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Abstract— This paper presents BS-SLAM, a simultaneous has been successful in many indoor environments, presénce o
localization and mapping algorithm for use in unstructured curved elements can create significant problems. In péaticu
environments that is effective regardless of whether features giempting to interpret information from a sensor using an
correspond to simple geometric primitives such as lines or not. . t del i f th . f failure of man
The coordinates of the control points defining a set of B-splines '”09”"3“? mode '.S one of the major causes or failure o ) any
are used to form a complete and compact description of the €stimation algorithms. Some efforts have been made in the
environment, thus making it feasible to use an extended Kalman past when circle features are available [20], but that' sti
filter based SLAM algorithm. The proposed method is the first g big simplification. Thus a more generic representation of

known EKF-SLAM implementation capable of describing both e environment can potentially improve the robustnestief t
straight and curve features in a parametric way. Appropriate o "\, implementations

observation equation that allows the exploitation of virtually . . . . .
all observations from a range sensor such as the ubiquitous AIFernatlvg to using a specific env!ronmental .model IS to
laser range finder is developed. Efficient strategies for computing use information from sensor observations from differefoto

the relevant Jacobians, perform data association, initialization poses to obtain an accurate relationship between thess.pose
and expanding the map are presented. The effectiveness of theyypile this strategy has been successfully used to generate
algorithms is demonstrated using experimental data. . M .
accurate visualizations of complex structures [7] and itketa

maps of indoor environments [8], it can not exploit the irgrer
information gain that occur in traditional SLAM due to the

Developing an appropriate parameterization to represent improvement of map quality.
map is the key challenge for simultaneous localization andin this paper, it is proposed to use B-splines to represent
mapping in unstructured environments. While a substanti@le boundary between occupied and unoccupied regions of
body of literature exists in methods for representing wmstr a complex environment. B-splines provide naturally compac
tured environments during robot mapping, most of these aiescriptions consisting of both lines and curves. Vertiaks
unsuitable for use with the Kalman filter based simultaneotise control polygons that describe a set of B-splines are
localization and mapping. For example, the use of popular agsed to represent a complex environment by a state vector.
cupancy grid approach [13], based on dividing the envirammeComputationally efficient strategies for (a) initializirgnd
into small cells and classify these as occupied or unocdypiextending the state vector when new parts of the environment
and its variants such as those using quad-trees would iasulére discovered, (b) formulating a suitable observatioratigo
an impractically large state vector. that allows the exploitation of virtually all the informati

In much of the early SLAM work the map is describedjathered from a laser range finder, and (c) evaluation of
by a set of points [6], [9], [11]. While this simplifies theappropriate Jacobians for easy implementation of Kalmger fil
formulation and the complexity of the SLAM estimator, therequations are presented in detail. The algorithms proposed
are two main disadvantages in relying solely on point fesgur are evaluated for effectiveness using data gathered fran re
The obvious problem arises if the environment does not hagevironments.
sufficient structure to be able to robustly extract pointdess, The paper is organized as follows. Section Il introduces
for example in an underground mine [12]. The more significasbme general concepts and properties of B-spline curves.
issue is the fact that much of the information acquired from$ection Ill shows how these powerful tools fit into the EKF-
typical sensor, such as a laser range finder, does not congspSLAM framework. Finally, some experimental results and
to point features in the environment. Therefore, the rawrinf conclusions are presented in sections IV and V.
mation from the sensor needs to be analysed and observations
corresponding to stable point features extracted. Durmg t
process, typically more than 95% of the observations areln this section, a brief introduction to the fundamental
discarded and the information contained in these obsenati concepts of the B-splines theory is presented. The tgiine
wasted. One strategy to exploit this additional informaimto is used to refer to a wide class of functions that are used
model the environment using alternative geometric priragti in applications requiring interpolation or smoothing oftala
such as line segments [3], [15] or polylines [18]. While thitn a flexible and computationally efficient way. A spline of

I. INTRODUCTION

Il. SPLINES FUNDAMENTALS



degreek (orderk — 1) is a piecewise polynomial curve; i.e. a 4) As a consequence of property 3, the values Of) at a

curve divided into several pieces, where each of these pisce site§; <t < &1 forsomej € {k —1,...,n} depends
described by a polynomial of degréeand the different pieces only on k of the coefficients:

accomplish with certain continuity properties at the jgotnts j

or knots. Their most common representation is based on the s(t) = Z xi Bk (£) (5)
utilization of B-splines (where B stands fbasig. im iRl ’

A. B-Splines Definition 5) The sum of all the B-spline basis functions for any value

Letting s (t) be the position vector along the curve as a func-  Of the parametet is 1:
tion of the parametet, a spline curve of ordek, with control n
points x; (i = 0...n) and knot vector= = {&y,..., &1k} Zﬁi,k (t)y=1 (6)
can be expressed as: i=0
6) The derivative of a B-spline of order is a spline of

s(t) = inﬂi_’k (t) Q) one orderk — 1, whose coefficients can be obtained
i=0 differencing the original ones [4].
where 3, i (t) are the normalized B-spline basis functions ds (t "X — X
of order k& which are defined by the Cox-de Boor recursion di ) O)=(k-1)> 5_‘7_2@',!@—1 t) (7
formulas [16], [4]: i=0 SHRmL TS
1 if&<t<&a For further information and justification of the previous
B (t) = { 0 otherwise o (2) properties, please see [4], [14], [1] and [16].
and C. Curve Fitting
(t—&) (Eivr—t) Here we consider the problem of obtaining a spline curve
ﬁz‘,k(t)zmﬁi&ﬂ(ﬂ*‘mﬁwmfl(t) () that fits a set of data poinid;, j = 0...m. If a data point

. . lies on the B-spline curve, then it must satisfy equation 1:
The knot vector is any nondecreasing sequence of realS P fyeq

numbers§; < ;.1 fori=0,...,n+k—1) and can be defined d; =00k t) %0+ ...+ Bnk(tj)Xn, j=0...m
in two different ways:.clamped when the multiplicity of the

) . m of ions which can mor m ly written
extreme knot values is equal to the ordeof the B-spline, system of equations ch can be more compactly written as

andunclamped16, 14]. When clamped knot vectors are used, d = [dy &1 ... dpn ]T

first and last control polygon points define the beginning and x = [x0 x1 ... X T

end of the spline curve. d = Bx Bok (to) .. Bux (o) 8)
B - . : .

Matrix B, usually referred to as theollocation matrix has
for each of its rows at mogt non-null values. The parameter
valuet; defines the position of each data poiht along the
B-spline curve, and can be approximated by the chord length

Fig. 1. Examples of splines in B-spline formm) Cubic spline with clamped between data points:

knot vector Ec : §p = ... =&3 < ... < & = ... = &9). b) Cubic spline to = 0

with unclamped knot vector=. : & < ... < &9). ; . }
tj = i:l |ds - d571| , ] > 1

being the total length of the curve

9)

B. Properties of Spline Curves
m

In this section, some properties of spline curves, defined as /= Z d, — dy_1| (10)
linear combination of B-splines, are summarized. pat T

1) The curve generally follows the shape of the contrgl;oy, is taken as the maximum value of the knot vector.
pO'YQOfff‘.- . o lied h b The most general case occurs wized k < n+1 < m+1;
2) Any affine transformation is applied to the curve by,q yroplem is over specified and can only be solved in a mean

appl%"?)g 'F tof the .control p(_)lygon. vertlc;es. | " sense. A least squares solution can be computed making use
3) Each basis functiom;  (¢) is a piecewise polynomial of the pseudoinverse matrix @:

of orderk with breaks,, . .., &+, vanishes outside the )
interval [¢;, &4 «) and is positive on the interior of that x=[B"B] B”'d=&d (11)
interval:

Once the order of the B-spline baskds predefined, the
Gir(t) >0 & & <t<&ik (4) number of control polygon vertices+ 1, and the parameter



values along the curve are known (as calculated from equatio 2) Splines Associationtn this section, the data association

9), the basis functiong; ; (¢;) and hence the matriB can process is described. At each sampling tiraea new set of

be obtained. splines is obtained, being necessary to achieve a gooddeatu
In the work here presented, clamped knot vectors are g@ssociation between the curves that are already contamed i

erated taking the total length of the cur/¢equation 10), and the map §,,1,...,sx ~), and the new ones that have just

defining a knot density which depends on the complexity of theen detecteds( 1, ..., s, n,)-

environment. Recall that knots are the joints of the polyimm The process is explained with an example. Take the situation

pieces a spline is composed of, so complex environmenlisplayed in figure 3. Figure 3.a shows the initial configu-

need a high knot density, while segments can be descrilration: a map containing one splirsg, ; (t), and two new

properly using longer polynomial pieces (lower knot deyjsit features which have just been detectegl; (u) ands, 2 (v)

The interested reader is referred to [5] and [2], where mofeotice the lack of correspondence between the paramefters o

information about curve fitting methods can be found. different curves). A rough measure of the distances between
the splines can be obtained by measuring the distances be-
[1l. SLAM wWITH B-SPLINES tween the control points of each spline (recall here prgpert

1). In order to improve this search, the map can be simplified
choosing only the splines that are close to the robot’s joosit

A commonly used sensor in mobile robotics is the laser At each sampling time, the position of the observed splines
range-finder. Whenever a robots makes an observation ofigscalculated taking into account the best available esiima
environment with such a device, a setwofdata pointsl; € ®? for the robot's position and orientation. Then, the distanc
is obtained (we're considering here the 2D scenario). Ia tHrom the control points of each of the detected splines to
section, methods for extracting parametric splines regmtésy the control points of the splines contained in the map are
the physical detected objects are presented. It is alsorsti@v calculated, and each of the observed splines is matched to
way of performing data association, establishing compass the closest one on the map, following this criterion:
between the detected splines and the map splines.

1) Obtaining SplinesWhen a new data set is obtained from  min (dist (Xm.i,Xo.;)) < dumin, {
an observation of the environment, splines are extracteal in

three-stages process (see Fig. 2): where x,,, ; are the control points of the map spline, ;
« Primary segmentation Data stream is split into piecesare the control points of the observed spling, andn, are,
separated by measurements out of range, if any. A setrespectively, the number of control points of the splineha t
N, data vectors is obtained, called primary segmentationap and the detected spline, amidt (x,,,;,%, ;) represents

A. Data Management

1=1...np

j=1l...n (12)

objects, and denotef 1, F1 o,..., F1,n, (See Fig. 2.c). the euclidean distance between two control points.

o Secondary segmentation An analysis of the relative
positions of consecutive data points is performed. The,), - gé\v)ﬂ b) e b
aim is to detect points close enough as to belong to the'=, 2 .
same feature, and also detect corners, but allowing points; StV = d\g"a

not to lie on the same segment (Fig. 2.f). A set/éf $a(W

Sggondary segmentation features is Obtam_ed (Flg. 2'd)?ig. 3. Data association process. Comparison of controltpgiasitions (a)
« Fitting: Each of the secondary segmentation objects 4&d parameters correspondence (b).

fitted by a cubic spline, as described in section II-C.

If no spline in the map is close enough to a detected spline
(as occurs witls, o in figure 3.a) then, this new object is added
to the map once its position has been updated. If a spline is
associated with a map feature, then it is necessary to obtain
a matching between their points, as depicted in figure 3.b.
This matching provides information about the corresponden
between the parameterizations of both curves, and is very
;3 useful when a spline extension is required. The process is as
follows:

« One of the extreme points of the observed spline is
considered (point)

Fig. 2. Splines detection stepe} Robot and environmenk) A new data set « The closest point [19] on the map spline to the paint
is acquiredc) Primary segmentationl) Secondary segmentatiog) Obtained

splines, fitting each of the data sets in @).Data points relative position. 1S Ca_|CU|ated (pomb) . .
|ai| < mas @ndmaz(|pil, [Pi+1]) < n-min(|pi|,|pi+1]) are checked o If b is one of the extreme points of the map’s spline, then,
(typically armaz € [0,7/4] andn € [1.5,2]). the closest point td on the observed spline is calculated

(point ¢). Else, pointa is matched with poinb.



o The process is repeated taking as starting point the otlé&r The Observation Model

extreme of the observed spline (poidtin the picture),  The implementation of a EKF-SLAM algorithm requires
which is associated with the poieton the map spline. ot an observation model; i.e. some expression which allows
At the end of this process, not only correspondent pairs tf predict the measurements that are likely to be obtained
points (c,b) and (d, e) are obtained, but also a corresponby the robot sensors given the robot pose and the current
dence between the map spline parametand the observed knowledge of the environment. This measurement model can
spline parametet: (win;, tini) and (uysin,trin), given that  be understood, in our particular case, as the calculaticheof
intersection of the straight line defined by a laser beam (for
€ =801 (Uini) b= 5m1 (tin) (13) each position across the laser angular range) with theesplin
d =801 (usin) €= 8m1(tsin) contained in the map (Fig. 4). Unfortunately, calculatihg t
The simple data association process described in this s#ersection of a straight line with a parametric curve, hie t
tion, though quite simple and based upon euclidean distarfegM s (t) = [sz (), sy (¢)]" is not suitable for an explicit
metric, has performed very robustly in our experiments. Hownathematical formulation. There is a whole field of research
ever, benefits of parametric representation are not yey fulgarding this complex problem known eey tracing [17].
exploited, and further research is being undertaken in this

sense. L N — N\
f rotation and translation :
of control points
B. The State Model ;

R s (x,,t)
The state of the system is composed by the robot (the only ; “ K )
mobile element) and all the map features, modeled in the el u,
work here presented by cubic splines. When these splines are N
expressed as linear combination of B-splines, the statadf e 5, &0

of them can be represented by the positions of their control
polygon vertices, given a fixed and known knot vector which Fig. 4. Observation model
generates a basis of B-splines for each of the map features.

Referring all the positions and orientations to a global In this document, the predicted measurement is calculated
reference systerfuy, vy}, and assuming the robot as thén an iterative way, making use of property 2 in section II-
first feature in the mapH;) the following expressions describeB and the Newton-Raphson method for calculating the zeros

the state of the system at a certain tike of a function. The first step is to define an orthonormal
T reference systemjuy, v}, centered in the robot reference
Xp, =Xr = [Tr,Yr, O] (14)  system {ug, vz} and with the abscissas axis; defined
Xp, = X5, = [J:LO,...,$i7,bi,yi70,...,yL,,LJT (15) by the laser beam direction and orientation (see Fig. 4).
i=1,....N Let §(X; (x;,x,),t) be the position vector along a spline
curve expressed in such a reference system (we're making
and finally here explicit the functional dependency between a spline an
x — [XZ»XSTN-~-7X5TN]T (16) its control points). The relationship between control p®in

X; = [1'i7yi]T and)_q = [{fi,gi}T, 1=0...n, is given by
In the previous equationsy is the number of map static _ .

. . T; cosp  sinp T; — Ty
elements (map features) angdis the number of control points [ —, ] = { Csinu cos ] [ - } (20)
for each of them. Note that the number of control points for Yi H H %= Ur
each of the splines contained in the map can be variablging 1 the angle of the considered laser beam in the global
as features are progressively extended as new areas ofréference system; i.e. given the laser orientation in theto

environment are explored. reference system:
x (k) ~ N (% (k|k),P (k|k)) 17) p=¢r+7 (21)
where In this context, the measurement predictios: 7 (x;, x,.) iS
given by the value of, (z; (x;,x,),t*), wheret* is the value
x (klk) = [ %, (k|k) %, (klk) ... Xy (k|k) ] (18) of the parametet that makess, (y; (x;,%;),t*) = 0. As only
a reduced set of control points affect the shape of the curve
and for each value of the parametgra small number of this points
P, (klk) P, (klk) ... Py (k|K) need to be rotated and translated to the new reference system
P, (klk) Py, (klk) ... Py (k|k) The initial guess for each map spline associated with an
P (klk)= ) ) (19) observation can be obtained directly from the data assoniat

: : : stage, and for each of the laser beams positions the solution
Py (K[E) Poys, (k) ... Poysy (K[F) obtained in the previous prediction can be used as initiakgu



During the experiments, a maximum of two iterations werand its covariance:
needed for this calculation, with a precision of 0.0001 m. .
Despite the lack of an explicit observation model, it is P (k+1|k) =F, (k+ 1) P (k[k)F, (k+1) +

still possible to calculate the derivatives of this expdcte +F, (k+1)Q(k + 1)Ff (k+1) (33)
measurements with respect to the map state in an approximate
way. Once calculated the valdé which makess,, (t*) = 0, The Jacobian matrices are
the expected measurement in the nearness of this parameter - o
location, assuming small perturbations in the state vector %y o (kIR 8 (k41)
be approximated by: ’
pp y - . F, (k+1)= 0 I,,... 0 (34)
h (%, %) =35, <:EZ (xi,xr),t*f‘?’ (%1 (xi, Xr) *)) (22) : P
8y (91 (xi, %) 1) i 0 0 .1,
and derivating with respect to the control points positions rofy
03", o . u |%,. (k|k),0(k+1)
Oh _ 05.0m 0 SRS ) SRS W) p s ’ (@)
= = + S$ (t ) 2 w .
ox; oz; 0x; [g{q (t*)] :
95,0 1 95, O 23) L 0
0z; 0x;  tan(n — p) 0y; 0%, wheref, depends on the mobile platform being considered.

The partial derivatives in equation 23 can be easily obthine 2) Kalman Filter Update: Once obtained the expected
looking at equations 1 and 20. For example from equationmeasurements for each of the laser beams positions of an

we can obtain: _ _ observation associated with a map spline, the innovation
05, 03y . T )
— = — =1 (1) (24) covariance matrix is given by [6]:
0r; 0y ’
So, finally, we can write: Sk+1)=Hy(k+1)P(k+1k)HL (k+1)+R(k+1)
oh . sinu (36)
ol Bik () [COSM + tan(nu)] (25) where the Jacobian is:
oh oh
y; tan (n — p)
Similarly, making use of property 5, and equations 1 and In the previous equation, the terggg is calculated making
20, we can obtain: use of equations 27, 28 and 29, and tez#h- is calculated
from 25 and 26. The gain matrix is calculated as follows
oh B B Sinph @7)
oz, M tan(n—p) Wk+1)=Pk+1k)HL (k+1)S™ (k+1) (38)
oh ) cosp ) o ) )
= —snp+ ——— (28) Finally, the state estimation and its covariance are update
Yy tan (n — p) .
on 3 according to:
= — (29)
O tan (n — p) X (k+1/k+1) = % (k+1|k)+W (k+1)h (k+1)  (39)
These equations will allow the efficient calculation of the
relevant Jacobians in the following sections. P (k+1|k+1) = I-W (k+1)H, (k+1)] P (k+1]k) (40)

D. Applylng t-he EKF ) ) ) ) E. Extending the Map
In this section, results obtained in previous sections ate p o o )
together and combined in the working frame of the Extended The map is incrementally built in two ways: adding new
Kalman Filter with the aim of incrementally building a magPbiects, and extending objects already contained in the map
of an environment modeled with cubic splines. 1) Adding New Objects to the MapWhenever a new
1) Kalman Filter Prediction:Between the times andk+1 observation is not associated with any of the objects ajread
the robot makes a relative movement, given by the vector contained in the map, it is considered as a new object, and the
. spline which defines its shape is added to the map. Given a
u(k+1)~N(@k+1),Q(k+1) (30) map containingV static features, and a set of measurements
Under the hypothesis that the only moving object in the,i = p...p+ ¢ corresponding to a new detected feature, the
map is the robot, the a priori estimation of the state at tinmugmented state vector is:
k+ 1 is given by:

a —
b = X,

X, (k+1k) = £ (% (klk),a(k+1))  (31) x“=g(xz)e{xt =x, i=1....N (41)

ﬁsi (k + 1|k) = )A(Si (k|k) (32) XgN_H = Bsnt1 (XNZ)



whereg, ., (x,,z) is defined by the fitting of the new data
points as described in section 1I-C:

[ TN+1,0 | i Ty + Zp COS (¢T + Tp) EO: EI: §= Eq «++ data to be addlc;l”‘ Eu: EI: Eez Ez E1o: Eu: E12: E13
- e parameter correspondence

. = &P (42) xinm ! >

-_IN'H’"N - L Tr + Zp4q €08 (Pr + Tpyg) Fig. 5. Map spline extension with new data after Kalman filtpdate.
YN+1,0 Yr + 2psin (¢, + 1)

: = : (43)

' . In [14] an unclamping algorithm is proposed, which is
LYN+1,nN | Yr + Zp+qsin (& + Tp+q)

_ _ successfully applied in [10] with the goal of extending a B-
The new covariance matrix for the augmented state vectgiline curve to a single given point. Our problem is to extend

is: a map spline, given a new set of measured data points. The
P* = GxPG] + G,RG, (44) following equations show how, combining the unclamping al-
and the Jacobian€,, = % andG, = g%: gqrithm with the approximation scheme previously proposed
it is possible to extend the map features as new measurements
I 0O ... 0 0 are obtained. Given a spline curve, defined by a set of control
o IL,... 0 0 pointsx; and clamped knot vector in the form:
Ge=1 = 7 Ga=1 45) Zig=..=61<E6<. . <E<Ep1 = =Erin
0 o0 ..1,, 0 _— v
%enii g 0 T8N : : .
9%, 0z the unclamping algorithm proposed in [14] calculates th& ne
with } _ control points corresponding to the unclamped knot vectors
10 —z,sinpu, ~ B
& | : o= =G G < 6 L6 S S i
0gs 10 —2zp148in _ L
o = TRy (46) Zpéh<.. <& << <€ <Epr = =Ekin
P | : k

The right-unclamping algorithm (on the side corresponding

01 zpp4sin
pa S Hpta to higher values for the paramet&rof a spline of orderk,

COS tp - .. 0 converting the knot vectaE into =,, and obtaining the new
P o : control pointsx] is as follows:
085y 11 0 ... cCOSlptq %, i=0.1 n—k+1
= . 47 r__ (3] — Uy
0z sinptp ... 0 47 i {xf”, i=n—k+2,n—k+3,...,n (50)
e o : where
0 ...sin )
_ . Hptal . , xf_l, i=n—k+2n—-k+3,....n—j
2) Extending Map ObjectsFrequently, observations are x) =< x/'—(1-af)x! , . _ (51)
only partially associated with a map feature (as in figure 3). o , t=n—Jj+1....n
This means that a new unexplored part of a map object is b%‘&n
detected and, consequently, this spline must be extendéd. 9 4 Gt — &
for instance the situation displayed in figure 5, where fl of = =4l S (52)
map spline has been partially associated with an observatio Sivjt1 — &
and the information contained in a new set of data points and the initial values are set to
_ || | et zicos s x0=x;, i=n—k+2n—k+3,...,n (53)
d'{df]{yr—i—zisinui]’ i=q,...,q+m (48)

If all the splines are cubic B-spline& & 4), the previous

must be integrated into the map feature. The extended st, ressions can be reduced to:

vector will be:

y A y
¢ = x. Xi=x;, t=0,...,n—2
e v ! . . x'_,=-I12_.x, 9+ L x 1
X°=geo(X,2) & X5, = X, 1F£] (49) n—1 n—1Sn—2"7T 27 An— (54)
x¢ = g€ (x X z) T 212 ry r, 1
S gsj Ty &g X, = Fnl—‘nilxnfg— v 72 X"71+7172 Xn
. H n YA

With the objective of calculatings¢. (x.,,x,,z), a similar bei
. i : . being
scheme to the one used during the data approximation s . s , i
J_ Enp1—& and TV = 1= (55)
followed. RO S— Py



Similar results can be obtained when converting a clampbding
knot vector= into a left-unclamped ong;:

[10 —z,sinp,
2 1 .
xb = oo — (G + 8) 1+ 930, arli i
xll _ 71%)(1 B Q%Xg (56) e 10 —2pygsinppig Hee (I,e|:0]
G g, | [oo0 0 1] %85 _|° |1
o, 01 z,cosp, T 0%, | Y
with o | . I
Wl = Gmifur anqqf = 1 (57) 0 1 2p4q5in iyt
7 §i+k7j*1_§’i+k ¢ wy 0 O O

These results can be combined with the methodology POAd
posed in section II-C for obtaining new splines as new data Is - cos . 0 A
acquired, being aware of the following considerations: b

o A parametrization for the new measurements to be in- ®°
tegrated in the spline, congruent with the map spline ogc 8 Cosg”q
parametrization, can be obtained easily from the data 51— i
association stage. 0z sinpp ... 0

« The knot vector needs to be unclamped and might need Pe : : :
to be extended withp extra knots in order to make 0 ...sinppig
room for the new span being added. New knots number 0 ... 0
and spacing are chosen according to the specified knot ) )
density, and as many new control points as new knots IV. EXPERIMENTAL RESULTS

need to be added. , ) )
Several experiments have been performed with real data in

This way, the system of equations 8 is written for the né@rder to validate the results here presented. Figure 6 shows
data points, extended with previous equations 54 and/or $6.map representing an environment with predominant flat
and its least-squares solution provides a matrix-formalinefeaires (segments), with 81 splines defined by 332 control

relationship between the old control poistsand the sampled points. Figure 7 depicts the map of a bigger and more
datad;, and the new control pointx;:

207

- - - [~ Odometry Estimated |
dq dl] _ N
x;,(] w: y;?’o y: 15 ,
= p° ﬂﬂ , : = p° %ﬂ (58) | | _ : 3 ’
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Note that once chosen an unclamped knot vegfofor the ,— ! J——l———— — c |
extended splinepc can be considered a constant matrix. The ' ' |
new covariance matrix after extending th¢h spline is: o T ~ - - I
[ 2
T . T [ <7
P¢ = GIPGS" + G.RG; (59) — -

where the involved Jacobia@S = %5~ and G¢ = %~ have

the following appearance: Fig. 6. Map of a career fair held at the School of IndustriagiEeering
(UPM) in Madrid.

I. 0 ... 0 ... 0 r 7
0oI,... 0 ... 0 8 complex environment with a mixture of both straight and
Ce e curved features. In this case 461 control points defininga to
o g; : . ag? . : G- |, - (60) of 96 splines are necessary. In both experiment;, a Ble{ robo
x A i o T s;j with a SICK laser was used for the data acquisition with a
" K | sampling frequency of 5 Hz, and density of 2 knots/m was
Do .o - used for knot vectors generation. No geometric constraints
0O 0 ... 0 ...I,, L 0 | have been used in the map building process.
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Fig. 7. Map of the Museum of Science “Principe Felipe” (Valien Spain)
(left). Detail view and photography (right).

El

[10]
V. CONCLUSION

A new methodology for simultaneous localization and ma;.[ﬁl]
ping in arbitrary complex environments has been proposed. k12
the first time, it has been shown how the powerful and com-
putationally efficient mathematical tools that splines, die
into the EKF-SLAM framework allowing the representation ofy 3]
complex structures in a parametric way. Despite the apparen
difficulty that this symbiosis between EKF-SLAM and splineﬁ4]
theory could involve, simple and easily programmable mratri
form expressions have been obtained. Specifically, the n&wi
ray tracing method here proposed, constitutes a matheahatic
artifice that not only provides an effective observation glpd [1¢]
but also makes easier the obtaining of the Jacobians for
the Kalman filter update. It seems clear that, when sim
descriptions of the environment are insufficient or unfelasi
any other SLAM algorithm could benefit from the versatilityi18]
of this new parametric representation.

No information is lost, as control points incrementally
encapsulate the uncertainties of laser measurementsgsthd#dl
to the application of the new matrix-form algorithms here
proposed for splines enlargement. Moreover, these cosmcept
and techniques are suitable for a 3D extension. Finallg tH?0]
new representation constitutes a big step forward, condgare
current SLAM techniques based on geometric maps, allowing
the mathematical interpretation and reasoning over thesmap
being built regardless the shape of the contained features.
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