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Abstract— This paper presents the Discrete Search Lead-
ing continuous eXploration (DSLX) planner, a multi-resolution
approach to motion planning that is suitable for challenging
problems involving robots with kinodynamic constraints. Initially
the method decomposes the workspace to build a graph that
encodes the physical adjacency of the decomposed regions. This
graph is searched to obtainleads, that is, sequences of regions that
can be explored with sampling-based tree methods to generate
solution trajectories. Instead of treating the discrete search of
the adjacency graph and the exploration of the continuous state
space as separate components,DSLX passes information from
one to the other in innovative ways. Each lead suggests what
regions to explore and the exploration feeds back information
to the discrete search to improve the quality of future leads.
Information is encoded in edge weights, which indicate the
importance of including the regions associated with an edge in
the next exploration step. Computation of weights, leads, and the
actual exploration make the core loop of the algorithm.

Extensive experimentation shows thatDSLX is very versatile.
The discrete search can drastically change the lead to reflect
new information allowing DSLX to find solutions even when
sampling-based tree planners get stuck. Experimental results on
a variety of challenging kinodynamic motion planning problems
show computational speedups of two orders of magnitude over
other widely used motion planning methods.

I. I NTRODUCTION

Robot motion planning with complex kinodynamic con-
straints is a topic that has attracted a lot of recent attention [1]–
[5]. It is greatly motivated by the availability of new robotic
systems and the need to produce paths that respect the physical
constraints in the motion of the robotic systems and hence can
be translated into trajectories executed by the real platforms
with minimum effort. Sampling-based tree planners, such as
Rapidly-exploring Random Tree (RRT) [6], Expansive Space
Tree (EST) [7], and others [1]–[5], [8]–[10] have in recent
years been widely successful in kinodynamic motion planning.
Such planners typically explore the state space using a single
or a bidirectional tree [1]–[5], [7], [9], or multiple trees,
as in the case of Sampling-based Roadmap of Trees (SRT)
[10]. Recent books [1], [2] contain additional references and
descriptions of many successful sampling-based tree planners.

Given the large amount of work on kinodynamic motion
planning and the dominant place of sampling-based tree plan-
ners, a new planner for robots with kinodynamic constraints
can be justified only if it offers significant advantages over
previous work. This paper describesDSLX, a multi-resolution
approach that as other existing and highly successful sampling-
based tree planners (e.g.,RRT, EST, SRT) uses tree explo-

Fig. 1. Example of benchmark “RandomSlantedWalls,” a kinodynamic
motion planning problem solved byDSLX two orders of magnitude faster
than other tree-based motion planning methods. The robot modelis that of a
smooth car (see Section III-A). Red dots indicate projections of the states of
the exploration tree onto the workspace. The black line indicates the current
lead that is used to guide the tree exploration toward the goal.

ration of the state space, but displays a superior performance
when compared to them.
DSLX utilizes information provided by the problem speci-

fication and information gathered during previous exploration
steps to guide future explorations closer to obtaining a solution
to the given motion planning problem. This is a concept that
has been studied before mainly in the context of sampling-
based planners that construct roadmaps. For example, the
original Probabilistic Roadmap Method (PRM) [11] uses the
information of the connectivity of the samples to create more
samples in parts of the space where connectivity is low. The
work in [12] uses nearest-neighbors information in the context
of PRM to define the utility of each sample in an information-
theoretic sense and only add to the roadmap those samples that
increase the overall entropy. The planners in [13] and [14] also
utilize information in the context ofPRM to find appropriate
sampling strategies for different parts of the configuration
space. In contrast to roadmap methods, traditional tree-based
methods such asRRT [6], ADDRRT [4], EST [7] rely on limited
information, such as distance metrics or simple heuristicsto
guide the exploration. Although the tree may advance quickly
towards its goal, if it gets stuck it becomes more and more
difficult to find promising directions for the exploration.
DSLX is a tree-based planner that systematically uses the

information gathered during previous explorations steps to lead
future explorations toward increasingly promising directions.
Initially, DSLX constructs a coarse-resolution representation



of the motion planning problem by obtaining a decomposition
of the workspace. The decomposition is represented in terms
of a graph whose vertices are regions in the decomposition
and whose edges denote physical adjacency between different
regions.DSLX exploits the simple observation that any solu-
tion trajectory that connects the initial state to the goal state
corresponds to some coarse-grained sequence of neighboring
regions that starts and ends at regions associated with the
initial and goal states, respectively. Although the converse does
not hold, a sequence of coarse-grained neighboring regionscan
however serve as a guide to the exploration.

The idea of using decompositions of the workspace, con-
figuration space and state space appear early in the motion
planning literature. Key theoretical results in motion planning
were obtained using decomposition based methods [15]. Some
of the first planners obtained decompositions of the workspace
into regions that were linked in a graph which was subse-
quently used to find a path. An extensive discussion of early
exact and approximate cell decomposition methods can be
found in [15] (Chapters 5 and 6) and in [16]–[18]. Initially
only geometric planning was considered. More recently ap-
proaches that deal with kinodynamic planning have appeared
in the context of sampling-based methods [19]–[22].

The decomposition graph is weighted and the initial weights
are all set to a fixed value. The core part ofDSLX proceeds
by repeating the following three steps until a solution is found
or a maximum amount of time has elapsed:

1) Obtain a guide sequence, called alead, by some discrete
search method on the decomposition graph.

2) Explore the continuous state space for a short period
of time. DSLX attempts to extend the branches of
an exploring tree from one region to its neighbor, as
specified by the lead.

3) Update the weights of the decomposition graph. The
weight of an edge represents an estimation of how
important the exploration of the regions it connects is
for the construction of solution trajectories. The weight
depends on the total time spent so far exploring, the
progress of the exploration in these regions and other
quantities. The weights are updated after each explo-
ration of a region to reflect the new information gathered
during the most recent exploration.

A critical difference and advantage ofDSLX over earlier
workspace decomposition methods is the close interaction
of the discrete search and the continuous exploration and
the flexibility this interaction provides. The coarse-grained
representation can provideDSLX with many alternative leads.
A central issue is which lead to choose from the possibly
combinatorially large number of possibilities. Since the weight
estimates that bias the computation of leads are based on par-
tial information, it is important not to ignore leads associated
with lower weights, especially during the early stages of the
exploration.DSLX aims to strike a balance between greedy and
methodical search by selecting more frequently sequences of
coarse-grained regions that are associated with higher weights

and less frequently sequences of coarse-grained regions that
are associated with lower weights.

Through extensive experimentation on a variety of kin-
odynamic motion planning problems it has been observed
that DSLX can focus the exploration on promising search
directions while able to radically change these directionsif
the information gathered during exploration suggests other
promising leads. This flexibility tends to prevent the method
from getting stuck in the way that other sampling-based tree
planners do. Extensive comparisons have been done withRRT
[6], a more recent version ofRRT called Adaptive Dynamic
DomainRRT (ADDRRT) [4], EST [7], andSRT [10] showing
thatDSLX can be up to two orders of magnitude more efficient.
Fig. 1 shows one such case for kinodynamic motion planning
whereDSLX finds solutions more than170 times faster than
the single-tree based methods and90 times faster thanSRT.

This paper is organized as follows. Section II describes
DSLX in detail. Experiments and results are described in
Section III. Section IV discusses the experimental resultsand
provides insights into the reasons for the observed computa-
tional efficiency ofDSLX. The paper concludes in Section V
with a summary and directions for future work.

II. DSLX

Pseudocode for the overall approach is given in Algorithm 1.
The construction of the coarse-grained decomposition into
neighboring regions is given in line 2 and described in
Section II-A. The lead computation occurs in line 6 and is
described in Section II-B. The other lines refer to the state
space exploration, which is described in Section II-C.

Algorithm 1 Pseudocode forDSLX

Input:
W, geometric description of the workspace
R, motion model and geometric description of the robot
s, g, initial and goal specifications
tmax ∈ R

>0, upper bound on computation time
te ∈ R

>0, short time allocated to each exploration step

Output: A solution trajectory orNIL if no solution is found

1: STARTCLOCK1
2: G = (V, E)← COARSEGRAINEDDECOMPOSITION(W)
3: INITEXPLORATIONESTIMATES(G)
4: T ← exploration tree rooted ats
5: while ELAPSEDTIME1 < tmax do
6: [Ri1 , . . . , Rin ]← COMPUTELEAD(G, s, g)
7: STARTCLOCK2
8: while ELAPSEDTIME2 < te do
9: Rij ← SELECTREGION([Ri1 , . . . , Rin ])

10: for several timesdo
11: x← SELECTSTATEFROMREGION(Rij )
12: PROPAGATEFORWARD(T , x, Rij , Rij+1

)
13: if a solution is foundthen
14: return solution trajectory
15: UPDATEEXPLORATIONESTIMATES(G, [Ri1 , . . . , Rin ])
16: return NIL

A. Coarse-Grained Decomposition

This paper uses a simple grid-based decomposition of the
workspace. Even with this simple decomposition,DSLX is



computationally efficient in solving challenging kinodynamic
motion planning problems, as indicated by the experimental
results in Section III-D.

The coarse-grained decomposition of the workspace pro-
vides a simplified layer to the motion planning problem.
As discussed in Section II-B,DSLX uses the coarse-grained
decomposition to compute general leads from the initial to the
goal region. It is important to note thatDSLX allows for a great
degree of flexibility on the decomposition of the workspace.In
particular, sinceDSLX relies on information collected during
exploration to determine which lead to select, it does not even
require that the decomposition be collision-free. When regions
that are occupied by obstacles are selected as part of the lead,
the exploration estimates will indicate that no progress can be
made. Consequently, such regions will be selected less and
less frequently. The use of better workspace decompositions
(see [1], [2] for details on different decomposition methods)
may certainly further improve the computational efficiencyof
DSLX, since it will in general provide better search directions.

B. Coarse-Grained Leads

The coarse-grained decomposition is used to obtain se-
quences of neighboring regions that provide promising leads
for the state space exploration. A transition graphG = (V,E)
is constructed based on the coarse-grained decomposition as
described in Section II-A. Each vertexvi ∈ V is associated
with a regionRi of the coarse-grained decomposition and an
edge(vi, vj) ∈ E indicates thatRi andRj are neighboring
regions in the workspace decomposition. Letv(s) ∈ V and
v(g) ∈ V be the two vertices whose corresponding regions are
associated with the initial and goal states,s andg, respectively.

A lead is computed by searchingG for sequences of edges
from v(s) to v(g). A weight wij associated with each edge
(vi, vj) ∈ E is an estimate ofDSLX on the importance of
including Ri andRj as an edge in the lead.wij is updated
after each exploration ofRi and Rj . Sequences of edges
associated with higher weights are selected more frequently
since, according to current estimates such edge sequences
provide promising leads.

1) Computation ofwij : The coveragec(T , Rk) of a region
Rk by the states of the treeT is estimated by imposing an
implicit uniform grid on Rk and measuring the fraction of
cells that contain at least the projection of one state fromT .
Let c(T , Rk) denote the coverage estimate ofRk by T at the
beginning of the current exploration step and letc′(T , Rk)
denote the new coverage estimate at the end of the exploration
step. Thusα(T , Rk) = c′(T , Rk) − c(T , Rk) measures the
change in the coverage ofRk by T as a result of the current
exploration step. Then, the weightwij is defined as

wij = 0.5(α(T , Ri) + α(T , Rj))/t+ ǫ/tacc(i, j),

wheret is the computational time devoted to the exploration
of Ri, Rj during the current exploration step;tacc(i, j) is the
accumulated time over all explorations ofRi, Rj ; and ǫ is a
small normalization constant.

Large values ofwij are obtained when branches ofT
quickly reach previously unexplored parts ofRi andRj and
are thus indicative of promising leads. The accumulated time
tacc(i, j) is used to give a higher weight to those regions that
have been explored less frequently. Initially, since thereis no
exploration information available, each weightwij is set to a
fixed value.

2) Computation of leads:Many possible strategies can be
used to compute search directions. The computation of a lead
is essentially a graph searching algorithm and the literature on
this subject is abundant (see [23] for extensive references).

The combination of search strategies in this work aims to
provide leads that are more frequently biased toward promising
directions. However, random leads are also used, although
less frequently, as a way to correct for errors inherent with
the estimates. The use of random leads is motivated by
observations made in [10], [24], where random restarts and
random neighbors have been suggested as effective ways to
unblock the exploration when tree planners orPRM get stuck.

COMPUTELEAD (line 6 of Algorithm 1) frequently re-
turns the most probable sequence of edges inG from v(s)
to v(g). The probability pij associated with(vi, vj) ∈ E
is computed by normalizing the weightwij , i.e., pij =
wij/

∑
(vk,vℓ)∈E wkℓ. The probability of a sequence of edges

is then defined as the product of the probabilities associated
with its edges. The most probable edge sequence fromv(s)
to v(g) is the one with the highest probability. In order to
compute the most probable edge sequence as defined above
using a shortest path algorithm, such as Dijkstra’s, the weight
function used in the graph search is set to− log(pij) for
(vi, vj) ∈ E.

Almost as frequently, COMPUTELEAD returns the acyclic
sequence of edges fromv(s) to v(g) with the highest sum
of edge weights. In order to compute such sequence using
Dijkstra’s shortest path algorithm, the weight function used in
the graph search is set towmax −wij for (vi, vj) ∈ E, where
wmax denotes the maximum value for the weights.

Less frequently, COMPUTELEAD computes a random se-
quence of edges fromv(s) to v(g). This computation is carried
out by using depth-first search, where the unvisited children
are visited in a random order.

C. Exploration

The exploration starts by rooting a treeT at the specified
initial state s (line 3). The objective is to quickly growT
toward the goal by using the coarse-grained leads as guides for
the exploration. The exploration is an iterative process (lines
8–12). At each iteration a regionRij

is selected from the
coarse-grained lead [Ri1 , . . . , Rin

] and explored for a short
period of time. The exploration aims to extend branches ofT
from Rij

to Rij+1
. For this reason, several states are selected

from the states associated withRij
and are propagated forward

towardRij+1
.

SELECTREGION: Note that some regions in [Ri1 , . . . , Rin
]

may not contain any states fromT , since the branches ofT
have yet to reach such regions. Such regions are not considered



for selection, since they do not contain any states from which
to propagate forward, as required by line12 of Algorithm 1.

The objective is to select a nonempty regionRij
∈

[Ri1 , . . . , Rin
] whose exploration causesT to grow closer

to the goal. Since [Ri1 , . . . , Rin
] specifies a sequence of

neighboring regions that end at the region associated with the
goal state, the order in which the regions appear in the lead
provides an indication of how closeT is to the goal. For this
reason,DSLX prefers to select regions that appear toward the
end of [Ri1 , . . . , Rin

] more frequently than regions that appear
at the beginning. Preference is also given to regions that have
been selected less frequently for exploration. The exploration
of such regions is vital in order to provide a balance between
greedy and methodical search. This objective is achieved by
selecting a regionRij

from [Ri1 , . . . , Rin
] based on the weight

αj/n + (1 − α)/nsel(Rij
), where 0 < α < 1 is selected

uniformly at random andnsel(Rij
) is the number of times

Rij
has been selected for exploration.

SELECTSTATEFROMREGION: Each statex associated with
Rij

is selected based on the weight1/nsel(x), wherensel(x)
is the number of timesx has been selected. Preference is thus
given to the states associated withRij

that have been selected
less frequently. A statex ∈ T is associated with regionRij

iff proj(x) ∈ Rij
, whereproj(x) denotes the projection of

the statex ∈ T onto the workspaceW.
PROPAGATEFORWARD: A statex is propagated forward to

a new statexnew by selecting a controlu and applyingu to x
for several time steps or until a collision is found. Ifxnew is
more than a minimum number of propagation steps away from
x, thenxnew and the edge connectingx to xnew is added to
T . The statexnew is also added to the appropriate regionRk.
Since the objective is to guide the propagation fromRij

toward
the neighboring regionRij+1

, the controlu is selected as the
control that bringsproj(xnew) closer toRij+1

out of several
controls sampled uniformly at random. The propagation is
computed by integrating the motion equations of the robot.
This work uses a fourth-order Runge-Kutta integrator [1], [2].

III. E XPERIMENTS AND RESULTS

The design ofDSLX was motivated by challenging kin-
odynamic motion planning problems with vehicles and the
experiments in this paper were chosen to test the efficiency of
DSLX in solving such problems. The performance ofDSLX
is compared against several existing state-of-the-art methods.
Results presented in Section III-D show the competitiveness of
the proposed method,DSLX, and highlight the benefits of in-
corporating discrete-search and coarse-grained decomposition
into sampling-based approaches, as proposed in this work.

A. Robot Models

The motions of the robot are defined by a set of ordinary
differential equations. The robot models used in this work
consist of a kinematic car (KCar), a smooth (second-order) car
(SCar), smooth unicycle (SUni), and a smooth differential
drive (SDDrive). Detailed descriptions of these models can
be found in [1], [2]. The range of controls and bounds on

the state variables are empirically determined based on the
workspaces used for the experiments.

1) Kinematic Car (KCar): The motion equations arėx =
u0 cos(θ); ẏ = u0 sin(θ); θ̇ = u0 tan(u1)/L, where (x, y, θ)
is the car configuration;u0 andu1 are the speed and steering
wheel controls;L is the distance between the front and rear
axles. The speed and steering control are restricted to|u0| ≤
vmax = 1 and |u1| ≤ ψmax = π/4.

2) Smooth Car (SCar): The kinematic car model can be
extended to a second-order model by expressing the velocity
v and steering angleφ as differential equations of the accel-
eration u0 and the rotational velocity of the steering wheel
u1 controls, as follows:ẋ = v cos(θ); ẏ = v sin(θ); θ̇ =
v tan(φ)/L; v̇ = u0; φ̇ = u1. The acceleration and rotational
velocity of the steering wheel controls are restricted to|u0| ≤
0.0015vmax and |u1| ≤ 0.0015ψmax.

3) Smooth Unicycle (SUni): The motion equations are
ẋ = v cos(θ); ẏ = v sin(θ); θ̇ = ω; v̇ = u0; ω̇ = u1, where
(x, y, θ) is the configuration;ω and v are the rotational and
translational velocities, respectively. The translationu0 and
rotational u1 accelerations are restricted to|u0| ≤ 0.0015r
and |u1| ≤ 0.0015r, wherer is the radius of the unicycle.

4) Smooth Differential Drive (SDDrive): The motion
equations areẋ = 0.5r(ωℓ + ωr) cos(θ); ẏ = 0.5r(ωℓ +
ωr) sin(θ); θ̇ = r(ωr − ωℓ)/L; ω̇ℓ = u0; ω̇r = u1, where
(x, y, θ) is the configuration;ωℓ and ωr are the rotational
velocities of the left and right wheels, respectively;r is the
wheel radius; andL is the length of the axis connecting the
centers of the two wheels. In this work, the controlsu0 and
u1 are restricted to|u0| ≤ 0.15 and |u1| ≤ 0.15.

B. Benchmarks

The benchmarks used in the experiments are designed to
vary in type and difficulty and to test different aspects of
motion planning methods. Illustrations of benchmarks and
robot geometries can be found in Fig. 1 and Fig. 2.

Benchmark “Misc” consists of several miscellaneous ob-
stacles arranged as in Fig. 2(a). Random queries are created
that place the robot in opposite corners of the workspace. In
this way, the robot must wiggle its way through the various
obstacles and the narrow passages in the workspace.

Benchmark “WindingCorridors” consists of long and wind-
ing corridors, as shown in Fig. 2(b). Random queries are
created by placing the robot in two different corridors, either
4 and5 or 5 and4 (counting from left to right), respectively.
This benchmark is chosen to illustrate the efficacy of motion
planning methods in solving problems where even though the
initial and goal specification place the robot in neighboring
places in the workspace, the solution trajectory is rather long
and the robot travels through a large portion of the workspace.

Benchmark “RandomObstacles” consists of a large number
of obstacles (278 obstacles) of varying sizes placed at random
throughout the workspace, as shown in Fig. 2(c). The random
placement of the obstacles creates many narrow passages,
posing a challenging problem for motion planning methods,
since research [1], [2] has shown that many motion planners



(a) Benchmark “Misc” robot (b) Benchmark “WindingCorridors”

(c) Benchmark “RandomObstacles” (d) Benchmark “RandomSlantedWalls”

Fig. 2. Several benchmarks used for the experimental comparisons ofDSLX. In each case, the robot geometry is a box and the workspace is aunit box. The
body length and width of the robot in benchmarks “RandomObstacles” and “RandomSlantedWalls” are 1/40 and 1/60, respectively. In the case of benchmarks
“Misc” and “WindingCorridors” the robot is twice the size ofthe one used in benchmarks “RandomObstacles” and “RandomSlantedWalls,” since “Misc” and
“WindingCorridors” have in general more open areas and widerpassages.

have a tendency of getting stuck in such random environments
with narrow passages. Random queries place the robot in
opposite sides of the workspace.

Benchmark “RandomSlantedWalls” consists of890 obsta-
cles resembling slanted walls, as illustrated in Fig. 1. Initially,
a random maze is created using the disjoint set strategy
and then only97% of the maze walls are kept. Knocking
down of the maze walls creates multiple passages in the
workspace for connecting any two points. The dimensions
of the remaining walls are set uniformly at random from the
interval [1/60, 1/90] in order to create obstacles of different
sizes. Each of the remaining walls is rotated by some angle
chosen at random from[2◦, 15◦], so that the walls are aligned
at different angles. This benchmark tests the efficiency of
motion planning methods in finding solutions for problems
with multiple passages. Random queries place the robot in
opposite sides of the workspace.

C. Other Motion Planning Methods used in Comparisons

This work presents comparisons withRRT [2], [6], ADDRRT
[4], EST [7], and SRT [10]. Standard implementations were
followed as suggested in the respective research papers and
motion planning books [2], [6]. These implementations utilize
the OOPS-MP (Online Open-source Programming System for
Motion Planning) framework [25] and are well-tested, robust,
and efficient, as they have been widely used by our research
group. Every effort was made to fine-tune the performance
of these motion planners for the experimental comparisons
presented in this paper.

In addition to single-tree versions, bidirectional versions
of RRT, ADDRRT, and EST also exist. It has also been
shown thatSRT [10] takes the bidirectional search a step
further and uses single-tree based methods such asRRT, EST,
etc., to grow multiple trees in different regions of the state
space and then connects the neighboring trees to obtain a
solution trajectory. Note that for nonholonomic problems tree
connections however may contain gaps [1], [2]. Trajectories
obtained byDSLX, RRT, ADDRRT, andEST do not contain any
gaps, while trajectories obtained bySRT contain gaps. Such
gaps could be closed using steering or numerical methods [26]
at the expense of incurring additional computational costs.

D. Results

For each benchmark, experiments are run using each of the
robot models described in Section III-A. For each combination
of benchmark and robot model,30 random queries are gen-
erated as described in Section III-B. Each motion planning
method is then used to solve all the input random queries. In
each instance, the computational time required to solve the
query is measured. Rice PBC and Cray XD1 ADA clusters
were used for code development. Experiments were run on
ADA, where each of the processors runs at 2.2GHz and has
up to 8GB of RAM.

Table I contains a summary of the experimental results.
For each benchmark and robot model combination, the table
indicates the average computational time required by each mo-
tion planning method to solve30 random queries. In addition,
Table I indicates the computational speedup obtained byDSLX



in comparison to the other motion planning methods used in
the experiments of this work. The experimental comparisons
of DSLX with the single-tree methods are summarized in
Table I (columns 1–3), while the comparisons with the multi-
tree methodSRT are summarized in Table I (column 4).

1) Comparison with the single-tree methods:Table I shows
that DSLX is consistently more efficient thanRRT, ADDRRT,
andEST. For each benchmark and robot model combination,
the average time required to solve a query is considerably
lower for DSLX.

When the simple kinematic car model(KCar) is used,
DSLX is between3–12 times faster on “Misc.”;9–13 on
“WindingTunnels”; 3–10 on “RandomObstacles”; and23–29
times faster on “RandomSlantedWalls.”

When the other robot models are used,DSLX is between
7–32 times faster on “Misc.,”;9–29 on “WindingTunnels”;
36–69 on “RandomObstacles”; and102–255 times faster on
“RandomSlantedWalls.”

2) Comparison with the multi-tree methodSRT: The best
computational times forSRT are obtained when several trees
are also grown in other parts of the state space in addition to
the trees grown at the initial and goal states. The computational
times obtained bySRT tend to be lower than the computational
times required by the bidirectional versions ofRRT, ADDRRT,
and EST. Recall that, as discussed in Section III-C, the
trajectories computed bySRT contain gaps, while trajectories
computed byDSLX do not contain any gaps. Results indicated
in Table I are obtained whenSRT grows75 trees usingEST
as its building block. Similar results were obtained whenRRT
is used as a building block ofSRT.

As indicated in Table I,DSLX is in each case computa-
tionally faster thanSRT. The computational speedup ofDSLX
varies from a factor of3–10 on the easier problems to a factor
of 48–90 times on the more challenging problems.

IV. A C LOSERLOOK AT THE STATE SPACE EXPLORATION

Experimental results presented in Table I indicate that
DSLX offers considerable computational advantages over the
other motion planning methods used in this work across a
variety of challenging benchmarks and robot models. The
experimental results show thatDSLX is capable of solving
challenging motion planning methods in a matter of one to
three minutes as opposed to several hours required by other
methods.DSLX computationally outperforms powerful motion
planning methods, such asRRT, ADDRRT, EST, andSRT, by
an order of magnitude on easy problems and as much as two
orders of magnitude on more challenging problems.

The understanding of the main reasons for the success of a
motion planning method is in general a challenging issue and
subject of much research. This section takes a closer look
at the exploration done byRRT, ADDRRT, EST, and SRT
and compares it to the exploration done byDSLX in order
to provide some insights behind the computational efficiency
of DSLX.

By using nearest neighbors to random states as exploration
points,RRT [2], [6] is frequently led toward obstacles where it

may remain stuck for some time [1], [2], [4], [10]. Adjusting
the exploration step size ofRRT, asADDRRT does, has been
shown to alleviate the problem to a certain extent but not
in all situations [4]. The use ofADDRRT incurs additional
computational costs, which in some cases, as those observedin
this work, outweigh the benefits offered byADDRRT. However,
both in the case ofRRT and ADDRRT, as the tree grows
large, it becomes more frequent for the nearest neighbors
to random states not to be at the frontier of the tree but
instead at “inner” nodes of the tree. Consequently, especially
in challenging problems where propagation is difficult, these
methods end up exploring the same region many times, thus
wasting computational time.
EST [7] on the other hand suffers from a different kind of

problem.EST directs the search toward less explored regions
of the state space. As the tree grows large, the growth of
the tree slows down as there are many regions with similar
low density distributions. Consequently,EST ends up slowly
expanding the tree in all possible directions, which do not
necessarily bring the exploration closer to the goal region.
SRT [10] approaches the above problems by using multiple

trees in randomly selected regions of the state space and only
growing each tree for a shorter period of time to avoid the
slow down on the growth of the trees.SRT is however not
particularly well suited for nonholonomic motion planning
problems, since tree connections create gaps that may require
considerable additional computational time to be closed [26].

Although these methods have been shown to work well
in a variety of settings, the main drawback common to all
these methods is that they only use a limited amount of
information to guide the exploration. There is generally much
more information available to motion planning methods that,
if properly used, can significantly speed up the computations.

The main strength ofDSLX is the systematic use of
information gathered during previous explorations steps to
guide future explorations. As detailed in Section II,DSLX
takes into account all the available workspace information,
the initial and goal specifications, and carefully and closely
integrates the information gathered during exploration into a
discrete search and exploration of the state space. The discrete
search providesDSLX with leads that guide the exploration
closer to the goal specification. The exploration of the state
space provides valuable feedback information that is used
by DSLX to refine the lead for the next exploration step.
As the exploration progresses, the leads produced byDSLX
become more accurate and thus cause the tree to reach the goal
specification. Fig. 3 provides a snapshot of the exploration
done byDSLX at different time intervals. The tree quickly
grows and reaches the goal in a short amount of time.

V. D ISCUSSION

We have presentedDSLX, a tree-based motion planning
method that relies on a decomposition of the workspace to
obtain a coarse-grained representation of the motion planning
problem and discrete search to find promising leads that bring
the tree exploration closer to the goal. Information gathered



TABLE I

SUMMARY OF EXPERIMENTAL COMPARISONS WITHSINGLE- AND MULTIPLE-TREE METHODS

Average time in seconds to solve one query

RRT ADDRRT EST SRT DSLX
“Misc”

KCar 3.51 5.87 13.5 3.12 1.02
SCar 248.72 279.05 95.84 70.52 13.27
SUni 417.06 461.42 151.63 144.23 14.14

SDDrive 73.82 94.36 47.82 34.04 4.52

“WindingTunnels”
KCar 15.33 19.29 22.94 12.21 1.70
SCar 282.49 231.11 90.76 92.32 9.46
SUni 161.16 175.92 83.14 106.73 8.57

SDDrive 178.10 213.35 142.59 108.75 7.60

“RandomObstacles”
KCar 3.46 5.87 13.15 1.21 0.97
SCar 440.52 528.62 831.36 221.64 11.94
SUni 374.34 413.43 562.70 232.80 9.26

SDDrive 224.60 276.55 269.02 125.63 4.22

“RandomSlantedWalls”
KCar 29.22 33.21 36.86 27.31 1.23
SCar 6330.95 6637.62 3716.27 1772.34 36.43
SUni 7207.27 6571.33 4819.99 2536.24 28.17

SDDrive 615.56 579.35 478.36 240.01 3.64

Speedup Obtained byDSLX

RRT ADDRRT EST SRT

3.45 5.76 12.91 3.06
18.74 21.02 7.22 5.31
29.50 32.64 10.73 10.20
16.35 20.89 10.59 7.54

9.03 11.37 13.52 7.18
29.85 24.42 9.59 9.75
18.21 20.53 9.70 12.45
23.43 28.06 18.76 14.30

3.55 7.12 10.72 1.24
36.90 44.28 69.65 18.56
40.43 44.66 60.78 25.14
53.27 65.60 63.81 29.77

23.69 26.92 29.89 22.20
173.79 182.21 102.01 48.60
255.83 233.26 171.09 90.03
169.26 159.31 131.54 65.93

(a) Exploration of benchmark “Misc.” after 2s, 4s, 6s, 8s of running time

(b) Exploration of benchmark “WindingTunnels” after 2s, 4s, 6s, 8s of running time

(c) Exploration of benchmark “RandomObstacles” after 2s, 4s, 6s, 8s of running time

(d) Exploration of benchmark “RandomSlantedWalls” after 6s, 12s, 18s, 24s of running time

Fig. 3. Snapshots of the tree exploration byDSLX of different benchmarks with the smooth car (SCar) as the robot model. Red dots indicate projections
of the states of the exploration tree onto the workspace. Thegreen line in each figure indicates the current lead.



during exploration is used to further refine the discrete search
and improve the quality of future explorations.DSLX was
shown to offer considerable computational advantages over
other methods across a variety of kinodynamic motion plan-
ning problems. Experimental results indicated thatDSLX is
capable of solving challenging motion planning problems two
orders of magnitude faster than other widely used motion
planning methods.

The combination of coarse-grained representation, discrete
search, and continuous exploration in the framework ofDSLX
results in an effective motion planner that allocates most
of the available computational time to the exploration of
the parts of the state space that lead to a solution for a
given motion planning problem. This combination raises many
interesting research issues, such as finding the best workspace
decomposition for a motion planning problem, improving
the discrete search, continuous exploration, and interaction
between the different components, that we intend to investigate
in future research. We are currently investigating extensions to
the theoretical framework developed in [27] to analyzeDSLX.
Furthermore, we would like to apply and extend the framework
of DSLX to increasingly challenging and high-dimensional
problems in motion planning and other settings, such as
hybrid-system testing [28]. As we address these challenging
problems, it becomes important to extend the framework [29],
[30] to obtain an effective distribution ofDSLX that makes
use of all the available computational resources.
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