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Abstract— Situational awareness is crucial for autonomous ApplanixINS  Velodyne Laser
driving in urban environments. This paper describes moving [FESSIE.
vehicle tracking module that we developed for our autonomous
driving robot Junior. The robot won second place in the Urban
Grand Challenge, an autonomous driving race organized by the .
U.S. Government in 2007. The tracking module provides reliable : Bosch Radar
tracking of moving vehicles from a high-speed moving platform A
using laser range finders. Our approach models both dynamic
and geometric properties of the tracked vehicles and estimates
them using a single Bayes filter per vehicle. We also show how to
build efficient 2D representations out of 3D range data and how
to detect poorly visible black vehicles. Experimental validation
includes the most challenging conditions presented at the UGC
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as well as other urban settings. IBEO Laser
Fig. 1. Junior, our entry in the DARPA Urban Challenge. Junior is
I. INTRODUCTION equipped with five different laser measurement systems, a multi-radar

sembly, and a multi-signal inertial navigation system, as shown in

Autonomously driving cars have been a long-lasting dreaﬁxﬁs figure.

of robotics researchers and enthusiasts. Self-drivings car
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfod ato which we will also refer as the ego-vehicle (Fig. 1). In
convenience. In recent years the Defense Advanced Rese&@®@hirast to prior art we propose a model based approach which
Projects Agency (DARPA) has taken a lead on encouragiggcompasses both geometric and dynamic properties of the
research in this area. DARPA has organized a series tegicked vehicle in a single Bayes filter. The approach nlyura
competitions for autonomous vehicles. In 2005, autonomobgndles data segmentation and association, so that these pr
vehicles were able to complete a 131 mile course in the des@rocessing steps are not required. To properly model the de-
In 2007 competition, the Urban Grand Challenge, the robdi¢ndence between geometric and dynamic vehicle properties
were presented with an even more difficult task: autonomowe introduceanchor point coordinates. Further, we introduce
safe navigation in urban environments. In this competitimn an abstract sensor representation we calivthteial scan, that
robots had to drive safely with respect to other robots, humaallows for efficient computation and can be used for a wide
driven vehicles and the environment. They also had to obey tvariety of laser sensors. We present techniques for bygildin
rules of the road as described in the California rulebooke Onirtual scans from 3D range data and show how to detect
of the most significant changes from the previous compatitigpoorly visible black vehicles in laser scans. Our approacis r
is that for urban driving, robots need to have situation#t real time with an average update rate of 40Hz, which is 4
awareness of both static and dynamic parts of the environmdimes faster than the common sensor frame rate of 10Hz. The
Our robot won the second prize at the 2007 competition. fsults show that our approach is reliable and efficient even
this paper we describe the approach we developed for trgckin challenging traffic situations presented at the UrbannGra
of moving vehicles. Challenge.

Vehicle tracking has been studied for several decades. A
number of approaches focused on the use of vision exclysivel I[l. REPRESENTATION
[1, 2, 3]. Whereas others utilized laser range finders sonastim _— .
in combination with vision [4, 5, 6, 7]. Typically these”™ Probabilistic model and notation
approaches perform data segmentation and data associatioBur goal for this work is to track multiple vehicles in an
prior to performing a filter update. Usually only positiondan urban environment. Our ego-vehicle has been outfitted \Wweh t
velocity of each vehicle are tracked. The vehicle trackingpplanix navigation system that can provide pose locabrat
literature almost universally relies on variants of Kalmawith 1m error as well as produce a locally consistent pose
filters, although particle filters and hybrid approachesehaestimates based on an inertial measurement unit (IMU). &lenc
been widely used in other tracking applications [8, 9, 10]. we will leave ego-vehicle localization outside the scopé¢hef

For our application we are concerned with laser basg@dper. Instead we will assume that a reasonably precise pose
vehicle tracking from our autonomous robotic platform duni of the ego-vehicle is always available.
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Fig. 3. As we move to observe a different side of a stationary car,

Fig. 2. Dynamic Bayesian network model of the tracked vehicle pogir belief of its shape changes and so does the position of the car’s
X, forward velocityv;, geometryG, and measurements;. center point. To compensate for the effect, we introduce local anchor

point coordinate€’ = (C, C,) so that we can keep the anchor point
X, stationary in the world coordinates.

From the theoretical standpoint, multiple vehicle track-
ing entails a single joint probability distribution overeth ;
state parameters of all of the vehicles. Um‘ortunately,hsm'fDJ - Vehicle geometry
a representation is not practical because it quickly besome The exact geometric shape of a vehicle can be complex and
intractable as the number of vehicles grows. Also, since th#ficult to model precisely. For simplicity we approximaite
number of vehicles is unknown and variable, it is in faddy a rectangular shape of widt and lengthL. The 2D
challenging to model the problem in this way. We note thaepresentation is sufficient because the height of the le=hic
dependencies between vehicles are strong when vehiclesiameot important for driving applications.
close together, but become extremely weak as the distanc&or vehicle tracking it is common to track the position
between vehicles increases. Hence it is wasteful to modéla vehicle’s center within the state variabhle. However,
dependencies between vehicles that are far from each otlieere is an interesting dependence between our belief about
Instead, following the common practice in vehicle trackinghe vehicle’s shape and position (Fig. 3). As we observe the
we will represent each vehicle with a separate Bayesiam, filtebject from a different vantage point, we change not only our
and represent dependencies between vehicles via a sewbf lbelief of its shape, but also our belief of the position of its
spatial constraints. Specifically we will assume that no tweenter point. AllowingX; to denote the center point can lead
vehicles overlap, that there is a free space of at least londroto the undesired effect of obtaining a non-zero velocity dor
each vehicle and that all vehicles of interest are located stationary vehicle, simply because we refine our knowledge o
or near the road. This representation is efficient becawgse iis shape.
complexity grows linearly with the number of vehicles. Is@l  To overcome this problem, we view, as the pose of an
easily accommodates a variable number of tracked vehicleanchor point who's position with respect to the vehicle’s center

For each vehicle we estimate its 2D position and orientati@an change over time. Initially we set the anchor point to be
X; = (z4,y1,6,) at timet, its forward velocityv; and its the center of what we believe to be the car shape and thus
geometry G (further defined in Sect. 1I-B). Also at eachits coordinates in the vehicleocal coordinate system are
time step we obtain a new measureméfit See Fig. 2 C = (0,0). We assume that the vehicle’'s local coordinate
for a dynamic Bayes network representation of the resultisystem is tied to its center with the-axis pointing directly
probabilistic model. The dependencies between the paesisneforward. As we revise our knowledge of the vehicle’s shape,
involved are modeled via probabilistic laws discussed iitle the local coordinates of the anchor point will also need to be
in Sects. II-C and II-E. For now we briefly note that theevised accordingly t& = (C,,C,). Thus the complete set

velocity evolves over time according to of geometric parameters & = (W, L, C,, Cy).
p(orfve-1). C. Vehicle dynamics model
The vehicle moves based on the evolved velocity according togjven a vehicle’s velocitys;_, at time stept — 1, the
a dynamics model: velocity evolves via addition of random bounded noise based
P(Xe| Xi_1,01). on maximum allowed acceleratian,,,,, and the time delay

At between time steps— 1 andt. Specifically, we sample
The measurements are governed by a measurement modeky uniformly from [—mazAt, GmazAt].
p(Z|X,, G). The pose evolves via linear motion - a motion law that is
’ often utilized when exact dynamics of the object are unknown
For convenience we will writeX* = (X1, X5, ..., X;) for the The motion consists of perturbing orientation B, then
vehicle’s trajectory up to time. Similarly, v* and Z* will moving forward according to the current velocity byAt,
denote all velocities and all measurements up to time and making a final adjustment to orientationAy,. Again we



sampleA#; and Afs uniformly from [—d6,,,q. At, db,,a.At]
for a maximum allowed orientation changé, ..

D. Sensor data representation

In this paper we focus on laser range finders for sensing
the environment. Recently these sensors have evolved to be
more suitable for driving applications. For example IBEO
Alasca sensors allow for easy ground filtering by collecting
four parallel horizontal scan lines and marking which of the
readings are likely to come from the ground. Velodyne HDL-
64E sensors do not provide ground filtering, however they
take a 3D scan of the environment at high frame rates (10Hz)
thereby producing 1,000,000 readings per second. Givem suc
rich data, the challenge has become to process the readings
in real time. Vehicle tracking at 10 - 20Hz is desirable for
driving decision making.

A number of factors make the use of raw sensor data
inefficient. As the sensor rotates to collect the data, eagh n
reading is made from a new vantage point due to ego-motion.
Ignoring this effect leads to significant sensor noise. figki
this effect into account makes it difficult to quickly accelsga
that pertains to a specific region of space. Much of the data
comes from surfaces uninteresting for the purpose of vehicl
tracking, e.g. ground readings, curbs and tree tops. Kjnall
the raw 3D data wastes a lot of resources as vehicle tracking
is a 2D application where the cars are restricted to move on
the ground surface. Therefore it is desirable to pre-potes
data to produce a representation tailored for vehicle ingck

To expedite computations, we construct a grid in polar
coordinates - airtual scan - which subdivides360° around a
chosen origin point into angular grids (Fig. 4). In each dagu
grid we record the range to the closest obstacle. Hence each
angular grid contains information about free, occupied] an
occluded space. We will often refer to the cone of an angular
grid from the origin until the recorded range asay due to
its similarity to a laser ray.

Virtual scans simplify data access by providing a single
point of origin for the entire data set, which allows constan
time look-up for any given point in space. As we mentioned
earlier it is important to compute correct world coordirsafer
the raw sensor readings. However, once the correct position
of obstacle points have been computed, adjusting the origin
of each ray to be at the common origin for the virtual scan
produces an acceptable approximation. Constructed in this
manner a virtual scan provides a compact representation of
the space around the ego-vehicle classified into free, aedup
and occluded. The classification helps us properly reasoutab
what parts of an object should be visible as we describe in
Sect. II-E.

For the purpose of vehicle tracking it is crucial to deterenin
what changes take place in the environment over time. With
virtual scans these changes can be easily computed in spite
of the fact that ego-motion can cause two consecutive Virtua
scans to have different origins. The changes are computed by
checking which obstacles in the old scan are cleared by rays
in the new scan and vice versa. This computation takes time

occupied
space occluded
free space space
origin \ ——kzEi angular
s grid cell

virtual ray

(a) schematic of a virtual scan

(b) actual scene

(c) virtual scan

(d) scan differencing

(e) tracking results

”ne"f‘r in the size of the Virtl_Jal scan and only needs to B®y. 4. Virtual scan construction. In (c) green line segmeefsesent virtual
carried out once per frame. Fig. 4(d) shows results of aalirtuays. In (d) red points are new obstacles, green points astaclbs that

scan differencing operation with red points denoting neﬁ&sappeared, and white points are obstacles that remaingthnged. In (e)

) . . e purple boxes denote the tracked vehicles. (Best viewewblor.
obstacles, green points denoting obstacles that disagghear pUrP ( )
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- oo pass through the car the unnormalized likelihoods to obtain the normalizatiom
é’ stantsn;. Note that for the rays that do not target the vehicle
or the bounding box, the above logic automatically yields
o — occlusion area L o - onvisible uniform distributions as these rays never hit the boundimg b
surface of the car Note that the above measurement model naturally handles
s partially occluded objects including objects that are itsyp”
0 . Range ABGC - by occlusion into several point clusters. In contrast tresses
are often challenging for approaches that utilize sepatata
(®) segmentation and correspondence methods.
Fig. 5. Measurement likelihood computations. (a) shows the geo-
metric regions involved in the likelihood computations. (b) shows [1l. INFERENCE

the costs assignment for a single ray. Most vehicle tracking methods described in the literature

apply separate methods for data segmentation and correspon
_ . . . _ dence matching before fitting model parameters via extended
and white points denoting obstacles that remained in placekalman filter (EKF). In contrast we use a single Bayesianrfilte

appeared in previously occluded areas. to fit model parameters from the start. This is possible bezau
our model includes both geometric and dynamic parameters
E. Measurement mode of the vehicles and because we rely on efficient methods

for parameter fitting. We chose the particle filter method for

Given a vehicle’s poseX, geometryG and a virtual scan Bayesian estimation because it is more suitable for multi-
Z we compute the measurement likelihopdZ|G, X) as modal distributions than EKF. Unlike the multiple hypotises
follows. We position a rectangular shape representing th@cking (MHT) method commonly used in the literature, the
vehicle according to¥ andG. Then we build a bounding box computational complexity for our method grows linearly hwit
to include all points within a predefined distancearound the the number of vehicles in the environment, because vehicle
vehicle (see Fig. 5). Assuming that there is an actual vehiadynamics dictates that vehicles can only be matched to data
in this configuration, we would expect the points within th@oints in their immediate vicinity. The downside of course i
rectangle to be occupied or occluded, and points in its iicin that in our case two targets can in principle merge into one.
to be free or occluded, because vehicles are spatially atohr In practice we have found that it happens rarely and only in
from other objects in the environment. situations where one of the targets is lost due to complete

Following the common practice for modeling laser rangecclusion. In these situations target merging is accepttdl
finders, we consider measurements obtained along each @ay application.
independent of each other. Thus if we have a totaNofays We have a total of eight parameters to estimate for each
in the virtual scanZ, the measurement likelihood factors asehicle: X = (z,y,6), v, G = (W, L, C,, C,). Computational

follows: complexity grows exponentially with the number of parame-
N ters for particle filters. Thus to keep computational comipye
p(Z]G,X) = Hp(zi|G, X). low, we turn to Rao-Blackwellized particle filters (RBPFs}fi
i=1 introduced in [11]. We estimat& andv by samples and keep

o ~ Gaussian estimates f6f within each particle. Below we give
We model each ray’s likelihood as a zero-mean Gaussianghrief derivation of the required update equations.

varianceos; computed with respect to a castselected based
on the relationship between the ray and the vehiglei{ a A. Derivation of update equations

At each time steg we produce an estimate of a Bayesian
Iwe used the setting of = 1m in our implementation. belief about the tracked vehicle’s trajectory, velocitydan



eometry based on a set of measurements: Z|G, Xy), this expectation can be expressed as an integral
g y D 5

over a product of two Gaussians, and can thus be carried out
Bel, = p(X*,v", G| Z"). in closed form.
The derivation provided below is similar to the one useg Motion inference

in [12]. We split up the belief into two conditional factors: ) ] _ )
As we mentioned in Sect. II-A, a vehicle’'s motion

Bely = p(X*,0"|Z") p(G|X', 0", Z"). is governed by two probabilistic lawsp(vi|v;—1) and

The first factor encodes the vehicle’s motion posterior: p.(Xt|Xti1’“?)' These laws are related to the motion predic-
tion distribution as follows:
Ry = p(X*' 0t Zh).

) Rt = p(XtaUt|Zt_1)
The sgcond faqtor enqodes the vehicle’s geometry posterior _ P(Xp, v X1, 0071, 2671 p(X 1 ot 2t
conditioned on its motion: i1t ot Pl b1 et

= p(Xt|X , U vZ ) p(vt‘X , U 7Z ) Rtfl

_ t .t t
St —p<G|X U vZ ) p(Xt|Xt—17Ut) p(Ut|1)t_1) Rt—l-

The factor R, is approximated using a set of partlcles;l-he first and second steps above are simple conditional

the factorSt_ is approximated using a Gaussian_ OIiStribUtiOﬂactorizations; the third step follows from the conditibna
(one Gaussian per particle). We denote a particleghy= independence assumptions of our model (Fig. 2).

(Xt’[T’L]7Ut’[7'L175t[m]) and a collection of particles at time  Note that since only the latest vehicle pose and velocity are
by Q¢ = {qy,}m. We compute@, recursively from@Q:_1. ysed in the update equations, we do not need to actually store
Suppose that at time step particles inQ;, are distributed entjre trajectories in each particle. Thus the memory g®ra
according toR,_,. We compute an intermediate set of partirequirements per particle do not grow with

clesQ, by sampling a guess of the vehicle’s pose and velocity
at time ¢ from the dynamics model (described in detail irf. Shape inference
Sect. II-C). Thus, particles i), are distributed according to  |n order to maintain the vehicle’s geometry posterior in a
the vehicle motion prediction distribution: Gaussian form, we need to linearize the measurement likeli-
R, = p(Xt,0t| 2t ). hoodp(Z,;|G, X;) with respect ta=. Clearly the measurement
’ ’ likelihood does not lend itself to differentiation in clasrm.

To ensure that particles i), are distributed according to Thus we turn to Laplace’s method to obtain a suitable Ganssia
R: (asymptotically), we generat€), by sampling from@; approximation. The method involves fitting a Gaussian at the
with replacement in proportion to importance weights giveglobal maximum of a function. Since the global maximum is
by w; = R:/R;. Before we can compute the weights, we needbt readily available, we search for it via local optimipati
to derive the update equations for the geometry posterior. starting at the current best estimate of geometry parameter

We use a Gaussian approximation for the geometry pd3ue to construction of our measurement model (Sect. II-E)
terior, S;. Thus we keep track of the mean and the co- the search is inexpensive as we only need to recompute the
variance matrix¥; of the approximating Gaussian in eacltosts for the rays directly affected by a local changé&in
particle: g, = (X0 pttml ™ wlm) we have: The dependence between our belief of the vehicle’'s shape
and position (discussed in Sect. 1I-B) manifests itself in a

t .t t
Se = p(GIX5 0, 2% dependence between the local anchor point coordirGtasd
o« p(Z|G, X0t 2 p(GIXTE ot 20 the vehicle’s width and length. The vehicle’s corner clbses
= p(Z|G, X)) p(G|Xt1 ot 2. (1) to the vantage point is a very prominent feature that impacts

) how the sides of the vehicle match the data. When revising the
The first step above follows from Bayes’ rule; the secongklief of the vehicle’'s width and length, we keep the closest
step follows from the conditional independence assumptioporner in place. Thus a change in the width or the length leads
of our model (Fig. 2). The expression (1) is a product @b a change in the global coordinates of the vehicle’s center
the measurement likelihood and the geometry pfpr;. To  point, for which we compensate with an adjustmentirto

obtain a Gaussian approximation {6y we linearize the mea- keep the anchor point in place. This way a change in geometry
surement likelihood as will be eXplalned in Sect. IlI-C. @nCdoeS not create phantom motion of the vehicle.

the linearization is performed, the mean and the co-vagianc o
matrix for S; can be computed in closed form, becagse,; D. Initializing new tracks
is already approximated by a Gaussian (represented by a Ra@efore vehicle tracking can begin, we need to initialize new
Blackwellized particle from the previous time step). vehicle tracks. Detection of new vehicles is the most exipens
Now we are ready to compute the importance weightgart of vehicle tracking. However a number of optimizations
Briefly, following the derivation in [12], it is straightferard can be made to achieve detection in real time, includingalpat
to show that the importance weights should be: constraints and sensor data analysis. Detailed descriptio
B p(X1,0t|ZY) our vehicle detection algorithm is given in [13]. Here we
wy = R/Ry = ———————~ = [Es, [ p(Z|G, Xy) . provide a brief summary.
p(X*, 0|27 To detect new vehicles, we search the area within sensor
In words, the importance weights are the expected valtenge of our ego-vehicle to find good matches using the
(with respect to the vehicle geometry prior) of the measurereasurement model described in Sect. II-E. A total of three
ment likelihood. Using Gaussian approximationsSef; and (3) frames are required to acquire a new tracking target. The
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If A, B, C are ground readings
a~0
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Fig. 6. We determine ground readings by comparing angles between
consecutive readings.

(a) actual scene

first two frames are required to detect motion of an objecé Th
third frame is required to check that the motion is consisten
over time and follows vehicle dynamics laws described in
Sect. II-C.

E. Discontinuing tracks

Under certain conditions it is desirable to discontinuekra
ing of a target. We discontinue tracks if the target vehicle
gets out of sensor range or moves too far away from the
road (a digital street map was available for our application
Additionally we implemented logic that merged hypothesis (b) Velodyne data after classification
of two particle filters if the tracked targets were too close :
together. However, it turned out that this condition ocamly
very rarely.

We also discontinue tracks if the unnormalized weights have
been low for several turns. Low unnormalized weights signal
that the sensor data is insufficient to track the target, at th
our estimate is too far away from the actual vehicle. This
logic keeps the resource cost of tracking occluded objects
low, yet it still allows for a tracked vehicle to survive bad
data or complete occlusion for several turns. Since nevktrac
acquisition only takes three frames, it does not make sense
to continue tracking objects that are occluded for signifilya
longer periods of time.

IV. IMPLEMENTATION AND RESULTS , k- _
A. Building virtual scans from 3D range data (c) generated virtual scan
As we explained n Sect. 1D, vehicle tracking s a 200, by 5 CTES DL VR IS S,

problem, for which efficient 2D virtual scans are sufficieniNote the white van parked at a distance in (a) and (c).

These virtual scans are easy to build for 2D range sensors

with ground filtering, such as IBEO. However for 3D sensors,

such as Velodyne, it is a less trivial task. These sensdh$ 2m slice of space are obstacles for a vehicle, even iethes

provide immense 3D data sets of the surroundings, makifgiects are not directly touching the ground.

computational efficiency a high priority when processing th In order to classify the data into the different types of

data. However, in our experience, the hard work pays off andjects described above we first build a 3D grid in spherical

the resulting virtual scans carry more information thanZbr coordinates. Similarly to a virtual scan, it has a singlenpoi

Sensors. of origin and stores actual world coordinates of the sensor
Given a 3D data set, which of the data points shoulgadings. Just as in the 2D case, this grid is an approximatio

be considered obstacles? From the perspective of driviagthe sensor data set, because the actual laser readings in

applications we are interested in the slice of space djrecfl scan have varying points of origin. In order to downsample

above the ground and about 2m high, as this is the space thand reject outliers, for each spherical grid cell we compée

vehicle would actually have to drive through. Objects efegda median range of the readings falling within it. This givesaus

more than 2m above ground - e.g. tree tops or overpasses -sifgle obstacle point per grid cell. For each spherical geiti

not obstacles. The ground itself is not an obstacle (assumiue will refer to the cone from the grid origin to the obstacle

the terrain is drivable). Moreover, for tracking applicats point as a virtual ray.

low obstacles such as curbs should be excluded from virtualThe first classification step is to determine ground points.

scans, because otherwise they can prevent us from seeirgg nkar this purpose we select a single slice of vertical angles

important obstacles beyond them. The remaining objects fiom the spherical grid (i.e. rays that all have the sameibgar



filter, because the3C vector tends to be very long (greater
than 1m), which is not the case for normal vertical obstacles
such as buildings and cars. After identifying the interesti
obstacles we simply project them on the 2D horizontal plane
to obtain a virtual scan.

Laser range finders are widely known to have difficulty
seeing black objects. Since these objects absorb light, the
sensor never gets a return. Clearly it is desirable to “see”
black obstacles for driving applications. Other sensotsctbe
used, but they all have their own drawbacks. Here we present
a method for detecting black objects in 3D laser data. Figure
shows the returns obtained from a black car. The only reading
obtained are from the license plate and wheels of the vehicle
all of which get filtered out as low obstacles. Instead of lagk
at the little data that is present, we can detect the preseince
a black obstacle by looking at the data that is absent. If no
readings are obtained along a range of vertical angles in a
specific direction, we can conclude that the space must be
occupied by a black obstacle. Otherwise the rays would have
hit some obstacle or the ground. To provide a conservative
estimate of the range to the black obstacle we place it at
the last reading obtained in the vertical angles just betioge
absent readings. We note that this method works well as long
as the sensor is good at seeing the ground. For the Velodyne
sensor the range within which the ground returns are reiebl
about 25 - 30m, beyond this range the black obstacle detectio
logic does not work.

(b) the vehicle gives very few laser returns

B. Tracking results
The most challenging traffic situation at the Urban Grand

() generated vinual scan after black object Challenge was presented on course A during the qualifying

event (Fig. 9(a) and Fig. 9(b)) . The test consisted of dense
human driven traffic in both directions on a course with
an outline resembling the Greek lettér The robots had
to merge repeatedly into the dense traffic. The merge was
performed using a left turn, so that the robots had to cross
one lane of traffic each time. In these conditions accurate
estimates of positions and velocities of the cars are very
useful for determining a gap in traffic large enough to perfor
‘ the merge safely. Cars passed in close proximity to each
L sl other and to stationary obstacles (e.g. signs and guarg) rail
(d) successful tracking of the black vehicle providing plenty of opportunity for false associationsrtizé
Fig. 8. Detecting black vehicles in 3D range scans. White tsaiepresent and QompIEte occlusions happe_zned frequently due to theetraf
raw Velodyne data. In (c) green lines represent the genesateial scan. In - density. Moreover these occlusions often happened neaemer
(d) the purple box denotes the estimated pose of the trackedlee points which complicated decision making.

During extensive testing the performance of our vehicle
angle). We cycle through the rays in the slice from the lowesticking module has been very reliable and efficient (see
vertical angle to the highest. For three consecutive remdi)  Fig. 4 and Fig. 9). It proved capable of handling complex
B, andC, the slope betweeA B and BC should be near zero traffic situations such as the one presented on course A. The
if all three points lie on the ground (see Fig. 6 for illusiva). computation time of our approach averages out at 25ms per
If we normalizeAB and BC, their dot product should be closeframe, which is faster than real time for most modern laser
to 1. Hence a simple thresholding of the dot product allowginge finders.
us to classify ground readings and to obtain estimates @l loc We also gathered empirical results of the tracking module
ground elevation. Thus one useful piece of information we c@erformance on data sets from several urban environments:
obtain from 3D sensors is an estimate of ground elevation.course A of the UGC, Stanford campus and a port town in

Using the elevation estimates we can classify the remainiaAdameda, CA. For each frame of data we counted how many
non-ground readings into low, medium and high obstacleghicles a human is able to identify in the laser range data.
out of which we are only interested in the medium ones (s@&e vehicles had to be within 50m of the ego-vehicle, on or
Fig. 7). It turns out that there can be medium height obstacleear the road, and moving with a speed of at least 5Smph.
that are still worth filtering out: birds, insects and ocoasil We summarize the tracker's performance in Fig. 10. Note that
readings from cat-eye reflectors. These obstacles are easyhe maximum theoretically possible true positive rate igdo




Datasets| Total Frames| Total Vehicles| Correctly Detected Falsely Detected Max TP (%) | TP (%) | FP (%)
Area A 1,577 5911 5,676 205 97.8| 96.02 3.35
Stanford 2,140 3,581 3,530 150 99.22| 98.58 4.02
Alameda 1,531 901 879 0 98.22| 97.56 0
Overall 5,248 10,393 10,085 355 98.33| 97.04 3.3

Fig. 10. Tracker performance on data sets from three urbainoaments. Max TP is the theoretically maximum possible trusitppe percent for each data
set. TP and FP are the actual true positive and false posétes attained by the algorithm.

and estimates them with a single Bayes filter per vehicle.
In contrast to prior art, the common data segmentation and
association steps are carried out as part of the filter itSak
approach has proved reliable, efficient and capable of iandl
challenging traffic situations, such as the ones presentig: a
Urban Grand Challenge.

Clearly there is ample room for future work. The pre-
sented approach does not model pedestrians, bicyclists, or
motorcyclists, which is a prerequisite for driving in poatgd
areas. Another promising direction for future work is fusio
of different sensors, including laser, radar and vision.
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