is shown
in Fig. 7a. The links are essentially C-channels which are
serially connected by 1 d.o.f rotary joints. Link1 is the only
servoed link. Links2 and3 are equipped withon-offpneumatic
brakes. The relative angular position of the links are measured
using optical encoders placed at the rotary joints. They have
a resolution of 1000 ppr.

The actuation mechanisms for link1 operate completely
outside the wing-box and are shown in Fig. 7b. They comprise
a servoedtilting mechanismand a servoedazimuthal position-
ing mechanism. The tilting mechanismis used to tilt link1

relative to a vertical axis. Depending on the state (on or off)
of the pneumatic brakes, the unactuated links (2 and3) may be
deployed by exploiting gravity and dynamic coupling with link
1. The azimuthal positioning mechanismis used for angular
positioning of the entire link mechanism inside the wing-box
and serves to expand the workspace of the robot arm. This
mechanism is used after the links have been deployed using
thetilting mechanism. The pneumatic brakes are in theonstate
when theazimuthal positioning mechanismis in use. Both
mechanisms have harmonic drive gearing (100:1) coupled to
AC servomotors (0.64 Nm, 3000rpm). In the experiments that
follow, the azimuthal positioning mechanismis not used. We
only use the tilting mechanism to deploy the links and verify
the proposed control law.

Fig. 7. 3-link prototype arm

The dynamical system (10) corresponding to our experimen-
tal setup has the parametersA = 32.8s−2 and α = −3.2◦.
The experimental results are illustrated in Fig. 8. The goal
was to move link2 from an initial positionθ20 = 35◦ to a
desired final position ofθ2f = 50◦. Link 3 was kept fixed
at 30◦ relative to link 2. The controller parameter values in
(11) were set atk = 12, k1 = 1.2 andk2 = 0.2s. It may be
verified that these parameters ensure that the initial position
lies within the domain of convergence. The scaling factor of
k = 12 was used to restrict the amplitude ofθ1 to less than
1.5◦. A small amplitude ofθ1 is very important in practice
because the arm operates inside an aircraft wing. There are
other choices ofk1 andk2 which ensures convergence of the
control law. For example, a higher value ofk2 would imply
less overshoot and slower convergence.

The actual final position of the arm wasθ2 = 50.5◦ as
shown in Fig. 8a. The tilt trajectory of link1 is shown in



Fig. 8b. The maximum tilt is1.3◦ which is small enough for
operation inside the wing-box. Fig. 8c shows a comparison of
the gravitational, inertial and centrifugal contributions on the
angular acceleration of link2. The gravitational contribution
clearly dominates the other effects. This demonstrates,a
posteriori, the validity of the approximations made in our
dynamic modeling.

Fig. 8. Position control experiment on3-link prototype

The control law (11) demonstrates reasonable positioning
accuracy of the unactuated links. The performance is achieved
without any knowledge of Coulomb friction or the dynamics
introduced by the flexible hose supplying air to the pneumatic
brakes. This is a significant improvement compared to the open

loop motion planning schemes explored in our earlier work.
Such schemes required frequent tuning of friction coefficients
and other parameters related to the dynamics of the hose.

Fig. 9. Experimental results for modified control law using sigmoidal
reference trajectory

A primary drawback of the proposed control law arises from
the conflicting requirements of small amplitude of tilt of link
1 and small steady state error for link2. This is readily seen
from (11). If link 2 starts atθ0 with zero initial velocity, the
initial tilt of link 1 is given by:

sin θ10 =
sin(k1(θf − θ0)) sin θ

k
(20)

θ10 may be large if the amplitude of motion|θf −θ0| is large.
To achieve smaller values ofθ10, the scaling factork may be
increased or the gaink1 may be reduced. As noted before, the
ratio k1/k is a measure of the stiffness of the virtual non-liner
spring introduced by the controller. Increasingk and reducing
k1 would result in lower stiffness. This would lower the speed
of convergence and also increase the steady state error induced
by Coulomb friction.

We address this issue by replacing the fixed referenceθf
in (11) by a time varying referenceθref (t) starting atθ0 and
changing smoothly toθf . In particular, the reference may be
a sigmoidal trajectory given by:

θref (t) =











θ0 + (10µ3 − 15µ4 + 6µ5)(θf − θ0)

µ = t
tf1

, 0 ≤ t ≤ tf1

θf t ≥ tf1

(21)



We may choosetf1 to set a desired average speed of motion
|θf−θ0|/tf1. Substituting (21) in (11), we obtain the modified
control law:

sin θ1 =
sin(k1(θref (t) − θ) − k2θ̇) sin θ

k
. (22)

We applied the control law (22) to our prototype system.
The goal was to move link2 from an initial positionθ20 =
10◦ to a desired final position ofθ2f = 70◦. Link 3 was
kept fixed at0◦ relative to link 2. The controller parameter
values in (22) were set atk = 5, k1 = 1 and k2 = 0.2s,
tf1 = 12s. The experimental results are shown in Fig. 9. The
actual final position was69.7◦ at the end of12s, as shown in
Fig. 9a. The tilt trajectory of link1 is shown in Fig. 9b. The
maximum amplitude of tilt of link1 was1.1◦ which is within
the acceptable limits.

V. CONCLUSION

We have addressed the problem of closed loop point-to-
point control of a gravity assisted underactuated robot arm.
The arm is particularly well suited to high payload assembly
operations inside an aircraft wing-box. We proposed a closed
loop control algorithm for point-to-point control of the unactu-
ated links. A Lyapunov function was synthesized to prove the
convergence of the control law. The Lyapunov function also
provides us with lower bounds on the domain of convergence
of the control law.

The control algorithm was applied to a prototype3-link
robot arm. The experimental results showed reasonable perfor-
mance of the control law in the absence of prior knowledge of
friction and other unmodelled dynamical effects. We further
proposed a modified control law to handle the conflicting
requirements of small tilt of the actuated link and low steady
state error of the unactuated links. The efficacy of the modified
control law was demonstrated on the prototype system.

The modified control law results in a non-autonomous dy-
namical system. Our current proof has to be suitably modified
to prove asymptotic convergence of the output using the
modified control scheme. Also, a lower steady state error in
the position of the unactuated links is desirable. These issues
will be addressed in future work.
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APPENDIX A

We justify the treatment of the actuated coordinateθ1 as
a pseudo input. We denote the desired trajectory ofθ1 by
θ1d. From (11),θ1d = sin−1(sin(k1(θf − θ)− k2θ̇) sin2 θ/k).
The dynamics of the actuated coordinateθ1 may always be
feedback linearized by choosing the control torque as:

τ1 =
θ̈1d − 2λ

˙̃
θ1 − λ2θ̃1
N11

+ F1 +G1 +
N12

N11

(F2 +G2),

(23)

where:
[

N11 N12

N12 N22

]

=

[

H11 Hi1

Hi1 Hii

]

−1

,

θ̃1 = θ1 − θ1d and λ > 0.

Using (23) in (1), the error dynamics of the actuated coordinate
is given by:

¨̃
θ1 + 2λ

˙̃
θ1 + λ2θ̃1 = 0. (24)

Let us definex = [θ, θ̇]T and y = [θ̃1,
˙̃θ1]
T . The dynamics

of the unactuated coordinate(x) and the error dynamics
of the actuated coordinate(y) may be written in cascade
form as ẋ = f(x, y) and ẏ = g(y). Here, f(x, y) =

[θ̇, A sin θ sin(θ1d + θ̃1)]
T andg(y) = [ ˙̃θ1,−2λ ˙̃θ1 − λ2θ̃1]

T .
We note thatf(x, y) is globally Lipschitz and the linear
subsystemẏ = g(y) is globally exponentially stable. Also,
we have proved that the non-linear subsystemẋ = f(x, 0)
is asymptotically stable using La Salle’s Theorem. It follows
from Sontag’s Theorem [22], [24] that the cascade system is
locally asymptotically stable for an appropriate choice ofλ.
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