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Abstract— This paper presents BS-SLAM, a simultaneous
localization and mapping algorithm for use in unstructured
environments that is effective regardless of whether features
correspond to simple geometric primitives such as lines or not.
The coordinates of the control points defining a set of B-splines
are used to form a complete and compact description of the
environment, thus making it feasible to use an extended Kalman
filter based SLAM algorithm. The proposed method is the first
known EKF-SLAM implementation capable of describing both
straight and curve features in a parametric way. Appropriate
observation equation that allows the exploitation of virtually
all observations from a range sensor such as the ubiquitous
laser range finder is developed. Efficient strategies for computing
the relevant Jacobians, perform data association, initialization
and expanding the map are presented. The effectiveness of the
algorithms is demonstrated using experimental data.

I. I NTRODUCTION

Developing an appropriate parameterization to represent the
map is the key challenge for simultaneous localization and
mapping in unstructured environments. While a substantial
body of literature exists in methods for representing unstruc-
tured environments during robot mapping, most of these are
unsuitable for use with the Kalman filter based simultaneous
localization and mapping. For example, the use of popular oc-
cupancy grid approach [13], based on dividing the environment
into small cells and classify these as occupied or unoccupied,
and its variants such as those using quad-trees would resultin
an impractically large state vector.

In much of the early SLAM work the map is described
by a set of points [6], [9], [11]. While this simplifies the
formulation and the complexity of the SLAM estimator, there
are two main disadvantages in relying solely on point features.
The obvious problem arises if the environment does not have
sufficient structure to be able to robustly extract point features,
for example in an underground mine [12]. The more significant
issue is the fact that much of the information acquired from a
typical sensor, such as a laser range finder, does not correspond
to point features in the environment. Therefore, the raw infor-
mation from the sensor needs to be analysed and observations
corresponding to stable point features extracted. During this
process, typically more than 95% of the observations are
discarded and the information contained in these observations
wasted. One strategy to exploit this additional information is to
model the environment using alternative geometric primitives
such as line segments [3], [15] or polylines [18]. While this

has been successful in many indoor environments, presence of
curved elements can create significant problems. In particular,
attempting to interpret information from a sensor using an
incorrect model is one of the major causes of failure of many
estimation algorithms. Some efforts have been made in the
past when circle features are available [20], but that’s still
a big simplification. Thus a more generic representation of
the environment can potentially improve the robustness of the
SLAM implementations.

Alternative to using a specific environmental model is to
use information from sensor observations from different robot
poses to obtain an accurate relationship between these poses.
While this strategy has been successfully used to generate
accurate visualizations of complex structures [7] and detailed
maps of indoor environments [8], it can not exploit the inherent
information gain that occur in traditional SLAM due to the
improvement of map quality.

In this paper, it is proposed to use B-splines to represent
the boundary between occupied and unoccupied regions of
a complex environment. B-splines provide naturally compact
descriptions consisting of both lines and curves. Verticesof
the control polygons that describe a set of B-splines are
used to represent a complex environment by a state vector.
Computationally efficient strategies for (a) initializingand
extending the state vector when new parts of the environment
are discovered, (b) formulating a suitable observation equation
that allows the exploitation of virtually all the information
gathered from a laser range finder, and (c) evaluation of
appropriate Jacobians for easy implementation of Kalman filter
equations are presented in detail. The algorithms proposed
are evaluated for effectiveness using data gathered from real
environments.

The paper is organized as follows. Section II introduces
some general concepts and properties of B-spline curves.
Section III shows how these powerful tools fit into the EKF-
SLAM framework. Finally, some experimental results and
conclusions are presented in sections IV and V.

II. SPLINES FUNDAMENTALS

In this section, a brief introduction to the fundamental
concepts of the B-splines theory is presented. The termspline
is used to refer to a wide class of functions that are used
in applications requiring interpolation or smoothing of data
in a flexible and computationally efficient way. A spline of



degreek (orderk − 1) is a piecewise polynomial curve; i.e. a
curve divided into several pieces, where each of these pieces is
described by a polynomial of degreek, and the different pieces
accomplish with certain continuity properties at the jointpoints
or knots. Their most common representation is based on the
utilization of B-splines (where B stands forbasic).

A. B-Splines Definition

Lettings (t) be the position vector along the curve as a func-
tion of the parametert, a spline curve of orderk, with control
points xi (i = 0 . . . n) and knot vectorΞ = {ξ0, . . . , ξn+k}
can be expressed as:

s (t) =

n∑

i=0

xiβi,k (t) (1)

where βi,k (t) are the normalized B-spline basis functions
of order k which are defined by the Cox-de Boor recursion
formulas [16], [4]:

βi,1 (t) =

{
1 if ξi ≤ t ≤ ξi+1

0 otherwise
(2)

and

βi,k(t)=
(t−ξi)

ξi+k−1−ξi

βi,k−1(t)+
(ξi+k−t)

ξi+k−ξi+1
βi+1,k−1(t) (3)

The knot vector is any nondecreasing sequence of real
numbers (ξi ≤ ξi+1 for i = 0, . . . , n+k−1) and can be defined
in two different ways:clamped, when the multiplicity of the
extreme knot values is equal to the orderk of the B-spline,
andunclamped[16, 14]. When clamped knot vectors are used,
first and last control polygon points define the beginning and
end of the spline curve.
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Fig. 1. Examples of splines in B-spline form.a) Cubic spline with clamped
knot vector (Ξc : ξ0 = . . . = ξ3 ≤ . . . ≤ ξ6 = . . . = ξ9). b) Cubic spline
with unclamped knot vector (Ξc : ξ0 ≤ . . . ≤ ξ9).

B. Properties of Spline Curves

In this section, some properties of spline curves, defined as
linear combination of B-splines, are summarized.

1) The curve generally follows the shape of the control
polygon.

2) Any affine transformation is applied to the curve by
applying it to the control polygon vertices.

3) Each basis functionβi,k (t) is a piecewise polynomial
of orderk with breaksξi, . . . , ξi+k, vanishes outside the
interval [ξi, ξi+k) and is positive on the interior of that
interval:

βi,k (t) > 0 ⇔ ξi ≤ t < ξi+k (4)

4) As a consequence of property 3, the value ofs (t) at a
siteξj ≤ t ≤ ξj+1 for somej ∈ {k − 1, . . . , n} depends
only on k of the coefficients:

s (t) =

j
∑

i=j−k+1

xiβi,k (t) (5)

5) The sum of all the B-spline basis functions for any value
of the parametert is 1:

n∑

i=0

βi,k (t) = 1 (6)

6) The derivative of a B-spline of orderk is a spline of
one orderk − 1, whose coefficients can be obtained
differencing the original ones [4].

ds (t)

dt
=s′ (t)=(k − 1)

n∑

i=0

xi − xi−1

ξi+k−1 − ξi

βi,k−1 (t) (7)

For further information and justification of the previous
properties, please see [4], [14], [1] and [16].

C. Curve Fitting

Here we consider the problem of obtaining a spline curve
that fits a set of data pointsdj , j = 0 . . . m. If a data point
lies on the B-spline curve, then it must satisfy equation 1:

dj = β0,k (tj)x0 + . . . + βn,k (tj)xn, j = 0 . . . m

system of equations which can be more compactly written as

d = Bx







d =
[

d0 d1 . . . dm

]T

x =
[

x0 x1 . . . xn

]T

B =






β0,k (t0) . . . βn,k (t0)
...

. . .
...

β0,k (tm) . . . βn,k (tm)






(8)

Matrix B, usually referred to as thecollocation matrix, has
for each of its rows at mostk non-null values. The parameter
value tj defines the position of each data pointdj along the
B-spline curve, and can be approximated by the chord length
between data points:

t0 = 0

tj =
∑j

s=1 |ds − ds−1| , j ≥ 1

}

(9)

being the total length of the curve

ℓ =

m∑

s=1

|ds − ds−1| (10)

which is taken as the maximum value of the knot vector.
The most general case occurs when2 ≤ k ≤ n+1 < m+1;

the problem is over specified and can only be solved in a mean
sense. A least squares solution can be computed making use
of the pseudoinverse matrix ofB:

x =
[
BT B

]−1
BT d = Φd (11)

Once the order of the B-spline basesk is predefined, the
number of control polygon verticesn + 1, and the parameter



values along the curve are known (as calculated from equation
9), the basis functionsβi,k (tj) and hence the matrixB can
be obtained.

In the work here presented, clamped knot vectors are gen-
erated taking the total length of the curveℓ (equation 10), and
defining a knot density which depends on the complexity of the
environment. Recall that knots are the joints of the polynomial
pieces a spline is composed of, so complex environments
need a high knot density, while segments can be described
properly using longer polynomial pieces (lower knot density).
The interested reader is referred to [5] and [2], where more
information about curve fitting methods can be found.

III. SLAM WITH B-SPLINES

A. Data Management

A commonly used sensor in mobile robotics is the laser
range-finder. Whenever a robots makes an observation of its
environment with such a device, a set ofm data pointsdi ∈ ℜ2

is obtained (we’re considering here the 2D scenario). In this
section, methods for extracting parametric splines representing
the physical detected objects are presented. It is also shown the
way of performing data association, establishing comparisons
between the detected splines and the map splines.

1) Obtaining Splines:When a new data set is obtained from
an observation of the environment, splines are extracted ina
three-stages process (see Fig. 2):

• Primary segmentation: Data stream is split into pieces
separated by measurements out of range, if any. A set of
N1 data vectors is obtained, called primary segmentation
objects, and denotedF1,1, F1,2, . . . , F1,N1

(see Fig. 2.c).
• Secondary segmentation: An analysis of the relative

positions of consecutive data points is performed. The
aim is to detect points close enough as to belong to the
same feature, and also detect corners, but allowing points
not to lie on the same segment (Fig. 2.f). A set ofN2

secondary segmentation features is obtained (Fig. 2.d).
• Fitting : Each of the secondary segmentation objects is

fitted by a cubic spline, as described in section II-C.
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Fig. 2. Splines detection steps:a) Robot and environment.b) A new data set
is acquired.c) Primary segmentation.d) Secondary segmentation.e) Obtained
splines, fitting each of the data sets in d).f) Data points relative position.
|αi| ≤ αmax andmax(|pi| , |pi+1|) ≤ η ·min(|pi| , |pi+1|) are checked
(typically αmax ∈ [0, π/4] andη ∈ [1.5, 2]).

2) Splines Association:In this section, the data association
process is described. At each sampling time,k, a new set of
splines is obtained, being necessary to achieve a good feature
association between the curves that are already contained in
the map (sm,1, . . . , sm,N ), and the new ones that have just
been detected (so,1, . . . , so,N2

).
The process is explained with an example. Take the situation

displayed in figure 3. Figure 3.a shows the initial configu-
ration: a map containing one splinesm,1 (t), and two new
features which have just been detected,so,1 (u) and so,2 (v)
(notice the lack of correspondence between the parameters of
different curves). A rough measure of the distances between
the splines can be obtained by measuring the distances be-
tween the control points of each spline (recall here property
1). In order to improve this search, the map can be simplified
choosing only the splines that are close to the robot’s position.

At each sampling time, the position of the observed splines
is calculated taking into account the best available estimation
for the robot’s position and orientation. Then, the distances
from the control points of each of the detected splines to
the control points of the splines contained in the map are
calculated, and each of the observed splines is matched to
the closest one on the map, following this criterion:

min (dist (xm,i,xo,j)) ≤ dmin,

{
i = 1 . . . nm

j = 1 . . . no
(12)

where xm,i are the control points of the map spline,xo,j

are the control points of the observed spline,nm andno are,
respectively, the number of control points of the spline in the
map and the detected spline, anddist (xm,i,xo,j) represents
the euclidean distance between two control points.

s    (t)m,1

s   (v)o,2
a)

a

b

cd

eb)

s   (u)o,1

Fig. 3. Data association process. Comparison of control points positions (a)
and parameters correspondence (b).

If no spline in the map is close enough to a detected spline
(as occurs withso,2 in figure 3.a) then, this new object is added
to the map once its position has been updated. If a spline is
associated with a map feature, then it is necessary to obtain
a matching between their points, as depicted in figure 3.b.
This matching provides information about the correspondence
between the parameterizations of both curves, and is very
useful when a spline extension is required. The process is as
follows:

• One of the extreme points of the observed spline is
considered (pointa)

• The closest point [19] on the map spline to the pointa

is calculated (pointb)
• If b is one of the extreme points of the map’s spline, then,

the closest point tob on the observed spline is calculated
(point c). Else, pointa is matched with pointb.



• The process is repeated taking as starting point the other
extreme of the observed spline (pointd in the picture),
which is associated with the pointe on the map spline.

At the end of this process, not only correspondent pairs of
points (c,b) and (d, e) are obtained, but also a correspon-
dence between the map spline parametert and the observed
spline parameteru: (uini, tini) and (ufin, tfin), given that

c = so,1 (uini) b = sm,1 (tini)
d = so,1 (ufin) e = sm,1 (tfin)

(13)

The simple data association process described in this sec-
tion, though quite simple and based upon euclidean distance
metric, has performed very robustly in our experiments. How-
ever, benefits of parametric representation are not yet fully
exploited, and further research is being undertaken in this
sense.

B. The State Model

The state of the system is composed by the robot (the only
mobile element) and all the map features, modeled in the
work here presented by cubic splines. When these splines are
expressed as linear combination of B-splines, the state of each
of them can be represented by the positions of their control
polygon vertices, given a fixed and known knot vector which
generates a basis of B-splines for each of the map features.

Referring all the positions and orientations to a global
reference system{uW ,vW }, and assuming the robot as the
first feature in the map (F0) the following expressions describe
the state of the system at a certain timek:

xF0
= xr = [xr, yr, φr]

T (14)

xFi
= xsi

= [xi,0, . . . , xi,ni
, yi,0, . . . , yi,ni

]
T (15)

i = 1, . . . , N

and finally

x =
[
xT

r ,xT
s1

, . . . ,xT
sN

]T
(16)

In the previous equations,N is the number of map static
elements (map features) andni is the number of control points
for each of them. Note that the number of control points for
each of the splines contained in the map can be variable,
as features are progressively extended as new areas of the
environment are explored.

x (k) ∼ N (x̂ (k|k) ,P (k|k)) (17)

where

x̂ (k|k) =
[

x̂r (k|k) x̂s1
(k|k) . . . x̂sN

(k|k)
]

(18)

and

P (k|k)=








Prr (k|k) Prs1
(k|k) . . . PrsN

(k|k)
Ps1r (k|k) Ps1s2

(k|k) . . . Ps1sN
(k|k)

...
...

. ..
...

PsN s1
(k|k) PsN s2

(k|k) . . . PsN sN
(k|k)








(19)

C. The Observation Model

The implementation of a EKF-SLAM algorithm requires
of an observation model; i.e. some expression which allows
to predict the measurements that are likely to be obtained
by the robot sensors given the robot pose and the current
knowledge of the environment. This measurement model can
be understood, in our particular case, as the calculation ofthe
intersection of the straight line defined by a laser beam (for
each position across the laser angular range) with the splines
contained in the map (Fig. 4). Unfortunately, calculating the
intersection of a straight line with a parametric curve, in the
form s (t) = [sx (t) , sy (t)]

T is not suitable for an explicit
mathematical formulation. There is a whole field of research
regarding this complex problem known asray tracing [17].
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Fig. 4. Observation model

In this document, the predicted measurement is calculated
in an iterative way, making use of property 2 in section II-
B and the Newton-Raphson method for calculating the zeros
of a function. The first step is to define an orthonormal
reference system{uL,vL}, centered in the robot reference
system {uR,vR} and with the abscissas axisuL defined
by the laser beam direction and orientation (see Fig. 4).
Let s̄ (x̄i (xi,xr) , t) be the position vector along a spline
curve expressed in such a reference system (we’re making
here explicit the functional dependency between a spline and
its control points). The relationship between control points
xi = [xi, yi]

T and x̄i = [x̄i, ȳi]
T , i = 0 . . . n, is given by:

[
x̄i

ȳi

]

=

[
cosµ sinµ

−sinµ cosµ

] [
xi − xr

yi − yr

]

(20)

beingµ the angle of the considered laser beam in the global
reference system; i.e. given the laser orientation in the robot
reference system,τ :

µ = φr + τ (21)

In this context, the measurement predictionẑ = h (xi,xr) is
given by the value of̄sx (x̄i (xi,xr) , t∗), wheret∗ is the value
of the parametert that makes̄sy (ȳi (xi,xr) , t∗) = 0. As only
a reduced set ofk control points affect the shape of the curve
for each value of the parametert, a small number of this points
need to be rotated and translated to the new reference system.
The initial guess for each map spline associated with an
observation can be obtained directly from the data association
stage, and for each of the laser beams positions the solution
obtained in the previous prediction can be used as initial guess.



During the experiments, a maximum of two iterations were
needed for this calculation, with a precision of 0.0001 m.

Despite the lack of an explicit observation model, it is
still possible to calculate the derivatives of this expected
measurements with respect to the map state in an approximate
way. Once calculated the valuet∗ which makes̄sy (t∗) = 0,
the expected measurement in the nearness of this parameter
location, assuming small perturbations in the state vector, can
be approximated by:

h (xi,xr)= s̄x

(

x̄i (xi,xr) , t∗−
s̄y (ȳi (xi,xr) ,t∗)

s̄′y (ȳi (xi,xr) ,t∗)

)

(22)

and derivating with respect to the control points positions:

∂h

∂xi

=
∂s̄x

∂x̄i

∂x̄i

∂xi

+ s̄′x (t∗)

∂s̄′

y

∂ȳi

∂ȳi

∂xi
s̄y (t∗) −

∂s̄y

∂ȳi

∂ȳi

∂xi
s̄′y (t∗)

[
s̄′y (t∗)

]2

=
∂s̄x

∂x̄i

∂x̄i

∂xi

−
1

tan (η − µ)

∂s̄y

∂ȳi

∂ȳi

∂xi

(23)

The partial derivatives in equation 23 can be easily obtained
looking at equations 1 and 20. For example from equation 1
we can obtain:

∂s̄x

∂x̄i

=
∂s̄y

∂ȳi

= βi,k (t) (24)

So, finally, we can write:

∂h

∂xi

= βi,k (t∗)

[

cosµ +
sinµ

tan (η − µ)

]

(25)

∂h

∂yi

= βi,k (t∗)

[

sinµ −
cosµ

tan (η − µ)

]

(26)

Similarly, making use of property 5, and equations 1 and
20, we can obtain:

∂h

∂xr

= −cosµ −
sinµ

tan (η − µ)
(27)

∂h

∂yr

= −sinµ +
cosµ

tan (η − µ)
(28)

∂h

∂φr

=
ẑ

tan (η − µ)
(29)

These equations will allow the efficient calculation of the
relevant Jacobians in the following sections.

D. Applying the EKF

In this section, results obtained in previous sections are put
together and combined in the working frame of the Extended
Kalman Filter with the aim of incrementally building a map
of an environment modeled with cubic splines.

1) Kalman Filter Prediction:Between the timesk andk+1
the robot makes a relative movement, given by the vector

u (k + 1) ∼ N (û (k + 1) ,Q (k + 1)) (30)

Under the hypothesis that the only moving object in the
map is the robot, the a priori estimation of the state at time
k + 1 is given by:

x̂r (k + 1|k) = fr (x̂r (k|k) , û (k + 1)) (31)

x̂si
(k + 1|k) = x̂si

(k|k) (32)

and its covariance:

P (k + 1|k) = Fx (k + 1)P (k|k)FT
x (k + 1) +

+Fu (k + 1)Q (k + 1)FT
u (k + 1) (33)

The Jacobian matrices are

Fx (k + 1)=









∂fr
∂xr

∣
∣
∣
x̂r(k|k),û(k+1)

0 . . . 0

0 In1
. . . 0

...
...

.. .
...

0 0 . . . InN









(34)

Fu (k + 1)=








∂fr
∂u

∣
∣
x̂r(k|k),û(k+1)

0
...
0








(35)

wherefr depends on the mobile platform being considered.
2) Kalman Filter Update: Once obtained the expected

measurements for each of the laser beams positions of an
observation associated with a map spline, the innovation
covariance matrix is given by [6]:

S (k + 1) = Hx (k + 1)P (k + 1|k)HT
x (k + 1) + R (k + 1)

(36)
where the Jacobian is:

Hx (k + 1) =
[

∂h
∂xr

0 . . . 0 ∂h
∂xsi

0 . . . 0
]

(37)

In the previous equation, the term∂h
∂xr

is calculated making
use of equations 27, 28 and 29, and term∂h

∂xsi

is calculated
from 25 and 26. The gain matrix is calculated as follows

W (k + 1) = P (k + 1|k)HT
x (k + 1)S−1 (k + 1) (38)

Finally, the state estimation and its covariance are updated
according to:

x̂ (k+1|k+1) = x̂ (k+1|k)+W (k+1)h (k+1) (39)

P (k+1|k+1) = [I−W (k+1)Hx (k+1)]P (k+1|k) (40)

E. Extending the Map

The map is incrementally built in two ways: adding new
objects, and extending objects already contained in the map.

1) Adding New Objects to the Map:Whenever a new
observation is not associated with any of the objects already
contained in the map, it is considered as a new object, and the
spline which defines its shape is added to the map. Given a
map containingN static features, and a set of measurements
zi, i = p . . . p+q corresponding to a new detected feature, the
augmented state vector is:

xa = g (x, z) ⇔







xa
r = xr

xa
si

= xsi
,i = 1, . . . , N

xa
sN+1

= gsN+1
(xr, z)

(41)



wheregsN+1
(xr, z) is defined by the fitting of theq new data

points as described in section II-C:





xN+1,0

...
xN+1,nN




 = Φ






xr + zp cos (φr + τp)
...

xr + zp+q cos (φr + τp+q)




 (42)






yN+1,0

...
yN+1,nN




 = Φ






yr + zp sin (φr + τp)
...

yr + zp+q sin (φr + τp+q)




 (43)

The new covariance matrix for the augmented state vector
is:

Pa = GxPGT
x + GzRGT

z (44)

and the JacobiansGx = ∂g

∂x
andGz = ∂g

∂z
:

Gx =










Ir 0 . . . 0

0 In1
. . . 0

...
...

. . .
...

0 0 . . . InN

∂gsN+1

∂xr
0 . . . 0










,Gz =










0

0
...
0

∂gSN+1

∂z










(45)

with

∂gsN+1

∂xr

=













Φ






1 0 −zp sin µp

...
...

...
1 0 −zp+q sin µp+q






Φ






0 1 zp cos µp

...
...

...
0 1 zp+q sinµp+q


















(46)

∂gsN+1

∂z
=













Φ






cos µp . . . 0
...

. . .
...

0 . . . cos µp+q






Φ






sinµp . . . 0
...

. . .
...

0 . . . sin µp+q


















(47)

2) Extending Map Objects:Frequently, observations are
only partially associated with a map feature (as in figure 3).
This means that a new unexplored part of a map object is being
detected and, consequently, this spline must be extended. Take
for instance the situation displayed in figure 5, where thej-th
map spline has been partially associated with an observation,
and the information contained in a new set of data points

di =

[
dx

i

d
y
i

]

=

[
xr + zi cos µi

yr + zi sin µi

]

, i = q, . . . , q + m (48)

must be integrated into the map feature. The extended state
vector will be:

xe = ge (x, z) ⇔







xe
r = xr

xe
si

= xsi
, i 6= j

xe
sj

= ge
sj

(xr,xj , z)
(49)

With the objective of calculatingge
sj

(xr,xj , z), a similar
scheme to the one used during the data approximation is
followed.
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Fig. 5. Map spline extension with new data after Kalman filter update.

In [14] an unclamping algorithm is proposed, which is
successfully applied in [10] with the goal of extending a B-
spline curve to a single given point. Our problem is to extend
a map spline, given a new set of measured data points. The
following equations show how, combining the unclamping al-
gorithm with the approximation scheme previously proposed,
it is possible to extend the map features as new measurements
are obtained. Given a spline curve, defined by a set of control
pointsxi and clamped knot vector in the form:

Ξ : ξ0 = . . . = ξk−1
︸ ︷︷ ︸

k

≤ ξk ≤ . . . ≤ ξn ≤ ξn+1 = . . . = ξk+n
︸ ︷︷ ︸

k

the unclamping algorithm proposed in [14] calculates the new
control points corresponding to the unclamped knot vectors:

Ξr: ξ0 = . . . = ξk−1
︸ ︷︷ ︸

k

≤ ξk ≤ . . . ≤ ξn ≤ ξ̄n+1 ≤ . . . ≤ ξ̄k+n

Ξl: ξ̄0 ≤ . . . ≤ ξ̄k−1 ≤ ξk ≤ . . . ≤ ξn ≤ ξn+1 = . . . = ξk+n
︸ ︷︷ ︸

k

The right-unclamping algorithm (on the side corresponding
to higher values for the parametert) of a spline of orderk,
converting the knot vectorΞ into Ξr, and obtaining the new
control pointsxr

i is as follows:

xr
i =

{
xi, i = 0, 1, . . . , n − k + 1

xk−2
i , i = n − k + 2, n − k + 3, . . . , n

(50)

where

x
j
i =







x
j−1
i , i = n − k + 2, n − k + 3, . . . , n − j

x
j−1

i
−(1−α

j

i)x
j

i−1

α
j

i

, i = n − j + 1, . . . , n
(51)

being

α
j
i =

ξ̄n+1 − ξ̄i

ξ̄i+j+1 − ξ̄i

(52)

and the initial values are set to

x0
i = xi, i = n − k + 2, n − k + 3, . . . , n (53)

If all the splines are cubic B-splines (k = 4), the previous
expressions can be reduced to:

xr
i = xi, i = 0, . . . , n − 2

xr
n−1= −Γ2

n−1xn−2+ 1
γ2

n−1

xn−1

xr
n= Γ2

nΓ2
n−1xn−2−

(
Γ2

n

γ2
n−1

+
Γ1

n

γ2
n

)

xn−1+ 1
γ1

nγ2
n
xn







(54)

being

γ
j
i = ξ̄n+1−ξ̄i

ξ̄i+j+1−ξ̄i
and Γj

i =
1−γ

j

i

γ
j

i

(55)



Similar results can be obtained when converting a clamped
knot vectorΞ into a left-unclamped oneΞl:

xl
0 = 1

ω1
0
ω2

0

x0 −
(

Ω2
0

ω2
1

+
Ω1

0

ω2
0

)

x1 + Ω2
0Ω

1
0x2

xl
1 = 1

ω2
1

x1 − Ω2
1x2

xl
i = xi, i = 2, . . . , n







(56)

with

ω
j
i = ξ̄k−1−ξ̄i+k

ξ̄i+k−j−1−ξ̄i+k
and Ωj

i =
1−ω

j

i

ω
j

i

(57)

These results can be combined with the methodology pro-
posed in section II-C for obtaining new splines as new data is
acquired, being aware of the following considerations:

• A parametrization for the new measurements to be in-
tegrated in the spline, congruent with the map spline
parametrization, can be obtained easily from the data
association stage.

• The knot vector needs to be unclamped and might need
to be extended withp extra knots in order to make
room for the new span being added. New knots number
and spacing are chosen according to the specified knot
density, and as many new control points as new knots
need to be added.

This way, the system of equations 8 is written for the new
data points, extended with previous equations 54 and/or 56,
and its least-squares solution provides a matrix-form linear
relationship between the old control pointsxj and the sampled
datadi, and the new control pointsxe

j :






xe
j,0
...

xe
j,nj+p




=Φe













dx
q

...
dx

q+m

xj,0

...
xj,nj













,






ye
j,0
...

ye
j,nj+p




=Φe













dy
q

...
d

y
q+m

yj,0

...
yj,nj













(58)

Note that once chosen an unclamped knot vectorΞe for the
extended spline,Φe can be considered a constant matrix. The
new covariance matrix after extending thej-th spline is:

Pe = Ge
xPGe

x
T + Ge

zRGe
z
T (59)

where the involved JacobiansGe
x = ∂ge

∂x
andGe

z = ∂ge

∂z
have

the following appearance:

Ge
x =















Ir 0 . . . 0 . . . 0

0 In1
. . . 0 . . . 0

...
...

. ..
...

. ..
...

ge
sj

∂xr

...
. ..

∂ge
sj

∂xsj

. ..
...

...
...

. ..
...

. ..
...

0 0 . . . 0 . . . InN















,Ge
z =














0

0
...

∂ge
sj

∂z
...
0














(60)

being

∂ge
sj

∂xr

=

















Φe








1 0 −zp sinµp

...
...

...
1 0 −zp+q sinµp+q

0 0 0








Φe








0 1 zp cos µp

...
...

...
0 1 zp+q sin µp+q

0 0 0
























,
∂ge

sj

∂xsj

=







Φe

[
0

I

]

Φe

[
0

I

]







and

∂ge
sj

∂z
=

















Φe








cos µp . . . 0
...

. . .
...

0 . . . cos µp+q

0 . . . 0








Φe








sinµp . . . 0
...

. . .
...

0 . . . sin µp+q

0 . . . 0
























IV. EXPERIMENTAL RESULTS

Several experiments have been performed with real data in
order to validate the results here presented. Figure 6 shows
a map representing an environment with predominant flat
features (segments), with 81 splines defined by 332 control
points. Figure 7 depicts the map of a bigger and more
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Fig. 6. Map of a career fair held at the School of Industrial Engineering
(UPM) in Madrid.

complex environment with a mixture of both straight and
curved features. In this case 461 control points defining a total
of 96 splines are necessary. In both experiments, a B21r robot
with a SICK laser was used for the data acquisition with a
sampling frequency of 5 Hz, and density of 2 knots/m was
used for knot vectors generation. No geometric constraints
have been used in the map building process.



−20 0 20

0

50

100

150

Odometry
Estimated

starting

point

0 10 20 30 40
0

20

40

60

Fig. 7. Map of the Museum of Science “Principe Felipe” (Valencia, Spain)
(left). Detail view and photography (right).

V. CONCLUSION

A new methodology for simultaneous localization and map-
ping in arbitrary complex environments has been proposed. For
the first time, it has been shown how the powerful and com-
putationally efficient mathematical tools that splines are, fit
into the EKF-SLAM framework allowing the representation of
complex structures in a parametric way. Despite the apparent
difficulty that this symbiosis between EKF-SLAM and splines
theory could involve, simple and easily programmable matrix-
form expressions have been obtained. Specifically, the new
ray tracing method here proposed, constitutes a mathematical
artifice that not only provides an effective observation model,
but also makes easier the obtaining of the Jacobians for
the Kalman filter update. It seems clear that, when simple
descriptions of the environment are insufficient or unfeasible,
any other SLAM algorithm could benefit from the versatility
of this new parametric representation.

No information is lost, as control points incrementally
encapsulate the uncertainties of laser measurements, thanks
to the application of the new matrix-form algorithms here
proposed for splines enlargement. Moreover, these concepts
and techniques are suitable for a 3D extension. Finally, this
new representation constitutes a big step forward, compared to
current SLAM techniques based on geometric maps, allowing
the mathematical interpretation and reasoning over the maps
being built regardless the shape of the contained features.
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