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Abstract—In this paper, we present the analysis and experi-
mental validation of a vision-aided inertial navigation algorithm
for planetary landing applications. The system employs tight
integration of inertial and visual feature measurements to com-
pute accurate estimates of the lander’s terrain-relative position,
attitude, and velocity in real time. Two types of features are
considered: mapped landmarks, i.e., features whose global 3D po-
sitions can be determined from a surface map, and opportunistic
features, i.e., features that can be tracked in consecutive images,
but whose 3D positions are not known. Both types of features are
processed in an extended Kalman filter (EKF) estimator and are
optimally fused with measurements from an inertial measurement
unit (IMU). Results from a sounding rocket test, covering the
dynamic profile of typical planetary landing scenarios, show
estimation errors of magnitude 0.16 m/s in velocity and 6.4 m
in position at touchdown. These results vastly improve current
state of the art for non-vision based EDL navigation, and meet
the requirements of future planetary exploration missions.

I. INTRODUCTION

Space missions involving Entry, Descent and Landing
(EDL) maneuvers require high-accuracy position and attitude
(pose) determination to enable precise trajectory control. On
solar system bodies other than Earth, this is challenging due
to the absence of artificial navigation aids such as GPS or
radio-beacons. To date, robotic lander missions have used
integration of acceleration and rotational velocity measure-
ments from an inertial measurement unit (IMU), augmented
by velocity and altitude information from Doppler radar.
In these cases, integration of noise and biases, as well as
errors in initialization, result in relatively large errors in
the touchdown position estimate (e.g., for Mars Pathfinder
and the Mars Exploration Rovers in the order of 100 km).
However, several future planetary exploration missions will
require meter-level landing accuracy, to facilitate the study of
geological features of scientific interest [1]. In the absence
of radiometric navigation beacons, the most attractive option
for increasing the navigation accuracy during EDL is to
use camera measurements. Cameras operate in almost any
environment, are small, lightweight, and consume little power,
and are therefore ideal sensors for space applications.

The Extended Kalman Filter (EKF)-based estimation algo-
rithm presented in this paper combines inertial measurements
from an IMU with camera observations of two types of
features: (i) Mapped Landmarks (MLs), i.e., features whose
global 3D coordinates can be determined from a map of the
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landing site [2], and (ii) Opportunistic Features (OFs), i.e.,
features that can be reliably detected in image sequences, but
not in a map of the planet’s surface [3]. We note that the term
“map” refers to a co-registered pair of a digital elevation map
(DEM) and satellite image, which is available a priori.

For precise vision-based EDL, observations of MLs are nec-
essary, since they provide absolute pose information. However,
due to the finite resolution of satellite imagery, MLs cannot
typically be extracted during the last stages of the descent,
when the lander is very close to the ground. To address this
problem, in our work we employ OFs for improving the
accuracy of pose estimation in these stages. Even though OFs
cannot provide absolute pose information, they can be thought
of as providing velocity information. Intuitively, viewing a
static feature from multiple camera poses provides geometric
constraints involving all these poses. The proposed EKF-
based estimation algorithm (cf. Section IV-E) utilizes all the
constraints from the OF and ML measurements optimally,
while maintaining computational complexity only linear in
the number of features. These characteristics enable high-
accuracy pose estimation in real-time. The results from a
sounding-rocket experiment (cf. Fig. 1), which are presented
in Section V, demonstrate the filter’s robustness and superior
accuracy compared to existing state-of-the-art EDL navigation
algorithms, which do not utilize vision information.



II. RELATED WORK

Only a few recursive estimation approaches that utilize
measurements of a priori known features have been proposed
in the literature. In [4], a statistical (zero-acceleration) model
is employed for propagating the pose estimate between ML
observations. However, the use of a statistical model (rather
than inertial measurements), limits the applicability of such
an approach to maneuvers with slow dynamics that occur, for
example, during spacecraft rendezvous and docking. In [5],
[6], inertial measurements are fused with observations of arti-
ficial rectangular targets, and with heading measurements from
a magnetometer. In their work, the authors use measurements
both of the coordinates of a target’s projection and of the area
of this projection. Area measurements, though, may be difficult
or unreliable when dealing with real planetary imagery, where
visual features are less structured. Finally, in [7] inertial
measurements are fused with bearing measurements to MLs,
but the spacecraft’s attitude is assumed to be perfectly known,
which is not a valid assumption for EDL.

In addition to processing measurements to MLs, in this work
we also utilize measurements to features whose position in
the global frame is not known in advance (OFs). The standard
method of treating such features is to include their positions
in the state vector, and to estimate them along with the camera
trajectory. This is the well-known Simultaneous Localization
and Mapping (SLAM) problem, for which numerous ap-
proaches that employ vision and inertial sensing have recently
been proposed (e.g., [8] and references therein). However, the
need to maintain the landmark estimates in SLAM results in
increased computational complexity (quadratic in the number
of features for EKF-SLAM). Moreover, the main benefit of
performing SLAM is the ability to achieve “loop closing”
when revisiting an area. Due to the nature of EDL trajectories
loop closing is not an important consideration, and thus the
quadratic computational complexity of SLAM does not appear
to be justified in the context of EDL. In contrast, our algorithm
attains complexity only linear in the number of OFs.

In our work, OF measurements are employed for impos-
ing constraints between multiple camera poses. In a similar
spirit, in [7], [9], a history of only the latest two camera
poses is considered, and visual measurements are utilized
for imposing constraints between them. Moreover, pairwise
relative-pose constraints are employed for pose estimation in
several approaches that maintain a history of multiple camera
poses (e.g., [10] and references therein). Contrary to that, the
proposed algorithm does not use the measurements for de-
riving relative-pose estimates. This reduces the computational
burden, avoids possible correlations between the displacement
measurements [11], and is more robust to non-linearities.
Finally, a sliding window of poses is also maintained in the
VSDF algorithm [12]. However, the VSDF is tailored for
cases where no motion model is available (in EDL the IMU
measurements provide such a model), and its computational
complexity is at least quadratic in the number of features.

Fig. 2. ML algorithm concept: by matching templates between descent
images and a visual map of the landing site, the algorithm produces mea-
surements of the image projections of features with known 3D coordinates
(i.e., MLs).

III. IMAGE PROCESSING

Several techniques can be applied for feature extraction in
planetary landing applications. For example, Cheng et al. [13]
propose using craters as landmarks for navigation. Craters are
abundant on most bodies of interest in our solar system, and
this makes them a very useful feature. However, there exist
sites (e.g., in the polar regions of Mars) where craters are
not present. In this case, more general feature types can be
used, such as SIFT keypoints [14], and Harris corners [15].
In our work, the image processing module relies on Harris
corners and normalized correlation, because (i) corner features
can be extracted more efficiently than SIFT keys, since they
do not require a search over image scale, (ii) Harris corners
have been shown to be more robust to illumination changes
than SIFT [16], and (iii) image correlation is a field-tested
technology, which has already been employed in EDL appli-
cations [17].

The ML algorithm applies normalized correlation to match
templates from the descent images to the map (cf. Fig. 2). Each
selected template is warped prior to correlation, so as to have
the same scale and orientation as the map. This enables us to
reduce matching to a 2-D search, which can be carried out
very efficiently. We note that the size of the search windows
for correlation depends on the accuracy of the camera pose
estimate. When the camera pose is very uncertain (e.g., when
the first images are recorded), the search windows are very
large, and directly applying correlation search for all features is
computationally expensive. In that case, an FFT map-matching
step is employed prior to ML matching. During this step,
a rough alignment of the image with the map is obtained,
by frequency-domain correlation of a single large template.
Using this initial estimate, the dimensions of the search areas
for ML matching are significantly reduced. For OF tracking,
we perform pairwise correlation matching between images.
To reduce the effects of the changing camera viewpoint, the
homography that is induced by the camera motion between
consecutive images is accounted for during correlation. For a
detailed description of the image-processing algorithms, the
reader is referred to [18].



Algorithm 1 Vision-aided Inertial Navigation Algorithm
Propagation: For each IMU measurement received, propagate
the state and covariance estimates (cf. Section IV-B).

Image acquisition: Every time a new image is recorded,
• augment the state and covariance matrix with a copy of

the current camera pose estimate (cf. Section IV-A).
• image processing module begins processing the new

image.

Update: When the ML and OF measurements of a given image
become available, perform an EKF update using
• all ML measurements of this image (cf. Section IV-D)
• the OFs that are no longer detected in the image sequence

(cf. Section IV-E).

IV. ESTIMATOR DESCRIPTION

The proposed estimation algorithm (cf. Algorithm 1) em-
ploys an EKF to estimate the 3D pose of the body frame {B},
which is affixed on the spacecraft’s IMU, with respect to a
global frame of reference {G}. In this work, {G} is selected as
a planet-centered, planet-fixed frame of reference that rotates
with the planet. The IMU measurements are processed im-
mediately as they become available, for propagating the EKF
state and covariance estimates, as discussed in Section IV-B.
On the other hand, each time an image is recorded, the
current camera pose estimate is appended to the state vector,
and the covariance matrix is appropriately augmented. State
augmentation is necessary for two reasons: First, due to the
processing delays introduced by the image processing module,
the camera measurements cannot be processed immediately1.
Second, maintaining a window of camera poses enables the
processing of OF measurements (cf. Section IV-E). Therefore,
at any time instant the EKF state vector comprises (i) the
evolving state, XE , which describes the current state of the
spacecraft, and (ii) copies of up to N past poses of the camera.
The maximum length of the camera pose history, N , is selected
by pre-flight testing, and is chosen to be equal to the maximum
number of images through which an OF can be tracked.

Every time the image processing module produces ML
and/or OF measurements, an EKF update takes place. In our
implementation, the ML measurements of the latest image are
processed immediately as they become available. On the other
hand, OF updates occur whenever an OF that has been tracked
in a number of images is no longer detected in the latest image.
At that time, all the measurements of this feature are processed
using the method presented in Section IV-E. In the following
sections we present the various steps of the algorithm in detail.

1Consider that at time-step k an image is recorded, and that the image
measurements become available at time-step k + d. During the time interval
[k, k + d] IMU measurements are processed normally for state propagation.
When, at time step k + d, the measurements that occurred at time-step k
become available, applying an EKF update is possible, because the camera
pose at time-step k is included in the state vector.

A. Structure of the EKF state vector
The evolving state of the EKF is described by the vector:

XE =
[
B
Gq̄T bg

T GvB
T ba

T GpT
B

]T
(1)

where B
Gq̄ is the unit quaternion [19] describing the rotation

from the global frame to the body frame, GpB and GvB are
the position and velocity of the body expressed with respect to
the global frame, and finally bg and ba are 3× 1 vectors that
describe the biases affecting the gyroscope and accelerometer
measurements, respectively. The IMU biases are modeled as
random walk processes, driven by the white Gaussian noise
vectors nwg and nwa, respectively.

Given the definition of the evolving state in Eq. (1), the
error-state vector for XE is defined accordingly, as:

X̃E =
[
δθT

B b̃T
g

GṽT
B b̃T

a
Gp̃T

B

]T

(2)

For the position, velocity, and biases, the standard additive
error definition is used (i.e., the error in the estimate x̂
of a quantity x is defined as x̃ = x − x̂). However, for
the quaternion a different error definition is employed. In
particular, if ˆ̄q is the estimated value of the quaternion q̄, then
the orientation error is described by the error quaternion δq̄,
which is defined by the relation q̄ = δq̄⊗ ˆ̄q. In this expression,
the symbol ⊗ denotes quaternion multiplication. The error
quaternion is

δq̄ ' [
1
2δθT 1

]T
(3)

Since attitude corresponds to 3 degrees of freedom, using δθ to
describe the attitude errors results in a minimal representation.

Assuming that N camera poses are included in the EKF
state vector at time-step k, this vector has the following form:

X̂k =
[
X̂T

Ek

C1
G

ˆ̄q
T Gp̂T

C1
. . . CN

G
ˆ̄q
T Gp̂T

CN

]T

(4)

where Ci

G
ˆ̄q and Gp̂Ci , i = 1 . . . N are the estimates of the

camera attitude and position, respectively. The EKF error-state
vector is defined accordingly:

X̃k =
[
X̃T

Ek
δθT

C1
Gp̃T

C1
. . . δθT

CN

Gp̃T
CN

]T

(5)

B. Propagation
To derive the filter propagation equations, we employ

discretization of the continuous-time IMU system model, as
outlined in the following:

1) Continuous-time system modeling: The system model
describing the time evolution of the evolving state is [20]:

B
G

˙̄q(t) = 1
2Ω

(
ω(t)

)
B
Gq̄(t), ḃg(t) = nwg(t)

Gv̇B(t) = Ga(t), ḃa(t) = nwa(t), GṗB(t) = GvB(t)
(6)

In these expressions Ga is the body acceleration in the global
frame, ω = [ωx ωy ωz]T is the body rotational velocity
expressed in the body frame, and

Ω(ω) =
[−bω×c ω
−ωT 0

]
, bω×c =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0






The gyroscope and accelerometer measurements, ωm and am

respectively, are given by:

ωm = ω + C(B
Gq̄)ωG + bg + ng

am = C(B
Gq̄)(Ga− Gg + 2bωG×cGvB + bωG×c2 GpB)

+ ba + na

where C(·) denotes the rotational matrix corresponding to the
quaternion argument, and ng and na are zero-mean, white
Gaussian noise processes. It is important to note that, since
the frame {G} is not inertial, but rather planet-fixed, the IMU
measurements incorporate the effects of the planet’s rotation,
ωG. Moreover, the accelerometer measurements include the
gravitational acceleration, Gg, expressed in the local frame.

Applying the expectation operator in the state propagation
equations (Eq. (6)) we obtain the equations for propagating
the estimates of the evolving state:

B
G

˙̄̂q = 1
2Ω(ω̂)B

G
ˆ̄q, ˙̂bg = 03×1,

G ˙̂vB = CT
q̂ â− 2bωG×cGv̂B − bωG×c2 Gp̂B + Gg

˙̂ba = 03×1,
G ˙̂pB = Gv̂B

(7)

where for brevity we have denoted Cq̂ = C(B
G

ˆ̄q), â = am−b̂a

and ω̂ = ωm − b̂g −Cq̂ωG. The linearized continuous-time
model for the evolving error state is given by:

˙̃XE = FEX̃E + GEnIMU (8)

where nIMU =
[
nT

g nT
wg nT

a nT
wa

]T
is the system noise.

The covariance matrix of nIMU, QIMU, depends on the IMU
noise characteristics and is computed off-line during sensor
calibration. Finally, the values of the jacobians FE and GE ,
which appear in Eq. (8), are given in [18].

2) Discrete-time implementation: The IMU samples the
signals ωm and am with a period T , and these measurements
are used for state propagation in the EKF. Every time a
new IMU measurement is received, the IMU state estimate is
propagated using 5th order Runge-Kutta numerical integration
of Eqs. (7). Moreover, the covariance matrix of the EKF
state has to be propagated. For this purpose, we introduce
the following partitioning for the covariance matrix:

Pk|k =
[
PEEk|k PECk|k
PT

ECk|k PCCk|k

]
(9)

where PEEk|k is the 15×15 covariance matrix of the evolving
state, PCCk|k is the 6N×6N covariance matrix of the camera
pose estimates, and PECk|k is the correlation between the
errors in the evolving state and the camera pose estimates.
With this notation, the covariance matrix of the propagated
state is given by:

Pk+1|k =
[

PEEk+1|k Φ(tk + T, tk)PECk|k
PT

ECk|kΦ(tk + T, tk)T PCCk|k

]

where the covariance of the evolving state at time-step k+1 is
computed by numerical integration of the Lyapunov equation:

ṖEE = FEPEE + PEEFT
E + GEQIMUGT

E (10)

Numerical integration is carried out for the time interval
(tk, tk +T ), with initial condition PEEk|k . The state transition
matrix Φ(tk + T, tk) is similarly computed by numerical
integration of the differential equation

Φ̇(tk + τ, tk) = FEΦ(tk + τ, tk), τ ∈ [0, T ] (11)

with initial condition Φ(tk, tk) = I15.

C. State Augmentation

When a new image is recorded, the camera pose estimate
is computed from the body pose estimate as follows:

C
G

ˆ̄q = C
B q̄ ⊗ B

G
ˆ̄q (12)

Gp̂C = Gp̂B + CT
q̂

BpC (13)

where C
B q̄ is the quaternion expressing the rotation between the

body and camera frames, and BpC is the position of the origin
of the camera frame with respect to {B}, both of which are
known. This camera pose estimate is appended to the state
vector, and the covariance matrix of the EKF is augmented
accordingly [3].

D. Measurement Model for ML Observations

We now describe the EKF measurement model for treating
visual observations of MLs. Consider that feature j, whose
global coordinates are known a priori, is observed from
the i-th camera pose included in the EKF state vector. In
normalized image coordinates, this observation is described
by the equation:

z(j)
i =

1
CiZj

[
CiXj
CiYj

]
+ n(j)

i (14)

where n(j)
i is the 2 × 1 image noise vector, with covariance

matrix R(j)
i = σ2

imI2. The feature position expressed in the
camera frame, Cipj , is given by:

Cipj =




CiXj
CiYj
CiZj


 = C(Ci

G q̄)(Gp`j − GpCi) (15)

where Gp`j is the known coordinate of the landmark in the
global frame. The expected value of the measurement z(j)

i is
computed using the state estimates:

ẑ(j)
i =

1
CiẐj

[
CiX̂j
Ci Ŷj

]
with




CiX̂j
Ci Ŷj
CiẐj


 = C(Ci

G
ˆ̄q)(Gp`j − Gp̂Ci)

(16)

From Eqs. (14) and (16) we can compute the residual of this
ML measurement, r(j)

MLi
= z(j)

i − ẑ(j)
i . By linearization of

Eq. (14), r(j)
MLi

is written as:

r(j)
MLi

' H(j)
δθi

δθCi +H(j)
pi

Gp̃Ci +n(j)
i = H(j)

MLi
X̃+n(j)

i (17)

where

H(j)
δθi

=
1

CiẐj

[
I2 −ẑ(j)

i

]
bC(Ci

G
ˆ̄q)(Gp`j − Gp̂Ci)×c



H(j)
pi

= − 1
CiẐj

[
I2 −ẑ(j)

i

]
C(Ci

G
ˆ̄q)

H(j)
MLi

=

[
03×15 03×6 . . . [H(j)

δθi
H(j)

pi
]︸ ︷︷ ︸

i−th camera block

. . . 03×6

]

The residual defined in Eq. (17) is employed for performing
EKF updates, as described in Section IV-F.

E. Measurement Model for OF Observations

We present the OF measurement model for the case of a
single feature, fj , that is observed from a set of Mj poses,
Sj . Each observation of this feature is described by the
measurement model of Eq. (14). Since the global coordinates
of fj are not known in advance, in order to compute the
expected value of the measurements, we obtain an estimate
of the position of the observed feature, Gp̂`j

, by employing a
least-squares minimization algorithm. Once this estimate has
been computed, the expected value of each of the feature
measurements can be evaluated, similarly to Eq. (16), with
the sole difference that the estimate of the landmark position
is used, instead of an a priori known value.

Linearization yields the following expression for the resid-
ual, r(j)

i = z(j)
i − ẑ(j)

i , of the i-th measurement:

r(j)
i ' H(j)

δθi
δθCi + H(j)

pi

Gp̃Ci + H(j)
fi

Gp̃`j + n(j)
i

= H(j)
Xi

X̃ + H(j)
fi

Gp̃`j + n(j)
i

Note that, in contrast to the case of ML observations, the
measurement residual in this case is also affected by the error
in the estimate of the landmark position. In the last expression,
H(j)

fi
= −H(j)

pi is the Jacobian of the residual with respect to
Gp̂`j , and

H(j)
Xi

=

[
03×15 03×6 . . . [H(j)

δθi
H(j)

pi
]︸ ︷︷ ︸

i−th camera block

. . . 03×6

]

By stacking the residuals corresponding to all the observations
of this feature, we obtain:

r(j) ' H(j)
X X̃ + H(j)

f
Gp̃`j + n(j) (18)

where r(j), H(j)
X , H(j)

f , and n(j) are block vectors or ma-
trices with elements r(j)

i , H(j)
Xi

, H(j)
fi

, and n(j)
i , for i ∈ Sj .

Assuming that feature observations in different images are
independent, the covariance matrix of the noise vector n(j)

is R(j) = σ2
imI2Mj .

It should be clear that the residual derived in Eq. (18)
cannot be directly used for performing EKF updates, since
the landmark position error, Gp̃`j , is correlated with the state
errors (recall that Gp̂`j is computed using the state estimates
and the measurements z(j)

i in a least-squares minimization
routine). To overcome this problem, we define a residual r(j)

OF,
by projecting r(j) on the left nullspace of the matrix H(j)

f .
Specifically, if we let U denote the unitary matrix whose
columns form the basis of the left nullspace of H(j)

f , we
obtain:

r(j)
OF = UT (z(j) − ẑ(j))

' UT H(j)
X X̃ + UT n(j) = H(j)

OFX̃ + n(j)
o (19)

It is worth noting that r(j)
OF and H(j)

OF, can be computed without
explicitly evaluating U. Instead, these projections of r and
H(j)

X on the nullspace of H(j)
f can be computed very efficiently

using Givens rotations [21]. The covariance matrix of the noise
vector n(j)

o can be easily shown to be equal to σ2
imI2Mj−3.

The residual r(j)
o is independent of the errors in the feature

coordinates, and thus EKF updates can be performed based
on it. Eq. (19) defines a linearized constraint between all
the camera poses from which the feature fj was observed.
This residual expresses all the available information that the
measurements z(j)

i provide for the Mj states, and thus the
resulting EKF update is optimal, except for the inaccuracies
caused by linearization.

F. EKF Updates

In the preceding sections we presented the measurement
models that we employ for treating ML and OF observations.
Once all the ML and OF measurements that must be processed
at a given time-step are determined (as described in Algo-
rithm 1), the corresponding residual vectors and measurement
Jacobians (Eqs. (17) and (19)) are created. Stacking all these
together yields the following residual vector:

r = HX̃ + n (20)

where r is a block vector with elements r(j)
MLi

and r(j)
OF, H

is a block matrix with elements H(j)
MLi

and H(j)
OF, and n is

a noise vector of dimension L (equal to the length of r),
with covariance matrix R = σ2

imIL. Once the residual, r, and
the measurement Jacobian matrix, H of Eq. (20) have been
computed, the EKF update proceeds according to the standard
equations [22]. In our work, we employ the QR decomposition
of the matrix H to reduce the computational complexity of
EKF updates [7]. At the end of the update step, the oldest
camera pose is marginalized out of the EKF state, to allow
for the inclusion of the next one.

V. EXPERIMENTS

In order to validate the algorithm’s performance in con-
ditions as close to actual planetary landing as possible, a
sounding rocket experiment was conducted in April 2006, at
White Sands Missile Range (WSMR), New Mexico.

A. Hardware Description

A commercially available analog camera (Pulnix TM-9701)
was added to an existing mission payload consisting of a
GLN-MAC IMU and a Thales G12 GPS, onboard a Terrier
Orion Sounding Rocket (cf. Fig. 1 for the experimental
setup). The nadir-pointing camera provided descent imagery
from parachute deployment to landing at 30 frames/s with a
resolution of 768 × 484 pixels, 8 bits/pixel, and a field of
view (FOV) of 38◦ × 24◦. A common GPS time tag from a
commercial timecode generator was used to synchronize 50
Hz IMU, 10 Hz GPS, and 30 Hz image data. Images, IMU
data, and GPS measurements were downlinked in real-time



Parameter Sounding Rocket Mars Landing

Parachute Deploy Alt. 4200 m above ground 2000 m above ground

Vertical Velocity 10 m/s at touchdown 1 m/s at td.

Horizontal Velocity 3 m/s at touchdown < 0.5 m/s at td.

Off nadir angle ≤ 12◦ < 20◦

Off nadir angular rate ≤ 19 ◦/s < 60 ◦/s

Roll Rate ≤ 360 ◦/s < 60 ◦/s

TABLE I
DYNAMICS COMPARISON BETWEEN SOUNDING ROCKET AND MARS EDL.

during flight over an S-band telemetry channel and recorded
on the ground.

The data collected during this experiment were processed
off-line. We should note, however, that our algorithm is capa-
ble of real-time operation. The FFT correlation-based feature
matching is predicted to run at 5-20 Hz in an FPGA-based
implementation currently under development at JPL, and the
current C++ implementation of the pose estimator runs at 20
Hz on a 2 GHz CPU, with the number of stored poses set to
N = 20.

B. Experiment Profile and Relevance

The rocket reached an apogee altitude of 123 km, followed
by drogue and main parachute opening at 28 km and 4.2 km
altitude, respectively. After a total flight time of 805 s, 376 s of
which on the parachute, the vehicle landed 78 km downrange
from the launch pad. The dynamics encountered during the
parachuted phase of the sounding rocket flight are similar
to those during an actual Mars landing, as shown by the
comparison in Table I.

Fig. 1 shows the rocket’s trajectory superimposed on a 3D
map of the area. A zoomed-in view of the flight path after main
parachute deployment is depicted in Fig. 3. Pure integration
of the IMU measurements (blue dashed line) yielded fairly
accurate results until right after the deployment of the main
parachute, but then quickly diverged. The opening of the
parachute caused the rocket’s motion to be extremely jerky
for several seconds. Integrating the large acceleration mea-
surements recorded in this period, using the attitude estimates
that had error accumulated over the preceding 431 s of flight,
resulted in large position errors. Note that up to this point
no images were available. Once the first few images were
processed, the VISINAV algorithm corrected the accumulated
error, and the estimated trajectory became virtually indistin-
guishable from that measured by the GPS.

As shown in Table II, ML measurements were processed
during two separate phases of flight, one between 3800 m
and 3100 m, using images at 3 Hz, and the second between
1600 m and 230 m above ground, processing only one frame
per second (1 Hz), and yielding up to 80 MLs per image
(cf. Fig. 4). The artificial gap, during which the filter had
to rely on open-loop IMU integration, was introduced to
emulate a temporary failure of ML detection. In EDL, this
could arise, for example, due to large off-nadir viewing angles
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caused by a pose correction maneuver during powered descent.
Once images become available after this intermediate open-
loop phase, a significant change in image scale has occurred.
Despite this, the ML algorithm is capable of successfully
matching MLs, and the EKF estimates’ uncertainty drops
sharply within a few seconds after resuming ML updates (cf.
Figs. 5, 7 at 1600 m altitude).

The 3D ground coordinates for the MLs were obtained from
USGS 1 Meter Digital Orthoimagery Quarter Quadrangles
taken in 2001, combined with 1 arc second finished elevation
data from the Shuttle Radar Topography Mission [23]. For
feature matching in the first set, the entire 7 × 8 km map
image was resampled to ∼ 7 m/pixel, while for the second
set the map was cropped to 2 × 2 km and used at its base
resolution of 1 m/pixel.

At some point during descent, the number of features within
the FOV becomes too small, and the difference in resolution
between camera and map too significant to allow successful
ML correspondences to be established. In this experiment, we
emulated this behavior by stopping ML updates at 230 m
altitude. To compensate, starting at 330 m, the filter began
to perform OF updates at a frequency of 3 Hz. Even though
OFs do not make the system observable (as opposed to
images containing at least three MLs), they allow for precise
estimation of linear and rotational velocity, resulting in very
small error growth during the final 230 m of descent.



C. Algorithm Performance

Ground-truth for position and velocity was obtained from
GPS measurements. Figs. 5 and 7 show the resulting errors and
the corresponding 3σ-bounds for velocity and position in the
local North-East-Down (NED) frame. Table II gives the error
norms for the position and velocity estimates at the beginning
and end of the different update phases.

a) First ML set: When processing the first MLs, the
algorithm converges within about 5 seconds from the large
error (∼ 2700 m) accumulated during IMU integration to
within 18 m of GPS ground-truth (cf. Figs. 3, 7). During
the open-loop integration phase between 3100 m to 1600 m
altitude, the pose uncertainty is again increasing.

b) Second ML set and OFs: The pose estimates almost
instantaneously converge close to ground truth once ML
updates resume at 1600 m. ML- and OF-updates (the latter
starting at 330 m) reduce the position uncertainty bounds to
approximately ±4 m, and the velocity uncertainty to less than
±0.25 m/s along each axis (3σ). Notice that the actual error
at the beginning of OF updates is smaller than at the end
of ML processing ten seconds later. This can be attributed
to the already decreasing number of detected MLs within
the FOV at this altitude, due to the difference in resolution
between satellite and camera image (cf. Fig. 4). With the
discontinuation of ML processing at 230 m altitude, the pose
uncertainty begins to increase even more, although still at a
very low rate (cf. the zoomed-in view of the errors for the
final 300 m in Figs. 6 and 8). As predicted, this is the result
of the system becoming unobservable. Table II shows the final
velocity and position error magnitudes at touchdown, which
are approximately 6.4 m for position and 0.16 m/s for velocity.

Similar to position and velocity, the attitude uncertainty
bounds were decreased to ±0.15◦ accuracy along each axis
(3σ) during processing of ML updates, with a temporary
increase to ±0.9◦ during open-loop IMU integration between
3100 m and 1600 m altitude. Due to the lack of ground-
truth, the attitude uncertainty was determined from the EKF
estimates of the covariance matrix. The figures for position
and velocity errors (cf. Figs. 5-8) show that the filter estimates
for these variables are consistent, indicating that the attitude
estimates are also consistent. The filter attitude estimate was
further verified through an independent measurement of the
final attitude at touchdown using a compass.

VI. CONCLUSION

In this paper, we have presented the analysis and experimen-
tal validation of a vision-aided inertial navigation algorithm for
planetary landing applications. Results from a sounding rocket
test, covering the dynamic profile of typical planetary EDL
scenarios, showed estimation errors of magnitude 0.16 m/s in
velocity and 6.4 m in position at touchdown. These results
vastly improve current state of the art for EDL navigation
without vision, and meet the requirements of future planetary
exploration missions [1]. The algorithm tightly couples IMU
and camera measurements of mapped landmarks (MLs) and
opportunistic features (OFs), in a resource-adaptive and hence

Altitude (m) Time (s) Position Velocity

Error (m) Error (m/s)

Beg. 1st ML set 3800 454 2722.3 10.45

End 1st ML set 3100 514 16.9 0.18

Beg. 2nd ML set 1600 647 78.2 1.38

End 2nd ML set 230 781 5.1 0.23

Beg. OFs 330 771 3.7 0.15

Touchdown 0 805 6.4 0.16

Touchdown 0 805 9169.5 32.70
(IMU-only)

TABLE II
CONDITIONS FOR THE DIFFERENT EKF UPDATE PHASES.
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Fig. 5. Velocity error expressed in NED frame (blue solid line) and
corresponding 3σ-bounds (red dashed line). Note that x-y-z in the plots
corresponds to N-E-D.
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Fig. 6. Velocity error in NED frame (zoomed-in view of Fig. 5 before
touchdown).

real-time capable fashion. It is thus able to provide very
accurate, high-bandwidth estimates for precision guidance and
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050100150200250300
−10

0

10

x 
(m

)

050100150200250300
−10

0

10

y 
(m

)

050100150200250300
−10

0

10

z 
(m

)

Altitude (m)

Fig. 8. Position error in NED frame (zoomed-in view of Fig. 7 before
touchdown).

control. It should be pointed out that the proposed estimator is
modular and easily extendable to incorporate additional sensor
information (e.g., doppler radar), as well as different image
processing algorithms that provide unit vector measurements
to corresponding features. Future work includes optimal se-
lection of a subset of the most informative image features to
track. This would allow efficient use of camera information in
the presence of limited computational resources.

ACKNOWLEDGEMENTS

This work was supported by the University of Min-
nesota (DTC), the NASA Mars Technology Program (MTP-
1263201), and the National Science Foundation (EIA-
0324864, IIS-0643680).

REFERENCES

[1] NASA, “Solar system exploration roadmap,” http://solarsystem.nasa.
gov/multimedia/downloads/SSE RoadMap 2006 Report FC-A med.
pdf, Sep. 2006.

[2] N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, and
J. Montgomery, “Vision-aided inertial navigation for pin-point landing
using observations of mapped landmarks,” Journal of Field Robotics,
vol. 24, no. 5, pp. 357–378, May 2007.

[3] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Rome, Italy,
April 2007, pp. 3565–3572.

[4] J. L. Crassidis, R. Alonso, and J. L. Junkins, “Optimal attitude and
position determination from line-of-sight measurements,” The Journal
of the Astronautical Sciences, vol. 48, no. 2–3, pp. 391–408, April–Sept.
2000.

[5] A. Wu, E. Johnson, and A. Proctor, “Vision-aided inertial navigation for
flight control,” in Proceedings of the AIAA Guidance, Navigation, and
Control Conference, no. AIAA 2005-5998, San Francisco, CA, Aug.
2005.

[6] G. F. Ivey and E. Johnson, “Investigation of methods for simultaneous
localization and mapping using vision sensors,” in Proceedings of the
AIAA Guidance, Navigation, and Control Conference, no. AIAA 2006-
6578, Keystone, CO, Aug. 2006.

[7] D. S. Bayard and P. B. Brugarolas, “An estimation algorithm for vision-
based exploration of small bodies in space,” in Proceedings of the 2005
American Control Conference, vol. 7, Portland, Oregon, Jun. 2005, pp.
4589–4595.

[8] D. Strelow, “Motion estimation from image and inertial measurements,”
Ph.D. dissertation, Carnegie Mellon University, Nov. 2004.

[9] S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery, “Augmenting
inertial navigation with image-based motion estimation,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), Washington
D.C., 2002, pp. 4326–33.

[10] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state
filters for view-based SLAM,” IEEE Transactions on Robotics, vol. 22,
no. 6, pp. 1100–1114, Dec. 2006.

[11] A. I. Mourikis and S. I. Roumeliotis, “On the treatment of relative-pose
measurements for mobile robot localization,” in Proc. IEEE Int. Conf.
on Robotics and Automation, Orlando, FL, May 15-19 2006, pp. 2277
– 2284.

[12] P. McLauchlan, “The variable state dimension filter,” Centre for Vision,
Speech and Signal Processing, University of Surrey, UK, Tech. Rep.,
1999.

[13] Y. Cheng and A. Ansar, “Landmark based position estimation for pin-
point landing on mars,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr.
2005, pp. 4470–4475.

[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 2, no. 60, pp. 91–110,
2004.

[15] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proceedings of the 4th Alvey Vision Conference, 1988, pp. 147–151.

[16] A. Ansar, “2004 small body GN&C research report: Feature recognition
algorithms,” in Small Body Guidance Navigation and Control FY 2004
RTD Annual Report (Internal Document). Pasadena, CA: Jet Propulsion
Laboratory, 2004, no. D-30282 / D-30714, pp. 151–171.

[17] A. Johnson, R. Willson, Y. Cheng, J. Goguen, C. Leger, M. SanMartin,
and L. Matthies, “Design through operation of an image-based velocity
estimation system for Mars landing,” International Journal of Computer
Vision, vol. 74, no. 3, pp. 319–341, September 2007.

[18] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. Johnson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” Journal of Guidance, Control, and Dynamics,
2007, submitted.

[19] W. G. Breckenridge, “Quaternions proposed standard conventions,” Jet
Propulsion Laboratory, Pasadena, CA, Interoffice Memorandum IOM
343-79-1199, 1999.

[20] A. B. Chatfield, Fundamentals of High Accuracy Inertial Navigation.
Reston, VA: American Institute of Aeronautics and Astronautics, Inc.,
1997.

[21] G. Golub and C. van Loan, Matrix computations. The Johns Hopkins
University Press, London, 1996.

[22] P. S. Maybeck, Stochastic Models, Estimation and Control. New York:
Academic Press, 1979, vol. 1+2.

[23] U.S. Geological Survey, “Seamless data distribution system,” http:
//seamless.usgs.gov/index.asp, 2006.


