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Abstract— In this paper a new leader-follower formation of
nonholonomic mobile robots is studied. The follower is a car-like
vehicle and the leader is a tractor pulling a trailer. The leader
moves along assigned trajectories and the follower is to maintain
a desired distance and orientation to the trailer. A sliding
mode control scheme is proposed for asymptotically stabilizing
the vehicles to a time-varying desired formation. The attitude
angles of the follower and the tractor are estimated via global
exponential observers based on the invariant manifold technique.
Simulation experiments illustrate the theory and show the
effectiveness of the proposed formation controller and nonlinear
observers.

I. INTRODUCTION

Last years have seen a growing interest on control of
formations of autonomous robots. This trend has been sup-
ported by the recent technological advances on computa-
tion and communication capabilities and by the observation
that multiagent systems can perform tasks beyond the abil-
ity of individual vehicles. By formation control we simply
mean the problem of controlling the relative position and
orientation of the robots in a group while allowing the
group to move as a whole. In this respect, research dealt
with ground vehicles [9], [11], [18], surface and underwa-
ter autonomous vehicles (AUVs) [10], [12], unmanned aerial
vehicles (UAVs) [4], [16], microsatellite clusters [2], [24].

One of the most important approaches to formation control
is leader-following. A robot of the formation, designed as
the leader, moves along a predefined trajectory while the
other robots, the followers, are to maintain a desired posture
(distance and orientation) to the leader.
Leader-follower architectures are known to have poor distur-
bance rejection properties. In addition, the over-reliance on
a single agent for achieving the goal may be undesirable
especially in adverse conditions. Nevertheless this approach is
extremely simple since a reference trajectory is clearly defined
by the leader and the internal formation stability is induced
by stability of the individual vehicles’ control laws.

The following common features can be identified in the
literature concerning leader-follower formation control of
mobile robots:

Kinematic models : Unicycle models are the most common
in the literature [6], [29]. Car-like vehicles are frequent in

papers dealing with vehicular systems and control of auto-
mated road vehicles (see, e.g. [22] and the references therein).

Formation shape: Rigid formations (i.e., formations where
the inter-vehicle desired parameters are constant in time) are
frequent in the literature (see the references above). Switching
between different rigid formations has been studied recently
in [7], [25].

Formation control: The most common formation control
strategies are feedback linearization [7], [20], dynamic feed-
back linearization [19], [30], backstepping [17].

State estimation: The state of the formation is frequently
supposed to be known. Otherwise standard nonlinear observers
are used: e.g. the extended Kalman filter [7], [20] and recently
the unscented Kalman filter [19].

In this paper a new challenging leader-follower formation
of nonholonomic mobile robots is studied. The follower is a
car-like vehicle and the leader is a multibody mobile robot:
a tractor (a car-like vehicle) pulling a trailer. The leader moves
along an assigned trajectory while the follower is to maintain
a desired distance and orientation to the trailer.
The choice of this specific formation was motivated by a
possible real-world application: the control of truck-trailer

/
car

platoons in automated highway systems (AHSs) [1], [26].
Besides the applicative example, it is expected that the pro-
posed multi-robot scheme could be of theoretical interest in
nonholonomic systems research.

During the last three decades since [27], variable structure
systems (VSS) and sliding mode control (SMC) (that plays
a dominant role in VSS theory), have attracted the control
research community worldwide (see e.g., [8], [14], [21] and
the references therein). One of the distinguishing features
of sliding mode is the discontinuous nature of the control
action whose primary function is to switch between two
different system structures such that a new type of system
motion, called sliding mode, exists in a manifold. This peculiar
characteristic results in excellent system performance which
includes insensitivity to parametric uncertainty and external
disturbances.
Sliding mode control has been largely used in the indus-
trial electronic area (induction motors, electric drives [28]).
Recently, it has been applied to trajectory tracking of
nonholonomic vehicles [5], [31]. Nevertheless, only few



papers [13], [23], dealt with sliding mode control for robot
formations.

In the present paper we propose a globally asymptotically
stable sliding mode formation tracking controller for the
tractor and trailer - car system. Differently from the literature,
the desired leader-follower formation is allowed to vary in time
arbitrarily. Actually, any continuous distance and orientation
functions can be used to define the formation shape.

Finally, according to the invariant manifold technique pro-
posed in [15], global exponential observers of the attitude
angle of the follower and the tractor are designed. These
observers are among the first applications of the theory
developed by Karagiannis and Astolfi. They revealed simple
to implement and they exhibited good performances in the
simulation experiments, thus confirming that the invariant
manifold technique is a viable alternative to standard nonlinear
observer design strategies.

The rest of the paper is organized as follows. Section II is
devoted to the problem formulation. In Section III the sliding
mode formation tracking controller is designed. In Section IV
the nonlinear observers of the attitude angles are presented.
In Section V simulation experiments with noisy data illustrate
the theory and show the closed-loop system performance.
In Section VI the major contributions of the paper are sum-
marized and future research lines are highlighted.

Notation: The following notation is used through the paper :
R

+ = {x ∈ R | x > 0} , R
+
0 = {x ∈ R | x ≥ 0}.

∀x ∈ R , sign(x) = 1 if x > 0, sign(x) = 0 if x = 0 and
sign(x) = −1 if x < 0 .
∀ s = (s1 , s2)T ∈ R

2, sign(s) = (sign(s1), sign(s2))T ,

‖s‖ =
√

s2
1 + s2

2, diag(s1, s2) =
(

s1 0
0 s2

)
.

II. PROBLEM FORMULATION

The leader-follower setup considered in the paper is
presented in Fig. 1. The follower F is a car with rear wheels
aligned with the vehicle and front wheels allowed to spin about
the vertical axis. The kinematic model is,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋF = vF cos θF

ẏF = vF sin θF

θ̇F =
vF

�1
tan αF

α̇F = ωF

(1)

where (xF , yF ) are the coordinates of the midpoint of the rear
driving wheels, θF is the angle of the car body with respect to
the x-axis, αF the steering angle with respect to the car body,
�1 the wheelbase of the car and vF and ωF are respectively the
forward velocity of the rear wheels and the steering velocity
of the car. The leader L is an articulated vehicle, a tractor
(car) pulling a trailer.

αL

θL

�1

(xL, yL)
�2 ηL

d
φ αF

θF

�1

(xF , yF )

Fig. 1. Leader-follower setup.

The kinematic model is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋL = vL cos θL

ẏL = vL sin θL

θ̇L =
vL

�1
tan αL

η̇L =
vL

�2
sin(θL − ηL)

α̇L = ωL

(2)

where xL, yL, θL and αL are the car part variables of the
leader, ηL is the angle of the trailer with respect to the x-axis
and �2 is the distance between the rear wheels of the tractor
and the wheels of the trailer. Hereafter we will assume that:

Hypothesis 1: The steering angle of the vehicles is
bounded, namely αF , αL ∈ [−π/3, π/3 ].

Hypothesis 2: The possible configurations of the tractor and
trailer are restricted by a mechanical stop on the revolute joint
connecting the two bodies, hence ηL ∈ (0, π).

With reference to Fig. 1, the following definition introduces
the notion of leader-follower formation used in this paper.

Definition 1: Let d(t) : R
+
0 → R

+, φ(t) : R
+
0 →

(−π/2, π/2) and d(t), φ(t) ∈ C1, be two given functions.
We say that L and F make a (d, φ)-formation with leader L
at time t, if,(

xL − �2 cos ηL

yL − �2 sin ηL

)
−
(

xF + �1 cos θF

yF + �1 sin θF

)
=

= d

(
cos(θF + αF + φ)
sin(θF + αF + φ)

) (3)



and, simply, that L and F make a (d, φ)-formation
(with leader L) if (3) holds for any t ≥ 0.
d is the distance between the midpoint of the wheels of the
trailer and the midpoint of the front wheels of the follower and
φ is the visual angle of the trailer from the follower, minus
the steering angle αF (see Fig. 1).

Note that in order to avoid collisions between the vehicles,
a sufficient condition is that d(t) ≥ 2�1 + �2 for any t ≥ 0.

III. SLIDING MODE FORMATION TRACKING CONTROL

In this section we design a sliding mode controller for
globally asymptotically stabilizing the vehicles to the desired
(d, φ)-formation. We here recall that the leader moves along
an assigned trajectory and consequently the vector (vL, ωL)T

is known.
Proposition 1: According to Hypotheses 1, 2 and Defini-

tion 1, introduce the error vector(
e1

e2

)
=

(
xL − �2 cos ηL

yL − �2 sin ηL

)
−
(

xF + �1 cos θF

yF + �1 sin θF

)
−

− d

(
cos(θF + αF + φ)
sin(θF + αF + φ)

) (4)

and define the sliding surfaces

s1 = ė1 + k1 e1

s2 = ė2 + k2 e2

(5)

where k1, k2 are positive constants. The control law

(
v̇F

ω̇F

)
= A−1

(−B

⎛
⎜⎝

vL

v2
L

v̇L

⎞
⎟⎠−C

⎛
⎜⎜⎜⎜⎜⎜⎝

vF

ωF

v2
F

ω2
F

vF ωF

⎞
⎟⎟⎟⎟⎟⎟⎠
−D−F sign(s)

)
(6)

globally asymptotically stabilizes the sliding surfaces to zero.
The matrices A, B, C, F and the vector D are defined in the
proof given below.
Proof: Define λF = θF + αF + φ and γL = θL − ηL.
Let compute ṡ1 and ṡ2 from (5),

ṡ1 = ẍL + �2 cos ηL η̇2
L + �2 sin ηL η̈L − ẍF + �1 cos θF θ̇2

F

+ �1 sin θF θ̈F − d̈ cosλF + 2ḋ sin λF λ̇F + dcos λF λ̇2
F

+ d sin λF λ̈F + k1

(
ẋL + �2 sin ηL η̇L − ẋF + �1 sin θF θ̇F

− ḋ cosλF + d sin λF λ̇F

)
,

ṡ2 = ÿL + �2 sin ηL η̇2
L − �2 cos ηL η̈L − ÿF + �1 sin θF θ̇2

F

− �1 cos θF θ̈F − d̈ sin λF − 2ḋ cosλF λ̇F + d sin λF λ̇2
F

− d cos λF λ̈F + k2

(
ẏL − �2 cos ηL η̇L − ẏF − �1 cos θF θ̇F

− ḋ sinλF − d cosλF λ̇F

)
.

Replacing the derivatives according to (1) and (2) and writing
the resulting expression in a matrix form, we obtain,

ṡ = A

(
v̇F

ω̇F

)
+ B

⎛
⎜⎝

v̇L

v2
L

v̇L

⎞
⎟⎠+ C

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vF

ωF

v2
F

ω2
F

vF ωF

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ D

where

A=

(− cos θF +tanαF (sin θF + d
�1

sin λF ) d sin λF

− sin θF −tanαF (cos θF + d
�1

cosλF ) −d cosλF

)
.

The components of the matrices B ∈ R
2×3 and C ∈ R

2×5 are

B11 = k1 cos(θL − γL) cos γL

B12 = tan αL
�1

cos(θL − γL) sin(2 θL − γL) + sin γL
�2

sin(2γL − θL)

B13 = cos(θL − γL) cos γL

B21 = k2 sin(θL − γL) cos γL

B22 = − tan αL
�1

sin(θL − γL) sinγL + sin γL
�2

cos(2γL − θL)

B23 = sin(θL−γL) cos γL,

C11 = tan αF ( sin λF (2ḋ+k1d)+2dφ̇ cos λF
�1

+ k1 sin θF ) − k1 cos θF

C12 = sinλF (2ḋ + dk1) + 2dφ̇ cos λF

C13 = sin θF tan αF
�1

+ tan2 αF

�21
(�1 cos θF + d cos λF )

C14 = d cos λF

C15 = 1
�1 cos2 αF

(�1 sin θF + d sinλF ) + 2d
�1

cos λF tan αF

C21 = −tan αF ( cos λF (2ḋ+k2d)−2dφ̇ sin λF
�1

+ k2 cos θF ) −k2 sin θF

C22 = − cos λF (2ḋ + dk2) + 2d φ̇ sin λF

C23 = − cos θF tan αF
�1

+ tan2 αF

�21
(�1 sin θF + d sin λF )

C24 = d sinλF

C25 = 1
�1 cos2 αF

(�1 cos θF − d cos λF ) + 2d
�1

sinλF tan αF

and the vector D is given by,

D =

⎛
⎝ −d̈ + dφ̇2 − k1ḋ 2ḋφ̇ + dφ̈ + k1dφ̇

−2ḋφ̇ − dφ̈ − k2dφ̇ −d̈ + dφ̇2 − k1ḋ

⎞
⎠(cosλF

sin λF

)
.

Consider the candidate Lyapunov function

V =
1
2

sT s

whose derivative along the system trajectories is

V̇ = sT
(
A

(
v̇F

ω̇F

)
+ B

⎛
⎜⎝

v̇L

v2
L

v̇L

⎞
⎟⎠+ C

⎛
⎜⎜⎜⎜⎜⎜⎝

vF

ωF

v2
F

ω2
F

vF ωF

⎞
⎟⎟⎟⎟⎟⎟⎠

+ D
)
. (7)



Substituting the control law (6) in (7), with F = diag(f1, f2),
f1, f2 ∈ R

+, we obtain,

V̇ = −f1|s1| − f2|s2|
that is strictly less than zero for all s �= 0. Therefore (6)
globally asymptotically stabilizes the sliding surfaces to zero.

Remark 1: The proposed control law (6) becomes singular
when

det(A) =
d cosφ

cosαF
= 0 .

From Hypothesis 1 and the assumptions in Definition 1,
det(A) �= 0 for any t ≥ 0, and consequently the proposed
control law has no singularities.

Remark 2: Note that since control (6) explicitly depends on
trailer’s parameters (i.e., �2, ηL), the trajectory of the follower
does not coincide in general with that of car following another
car (the tractor). The two paths become similar when the
curvature of leader’s trajectory is small or the trailer is rigidly
connected to the tractor.

IV. OBSERVERS DESIGN

In this section, according to the invariant manifold technique
introduced in [15], we design global exponential observers
of the attitude angles θF and θL based on the measurement
vectors (xF , yF , αF )T and (xL, yL, αL)T , respectively.
An alternative observer of θL only based on γL = θL−ηL, the
angle between the cable connecting the tractor to the trailer
and the trailer longitudinal axis, is also proposed.

A. Estimation of the angle θF

Proposition 2: Consider model (1) and assume that the set
Q = {t ∈ R

+
0 : vF (t) = 0} is finite. Define the system,

ξ̇1 = −(ξ2 + Λ yF vF )
vF

�1
tan αF −

−Λ v2
F (ξ1 + Λ xF vF ) − Λ xF v̇F

(8)

ξ̇2 = (ξ1 + Λ xF vF )
vF

�1
tan αF −

−Λ v2
F (ξ2 + Λ yF vF ) − Λ yF v̇F

(9)

where Λ is a positive gain. Then, for any initial condition
(ξ1(0), ξ2(0))T ,

θ̂F = arctan
(

ξ2 + Λ yF vF

ξ1 + Λ xF vF

)
(10)

exponentially converges to the actual attitude angle θF .
Proof: Define the error variables,

z1 = −ξ1 − Λ xF vF + cos θF

z2 = −ξ2 − Λ yF vF + sin θF .

Their derivatives are,

ż1 = − vF

�1
sin θF tan αF − ξ̇1 − Λ v2

F cos θF − Λ xF v̇F

ż2 = vF

�1
cos θF tan αF − ξ̇2 − Λ v2

F sin θF − Λ yF v̇F .
(11)

Substituting (8) and (9) in (11), we obtain,

ż1 = − vF

�1
z2 tan αF − Λ v2

F z1

ż2 = vF

�1
z1 tan αF − Λ v2

F z2.
(12)

Define the candidate Lyapunov function,

V =
1
2

(z2
1 + z2

2)

whose time derivative along (12) satisfies,

V̇ = −2 Λ v2
F V.

Since Q is finite, then necessarily there is a time instant t̄
such that V̇ (t) ≤ −ε(t)V (t), ε(t) ∈ R

+, ∀ t > t̄ and this
concludes the proof.

B. Estimation of the angle θL

In order to estimate θL, an analogous observer can be
designed by simply referring equations (8), (9), (10) to the
leader’s kinematics. This observer will be used in the simula-
tion experiments.

An alternative observer of the angle θL is here introduced.
It is not an exponential estimator of θL, but since it depends
on a single measured variable, γL, is possibly less sensitive to
disturbances.

Proposition 3: Consider model (2) and the system,

ξ̇3 = −vL

�2
ξ4 sin γL (13)

ξ̇4 =
vL

�2
ξ3 sin γL. (14)

Then, for any (ξ3(0), ξ4(0))T such that η̂L(0) = ηL(0),

θ̂L = γL + arctan
(

ξ4

ξ3

)

gives an estimate of the angle θL.
Proof: The proof is analogous to that of Proposition 2.
Define the error variables,

z3 = −ξ3 + cos ηL

z4 = −ξ4 + sin ηL.

Their derivatives are,

ż3 = − vL

�2
sin ηL sin γL − ξ̇3

ż4 = vL

�2
cos ηL sin γL − ξ̇4.

(15)

Substituting (13) and (14) in (15), we obtain,

ż3 = − vL

�2
z4 sin γL

ż4 = vL

�2
z3 sin γL.

(16)

Define the candidate Lyapunov function,

V =
1
2

(z2
3 + z2

4).

Its derivative along (16) is V̇ = 0 from which the result
follows.
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Fig. 2. Simulation I (ideal measurements): (a) Trajectory of the leader and the follower; (b) Trajectory of the vehicles in the first 8 seconds of the simulation.

Remark 3: Note that the exponential observer of θL does
not use the angle γL. Nevertheless γL needs to be mea-
sured in order to compute the sliding surfaces s1, s2 and
matrix B in (6). The same conclusions hold for the observer
in Proposition 3 and vector (xL, yL, αL)T .

V. SIMULATION RESULTS

Two simulation experiments were carried out to evaluate the
performance of the sliding mode controller and the nonlinear
observers presented in Sections III and IV. The first simulation
refers to the case of ideal measurements. In the second
simulation the vectors (xF , yF , αF )T , (xL, yL, αL)T and γL

are supposed to be corrupted by zero mean gaussian noise with
variance 0.5 × 10−3. The initial conditions of the leader and
the follower are, xL(0) = 5 m, yL(0) = 2 m, θL(0) = π/2 rad,
αL(0) = 0 rad, ηL(0) = π/2 rad, xF (0) = 1 m, yF (0) =
1.5 m, θF (0) = π/2 rad, αF (0) = 0 rad.

In order to compute the actuating control input, equation (6)
needs to be integrated and some initial values vF (0), ωF (0) to
be fixed. Although the stability of the control does not depend
on these values, a common procedure to initialize the velocities
in order to get good performances, is the following. Compute
the derivative of (4) for t = 0 and equal it to zero,

ė1(0) = vL(0) cosηL(0) cos γL(0) + vF (0)
(− cos θF (0)

+ sin θF (0) tan αF (0) + d(0)
�1

sin λF (0) tan αF (0)
)

+ ωF (0) d(0) sin λF (0) − ḋ(0) cosλF (0)

+ d(0) φ̇(0) sinλF (0) = 0

ė2(0) = vL(0) sin ηL(0) cos γL(0) − vF (0)
(
sin θF (0)

+ cos θF (0) tan αF (0) + d(0)
�1

cosλF (0) tan αF (0)
)

−ωF (0) d(0) cosλF (0) − ḋ(0) sin λF (0)

− d(0) φ̇(0) cosλF (0) = 0.

Solving the above equations with respect to vF (0), ωF (0)
with λF (0) ∈ (0, π), we finally obtain,

vF (0)= cos αF (0)
cos φ(0) (vL(0) cos γL(0) cos(λF (0)−ηL(0))−ḋ(0))

ωF (0) =
1

d(0) sinλF (0)

(
− vL(0) cos ηL(0) cos γL(0)

+
vL(0) cos γL(0) cos(λF (0) − ηL(0)) − ḋ(0)

cosφ(0)

· (cos(αF (0) + θF (0)) − d(0)
�1

sin λF (0) sin αF (0)
)

+ ḋ(0) cosλF (0) − d(0) φ̇(0) sinλF (0)
)
.

We set �1 = 0.2 m, �2 = 0.5 m and we chose the
following parameters for the controller and the observers:
k1 = k2 = 1, f1 = f2 = 2 and Λ = 5, ξ1(0) = ξ2(0) = 0.
Table I shows leader’s velocity and functions d(t) and φ(t)
used in Simulation I and II. The steering velocity of the
leader in Simulation II (see Table I) is Ω(t) = π/600 if
t < 3 s, Ω(t) = −π/600 if t ≥ 3 s. Figs. 2 and 3 are relative
to Simulation I.
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Fig. 3. Simulation I (ideal measurements): (a) Control inputs vF and ωF ; (b) Sliding surfaces s1 and s2; (c) Desired distance d and actual distance dA;
(d) Desired orientation φ and actual orientation φA; (e) θF and θ̂F ; (f) θL and θ̂L.

Fig. 2(a) shows the trajectory of the leader and the follower.
In order to have a temporal reference in the figure the robots
are drawn each second: the rectangles represent the tractor
and the follower, while the small squares denote the trailer.

Fig. 2(b) shows the trajectory of the vehicles in the first
8 seconds of the simulation. In Fig. 3(a) the control inputs
vF and ωF are reported. In Fig. 3(b) the sliding surfaces s1

and s2 asymptotically converge to zero. Fig. 3(c) shows the



0 2 4 6 8

2

4

6

8

10

12

14

16

18

20

22

x [m]

y
 [m

]

leader
follower

(a)

0 2 4 6 8 10 12 14

3

2

1

0

1

2

3

4

time [s]

_

_

_

(b)

s1
s2

0 2 4 6 8 10 12 14

2

2.5

3

3.5

4

time [s]

(c)

d
dA

0 2 4 6 8 10 12 14

1.7

1.5

1.3

1.1

0.9

0.7

0.5

time [s]

_

_

_

_

_

_

_

(d)

φ
φA

Fig. 4. Simulation II (noisy measurements): (a) Trajectory of the leader and the follower; (b) Sliding surfaces s1 and s2; (c) Desired distance d and actual
distance dA; (d) Desired orientation φ and actual orientation φA.

Simulation I Simulation II

vL(t) [m
/

s] 1.5 1.5

ωL(t) [rad
/

s] −π/2000 Ω(t)

d(t) [m] cos(t) + 2 2

φ(t) [rad] −0.1 cos(t) − π/3 0.15 cos(t) − π/4

TABLE I

LEADER’S VELOCITY AND DESIRED FUNCTIONS IN THE SIMULATIONS.

desired distance d and the actual distance

dA =

∥∥∥∥∥
xL − �2 cos ηL − xF − �1 cos θF

yL − �2 sin ηL − yF − �1 sin θF

∥∥∥∥∥ .

Analogously, Fig. 3(d) shows the desired orientation φ and
the actual orientation

φA = arctan
(

yL−�2 sin ηL−yF −�1 sin θF

xL−�2 cos ηL−xF −�1 cos θF

)
− θF − αF .



dA, φA and d, φ coincide after about 5 seconds. Finally,
Figs. 3(e)-(f) show the time histories of θF , θ̂F and θL, θ̂L.

The results of Simulation II are given in Fig. 4. Fig. 4(a)
shows the trajectory of the leader and the follower, Fig. 4(b)
the sliding surfaces and Figs. 4(c)-(d) the desired and actual
distance and orientation. In spite of the noisy measurements,
as in Simulation I, dA, φA converge to d, φ and the sliding
surfaces converge to zero. The control inputs vF , ωF and the
time histories of θF , θ̂F and θL, θ̂L are not shown for lack of
space. From the simulation experiments we observed that the
estimate θ̂F (and analogously θ̂L) is much more sensitive to
position than angular disturbances.

VI. CONCLUSION

In this paper we propose a new leader-follower forma-
tion of nonholonomic mobile robots. The follower is a car
and the leader is an articulated vehicle, a tractor pulling
a trailer. The desired formation, defined by two parameters
(a distance and an orientation function) is allowed to vary in
time. A sliding mode formation tracking control scheme and
nonlinear observers for the estimation of the attitude angles of
the follower and the tractor, are designed. These observers are
based on the invariant manifold technique recently proposed
in [15]. The effectiveness of the proposed designs has been
validated via simulation experiments.

Future research lines include the experimental validation of
our control scheme and the extension of our results to vehicles
with more involved kinematics (e.g. the fire truck model [3]
could be considered for the leader). For the sake of simplicity
in the present paper a single-leader, single-follower formation
has been considered. Future investigations will cover the
more general case of multi-leader

/
multi-follower formations

(see, e.g. [6]).
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