
Model Based Vehicle Tracking for Autonomous
Driving in Urban Environments

Anna Petrovskaya and Sebastian Thrun
Computer Science Department

Stanford University
Stanford, California 94305, USA
{ anya, thrun}@cs.stanford.edu

Abstract— Situational awareness is crucial for autonomous
driving in urban environments. This paper describes moving
vehicle tracking module that we developed for our autonomous
driving robot Junior. The robot won second place in the Urban
Grand Challenge, an autonomous driving race organized by the
U.S. Government in 2007. The tracking module provides reliable
tracking of moving vehicles from a high-speed moving platform
using laser range finders. Our approach models both dynamic
and geometric properties of the tracked vehicles and estimates
them using a single Bayes filter per vehicle. We also show how to
build efficient 2D representations out of 3D range data and how
to detect poorly visible black vehicles. Experimental validation
includes the most challenging conditions presented at the UGC
as well as other urban settings.

I. I NTRODUCTION

Autonomously driving cars have been a long-lasting dream
of robotics researchers and enthusiasts. Self-driving cars
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort and
convenience. In recent years the Defense Advanced Research
Projects Agency (DARPA) has taken a lead on encouraging
research in this area. DARPA has organized a series of
competitions for autonomous vehicles. In 2005, autonomous
vehicles were able to complete a 131 mile course in the desert.
In 2007 competition, the Urban Grand Challenge, the robots
were presented with an even more difficult task: autonomous
safe navigation in urban environments. In this competitionthe
robots had to drive safely with respect to other robots, human-
driven vehicles and the environment. They also had to obey the
rules of the road as described in the California rulebook. One
of the most significant changes from the previous competition
is that for urban driving, robots need to have situational
awareness of both static and dynamic parts of the environment.
Our robot won the second prize at the 2007 competition. In
this paper we describe the approach we developed for tracking
of moving vehicles.

Vehicle tracking has been studied for several decades. A
number of approaches focused on the use of vision exclusively
[1, 2, 3]. Whereas others utilized laser range finders sometimes
in combination with vision [4, 5, 6, 7]. Typically these
approaches perform data segmentation and data association
prior to performing a filter update. Usually only position and
velocity of each vehicle are tracked. The vehicle tracking
literature almost universally relies on variants of Kalman
filters, although particle filters and hybrid approaches have
been widely used in other tracking applications [8, 9, 10].

For our application we are concerned with laser based
vehicle tracking from our autonomous robotic platform Junior,

Fig. 1. Junior, our entry in the DARPA Urban Challenge. Junior is
equipped with five different laser measurement systems, a multi-radar
assembly, and a multi-signal inertial navigation system, as shown in
this figure.

to which we will also refer as the ego-vehicle (Fig. 1). In
contrast to prior art we propose a model based approach which
encompasses both geometric and dynamic properties of the
tracked vehicle in a single Bayes filter. The approach naturally
handles data segmentation and association, so that these pre-
processing steps are not required. To properly model the de-
pendence between geometric and dynamic vehicle properties,
we introduceanchor point coordinates. Further, we introduce
an abstract sensor representation we call thevirtual scan, that
allows for efficient computation and can be used for a wide
variety of laser sensors. We present techniques for building
virtual scans from 3D range data and show how to detect
poorly visible black vehicles in laser scans. Our approach runs
in real time with an average update rate of 40Hz, which is 4
times faster than the common sensor frame rate of 10Hz. The
results show that our approach is reliable and efficient even
in challenging traffic situations presented at the Urban Grand
Challenge.

II. REPRESENTATION

A. Probabilistic model and notation

Our goal for this work is to track multiple vehicles in an
urban environment. Our ego-vehicle has been outfitted with the
Applanix navigation system that can provide pose localization
with 1m error as well as produce a locally consistent pose
estimates based on an inertial measurement unit (IMU). Hence
we will leave ego-vehicle localization outside the scope ofthe
paper. Instead we will assume that a reasonably precise pose
of the ego-vehicle is always available.

Fig. 2. Dynamic Bayesian network model of the tracked vehicle pose
Xt, forward velocityvt, geometryG, and measurementsZt.

From the theoretical standpoint, multiple vehicle track-
ing entails a single joint probability distribution over the
state parameters of all of the vehicles. Unfortunately, such
a representation is not practical because it quickly becomes
intractable as the number of vehicles grows. Also, since the
number of vehicles is unknown and variable, it is in fact
challenging to model the problem in this way. We note that
dependencies between vehicles are strong when vehicles are
close together, but become extremely weak as the distance
between vehicles increases. Hence it is wasteful to model
dependencies between vehicles that are far from each other.
Instead, following the common practice in vehicle tracking,
we will represent each vehicle with a separate Bayesian filter,
and represent dependencies between vehicles via a set of local
spatial constraints. Specifically we will assume that no two
vehicles overlap, that there is a free space of at least 1m around
each vehicle and that all vehicles of interest are located on
or near the road. This representation is efficient because its
complexity grows linearly with the number of vehicles. It also
easily accommodates a variable number of tracked vehicles.

For each vehicle we estimate its 2D position and orientation
Xt = (xt, yt, θt) at time t, its forward velocityvt and its
geometry G (further defined in Sect. II-B). Also at each
time step we obtain a new measurementZt. See Fig. 2
for a dynamic Bayes network representation of the resulting
probabilistic model. The dependencies between the parameters
involved are modeled via probabilistic laws discussed in detail
in Sects. II-C and II-E. For now we briefly note that the
velocity evolves over time according to

p(vt|vt−1).

The vehicle moves based on the evolved velocity according to
a dynamics model:

p(Xt|Xt−1, vt).

The measurements are governed by a measurement model:

p(Zt|Xt, G).

For convenience we will writeXt = (X1,X2, ...,Xt) for the
vehicle’s trajectory up to timet. Similarly, vt and Zt will
denote all velocities and all measurements up to timet.

Fig. 3. As we move to observe a different side of a stationary car,
our belief of its shape changes and so does the position of the car’s
center point. To compensate for the effect, we introduce local anchor
point coordinatesC = (Cx, Cy) so that we can keep the anchor point
Xt stationary in the world coordinates.

B. Vehicle geometry

The exact geometric shape of a vehicle can be complex and
difficult to model precisely. For simplicity we approximateit
by a rectangular shape of widthW and lengthL. The 2D
representation is sufficient because the height of the vehicles
is not important for driving applications.

For vehicle tracking it is common to track the position
of a vehicle’s center within the state variableXt. However,
there is an interesting dependence between our belief about
the vehicle’s shape and position (Fig. 3). As we observe the
object from a different vantage point, we change not only our
belief of its shape, but also our belief of the position of its
center point. AllowingXt to denote the center point can lead
to the undesired effect of obtaining a non-zero velocity fora
stationary vehicle, simply because we refine our knowledge of
its shape.

To overcome this problem, we viewXt as the pose of an
anchor point who’s position with respect to the vehicle’s center
can change over time. Initially we set the anchor point to be
the center of what we believe to be the car shape and thus
its coordinates in the vehicle’slocal coordinate system are
C = (0, 0). We assume that the vehicle’s local coordinate
system is tied to its center with thex-axis pointing directly
forward. As we revise our knowledge of the vehicle’s shape,
the local coordinates of the anchor point will also need to be
revised accordingly toC = (Cx, Cy). Thus the complete set
of geometric parameters isG = (W,L,Cx, Cy).

C. Vehicle dynamics model

Given a vehicle’s velocityvt−1 at time stept − 1, the
velocity evolves via addition of random bounded noise based
on maximum allowed accelerationamax and the time delay
∆t between time stepst − 1 and t. Specifically, we sample
∆v uniformly from [−amax∆t, amax∆t].

The pose evolves via linear motion - a motion law that is
often utilized when exact dynamics of the object are unknown.
The motion consists of perturbing orientation by∆θ1, then
moving forward according to the current velocity byvt∆t,
and making a final adjustment to orientation by∆θ2. Again we

sample∆θ1 and∆θ2 uniformly from [−dθmax∆t, dθmax∆t]
for a maximum allowed orientation changedθmax.

D. Sensor data representation

In this paper we focus on laser range finders for sensing
the environment. Recently these sensors have evolved to be
more suitable for driving applications. For example IBEO
Alasca sensors allow for easy ground filtering by collecting
four parallel horizontal scan lines and marking which of the
readings are likely to come from the ground. Velodyne HDL-
64E sensors do not provide ground filtering, however they
take a 3D scan of the environment at high frame rates (10Hz)
thereby producing 1,000,000 readings per second. Given such
rich data, the challenge has become to process the readings
in real time. Vehicle tracking at 10 - 20Hz is desirable for
driving decision making.

A number of factors make the use of raw sensor data
inefficient. As the sensor rotates to collect the data, each new
reading is made from a new vantage point due to ego-motion.
Ignoring this effect leads to significant sensor noise. Taking
this effect into account makes it difficult to quickly accessdata
that pertains to a specific region of space. Much of the data
comes from surfaces uninteresting for the purpose of vehicle
tracking, e.g. ground readings, curbs and tree tops. Finally,
the raw 3D data wastes a lot of resources as vehicle tracking
is a 2D application where the cars are restricted to move on
the ground surface. Therefore it is desirable to pre-process the
data to produce a representation tailored for vehicle tracking.

To expedite computations, we construct a grid in polar
coordinates - avirtual scan - which subdivides360◦ around a
chosen origin point into angular grids (Fig. 4). In each angular
grid we record the range to the closest obstacle. Hence each
angular grid contains information about free, occupied, and
occluded space. We will often refer to the cone of an angular
grid from the origin until the recorded range as aray due to
its similarity to a laser ray.

Virtual scans simplify data access by providing a single
point of origin for the entire data set, which allows constant
time look-up for any given point in space. As we mentioned
earlier it is important to compute correct world coordinates for
the raw sensor readings. However, once the correct positions
of obstacle points have been computed, adjusting the origin
of each ray to be at the common origin for the virtual scan
produces an acceptable approximation. Constructed in this
manner a virtual scan provides a compact representation of
the space around the ego-vehicle classified into free, occupied
and occluded. The classification helps us properly reason about
what parts of an object should be visible as we describe in
Sect. II-E.

For the purpose of vehicle tracking it is crucial to determine
what changes take place in the environment over time. With
virtual scans these changes can be easily computed in spite
of the fact that ego-motion can cause two consecutive virtual
scans to have different origins. The changes are computed by
checking which obstacles in the old scan are cleared by rays
in the new scan and vice versa. This computation takes time
linear in the size of the virtual scan and only needs to be
carried out once per frame. Fig. 4(d) shows results of a virtual
scan differencing operation with red points denoting new
obstacles, green points denoting obstacles that disappeared,

(a) schematic of a virtual scan

(b) actual scene

(c) virtual scan

(d) scan differencing

(e) tracking results
Fig. 4. Virtual scan construction. In (c) green line segmentsrepresent virtual
rays. In (d) red points are new obstacles, green points are obstacles that
disappeared, and white points are obstacles that remained unchanged. In (e)
the purple boxes denote the tracked vehicles. (Best viewed in color.)

(a)

(b)

Fig. 5. Measurement likelihood computations. (a) shows the geo-
metric regions involved in the likelihood computations. (b) shows
the costs assignment for a single ray.

and white points denoting obstacles that remained in place or
appeared in previously occluded areas.

E. Measurement model

Given a vehicle’s poseX, geometryG and a virtual scan
Z we compute the measurement likelihoodp(Z|G,X) as
follows. We position a rectangular shape representing the
vehicle according toX andG. Then we build a bounding box
to include all points within a predefined distanceλ1 around the
vehicle (see Fig. 5). Assuming that there is an actual vehicle
in this configuration, we would expect the points within the
rectangle to be occupied or occluded, and points in its vicinity
to be free or occluded, because vehicles are spatially separated
from other objects in the environment.

Following the common practice for modeling laser range
finders, we consider measurements obtained along each ray
independent of each other. Thus if we have a total ofN rays
in the virtual scanZ, the measurement likelihood factors as
follows:

p(Z|G,X) =

N∏

i=1

p(zi|G,X).

We model each ray’s likelihood as a zero-mean Gaussian of
varianceσi computed with respect to a costci selected based
on the relationship between the ray and the vehicle (ηi is a

1We used the setting ofλ = 1m in our implementation.

normalization constant):

P (zi|G,X) = ηi exp{ −
c2
i

σ2
i

}.

The costs and variances are set to constants that depend on
the region in which the reading falls into (see Fig. 5 for
illustration).cocc, σocc are the settings for range readings that
fall short of the bounding box and thus represent situations
when another object is occluding the vehicle.cb and σb are
the settings for range readings that fall short of the vehicle
but inside of the bounding box.cs andσs are the settings for
readings on the vehicle’s visible surface (that we assume to
be of non-zero depth).cp, σp are used for rays that extend
beyond the vehicle’s surface.

The domain for each range reading is between minimum
rangermin and maximum rangermax of the sensor. Since the
costs we select are piece-wise constant, it is easy to integrate
the unnormalized likelihoods to obtain the normalization con-
stantsηi. Note that for the rays that do not target the vehicle
or the bounding box, the above logic automatically yields
uniform distributions as these rays never hit the bounding box.

Note that the above measurement model naturally handles
partially occluded objects including objects that are “split up”
by occlusion into several point clusters. In contrast thesecases
are often challenging for approaches that utilize separatedata
segmentation and correspondence methods.

III. I NFERENCE

Most vehicle tracking methods described in the literature
apply separate methods for data segmentation and correspon-
dence matching before fitting model parameters via extended
Kalman filter (EKF). In contrast we use a single Bayesian filter
to fit model parameters from the start. This is possible because
our model includes both geometric and dynamic parameters
of the vehicles and because we rely on efficient methods
for parameter fitting. We chose the particle filter method for
Bayesian estimation because it is more suitable for multi-
modal distributions than EKF. Unlike the multiple hypothesis
tracking (MHT) method commonly used in the literature, the
computational complexity for our method grows linearly with
the number of vehicles in the environment, because vehicle
dynamics dictates that vehicles can only be matched to data
points in their immediate vicinity. The downside of course is
that in our case two targets can in principle merge into one.
In practice we have found that it happens rarely and only in
situations where one of the targets is lost due to complete
occlusion. In these situations target merging is acceptable for
our application.

We have a total of eight parameters to estimate for each
vehicle:X = (x, y, θ), v, G = (W,L,Cx, Cy). Computational
complexity grows exponentially with the number of parame-
ters for particle filters. Thus to keep computational complexity
low, we turn to Rao-Blackwellized particle filters (RBPFs) first
introduced in [11]. We estimateX andv by samples and keep
Gaussian estimates forG within each particle. Below we give
a brief derivation of the required update equations.

A. Derivation of update equations

At each time stept we produce an estimate of a Bayesian
belief about the tracked vehicle’s trajectory, velocity and

geometry based on a set of measurements:

Belt = p(Xt, vt, G|Zt).

The derivation provided below is similar to the one used
in [12]. We split up the belief into two conditional factors:

Belt = p(Xt, vt|Zt) p(G|Xt, vt, Zt).

The first factor encodes the vehicle’s motion posterior:

Rt = p(Xt, vt|Zt).

The second factor encodes the vehicle’s geometry posterior,
conditioned on its motion:

St = p(G|Xt, vt, Zt).

The factor Rt is approximated using a set of particles;
the factorSt is approximated using a Gaussian distribution
(one Gaussian per particle). We denote a particle byqt

m =

(Xt,[m], vt,[m], S
[m]
t) and a collection of particles at timet

by Qt = {qt
m}m. We computeQt recursively fromQt−1.

Suppose that at time stept, particles inQt−1 are distributed
according toRt−1. We compute an intermediate set of parti-
clesQ̄t by sampling a guess of the vehicle’s pose and velocity
at time t from the dynamics model (described in detail in
Sect. II-C). Thus, particles in̄Qt are distributed according to
the vehicle motion prediction distribution:

R̄t = p(Xt, vt|Zt−1).

To ensure that particles inQt are distributed according to
Rt (asymptotically), we generateQt by sampling fromQ̄t

with replacement in proportion to importance weights given
by wt = Rt/R̄t. Before we can compute the weights, we need
to derive the update equations for the geometry posterior.

We use a Gaussian approximation for the geometry pos-
terior, St. Thus we keep track of the meanµt and the co-
variance matrixΣt of the approximating Gaussian in each
particle:qt

m = (Xt,[m], vt,[m], µ
[m]
t ,Σ

[m]
t). We have:

St = p(G|Xt, vt, Zt)

∝ p(Zt|G,Xt, vt, Zt−1) p(G|Xt, vt, Zt−1)

= p(Zt|G,Xt) p(G|Xt−1, vt−1, Zt−1). (1)

The first step above follows from Bayes’ rule; the second
step follows from the conditional independence assumptions
of our model (Fig. 2). The expression (1) is a product of
the measurement likelihood and the geometry priorSt−1. To
obtain a Gaussian approximation forSt we linearize the mea-
surement likelihood as will be explained in Sect. III-C. Once
the linearization is performed, the mean and the co-variance
matrix for St can be computed in closed form, becauseSt−1

is already approximated by a Gaussian (represented by a Rao-
Blackwellized particle from the previous time step).

Now we are ready to compute the importance weights.
Briefly, following the derivation in [12], it is straightforward
to show that the importance weightswt should be:

wt = Rt/R̄t =
p(Xt, vt|Zt)

p(Xt, vt|Zt−1)
= IESt−1

[p(Zt|G,Xt)].

In words, the importance weights are the expected value
(with respect to the vehicle geometry prior) of the measure-
ment likelihood. Using Gaussian approximations ofSt−1 and

p(Zt|G,Xt), this expectation can be expressed as an integral
over a product of two Gaussians, and can thus be carried out
in closed form.

B. Motion inference

As we mentioned in Sect. II-A, a vehicle’s motion
is governed by two probabilistic laws:p(vt|vt−1) and
p(Xt|Xt−1, vt). These laws are related to the motion predic-
tion distribution as follows:

R̄t = p(Xt, vt|Zt−1)

= p(Xt, vt|X
t−1, vt−1, Zt−1) p(Xt−1, vt−1|Zt−1)

= p(Xt|X
t−1, vt, Zt−1) p(vt|X

t−1, vt−1, Zt−1) Rt−1

= p(Xt|Xt−1, vt) p(vt|vt−1) Rt−1.

The first and second steps above are simple conditional
factorizations; the third step follows from the conditional
independence assumptions of our model (Fig. 2).

Note that since only the latest vehicle pose and velocity are
used in the update equations, we do not need to actually store
entire trajectories in each particle. Thus the memory storage
requirements per particle do not grow witht.

C. Shape inference

In order to maintain the vehicle’s geometry posterior in a
Gaussian form, we need to linearize the measurement likeli-
hoodp(Zt|G,Xt) with respect toG. Clearly the measurement
likelihood does not lend itself to differentiation in closed form.
Thus we turn to Laplace’s method to obtain a suitable Gaussian
approximation. The method involves fitting a Gaussian at the
global maximum of a function. Since the global maximum is
not readily available, we search for it via local optimization
starting at the current best estimate of geometry parameters.
Due to construction of our measurement model (Sect. II-E)
the search is inexpensive as we only need to recompute the
costs for the rays directly affected by a local change inG.

The dependence between our belief of the vehicle’s shape
and position (discussed in Sect. II-B) manifests itself in a
dependence between the local anchor point coordinatesC and
the vehicle’s width and length. The vehicle’s corner closest
to the vantage point is a very prominent feature that impacts
how the sides of the vehicle match the data. When revising the
belief of the vehicle’s width and length, we keep the closest
corner in place. Thus a change in the width or the length leads
to a change in the global coordinates of the vehicle’s center
point, for which we compensate with an adjustment inC to
keep the anchor point in place. This way a change in geometry
does not create phantom motion of the vehicle.

D. Initializing new tracks

Before vehicle tracking can begin, we need to initialize new
vehicle tracks. Detection of new vehicles is the most expensive
part of vehicle tracking. However a number of optimizations
can be made to achieve detection in real time, including spatial
constraints and sensor data analysis. Detailed description of
our vehicle detection algorithm is given in [13]. Here we
provide a brief summary.

To detect new vehicles, we search the area within sensor
range of our ego-vehicle to find good matches using the
measurement model described in Sect. II-E. A total of three
(3) frames are required to acquire a new tracking target. The

Fig. 6. We determine ground readings by comparing angles between
consecutive readings.

first two frames are required to detect motion of an object. The
third frame is required to check that the motion is consistent
over time and follows vehicle dynamics laws described in
Sect. II-C.

E. Discontinuing tracks

Under certain conditions it is desirable to discontinue track-
ing of a target. We discontinue tracks if the target vehicle
gets out of sensor range or moves too far away from the
road (a digital street map was available for our application).
Additionally we implemented logic that merged hypothesis
of two particle filters if the tracked targets were too close
together. However, it turned out that this condition occursonly
very rarely.

We also discontinue tracks if the unnormalized weights have
been low for several turns. Low unnormalized weights signal
that the sensor data is insufficient to track the target, or that
our estimate is too far away from the actual vehicle. This
logic keeps the resource cost of tracking occluded objects
low, yet it still allows for a tracked vehicle to survive bad
data or complete occlusion for several turns. Since new track
acquisition only takes three frames, it does not make sense
to continue tracking objects that are occluded for significantly
longer periods of time.

IV. I MPLEMENTATION AND RESULTS

A. Building virtual scans from 3D range data

As we explained in Sect. II-D, vehicle tracking is a 2D
problem, for which efficient 2D virtual scans are sufficient.
These virtual scans are easy to build for 2D range sensors
with ground filtering, such as IBEO. However for 3D sensors,
such as Velodyne, it is a less trivial task. These sensors
provide immense 3D data sets of the surroundings, making
computational efficiency a high priority when processing the
data. However, in our experience, the hard work pays off and
the resulting virtual scans carry more information than for2D
sensors.

Given a 3D data set, which of the data points should
be considered obstacles? From the perspective of driving
applications we are interested in the slice of space directly
above the ground and about 2m high, as this is the space that a
vehicle would actually have to drive through. Objects elevated
more than 2m above ground - e.g. tree tops or overpasses - are
not obstacles. The ground itself is not an obstacle (assuming
the terrain is drivable). Moreover, for tracking applications
low obstacles such as curbs should be excluded from virtual
scans, because otherwise they can prevent us from seeing more
important obstacles beyond them. The remaining objects in

(a) actual scene

(b) Velodyne data after classification

(c) generated virtual scan

Fig. 7. In (b) Velodyne data is colored by type: orange - ground,
yellow - low obstacle, red - medium obstacle, green - high obstacle.
Note the white van parked at a distance in (a) and (c).

the 2m slice of space are obstacles for a vehicle, even if these
objects are not directly touching the ground.

In order to classify the data into the different types of
objects described above we first build a 3D grid in spherical
coordinates. Similarly to a virtual scan, it has a single point
of origin and stores actual world coordinates of the sensor
readings. Just as in the 2D case, this grid is an approximation
of the sensor data set, because the actual laser readings in
a scan have varying points of origin. In order to downsample
and reject outliers, for each spherical grid cell we computethe
median range of the readings falling within it. This gives usa
single obstacle point per grid cell. For each spherical gridcell
we will refer to the cone from the grid origin to the obstacle
point as a virtual ray.

The first classification step is to determine ground points.
For this purpose we select a single slice of vertical angles
from the spherical grid (i.e. rays that all have the same bearing

(a) actual appearance of the vehicle

(b) the vehicle gives very few laser returns

(c) generated virtual scan after black object
detection

(d) successful tracking of the black vehicle
Fig. 8. Detecting black vehicles in 3D range scans. White points represent
raw Velodyne data. In (c) green lines represent the generated virtual scan. In
(d) the purple box denotes the estimated pose of the tracked vehicle.

angle). We cycle through the rays in the slice from the lowest
vertical angle to the highest. For three consecutive readingsA,
B, andC, the slope betweenAB andBC should be near zero
if all three points lie on the ground (see Fig. 6 for illustration).
If we normalizeAB andBC, their dot product should be close
to 1. Hence a simple thresholding of the dot product allows
us to classify ground readings and to obtain estimates of local
ground elevation. Thus one useful piece of information we can
obtain from 3D sensors is an estimate of ground elevation.

Using the elevation estimates we can classify the remaining
non-ground readings into low, medium and high obstacles,
out of which we are only interested in the medium ones (see
Fig. 7). It turns out that there can be medium height obstacles
that are still worth filtering out: birds, insects and occasional
readings from cat-eye reflectors. These obstacles are easy to

filter, because theBC vector tends to be very long (greater
than 1m), which is not the case for normal vertical obstacles
such as buildings and cars. After identifying the interesting
obstacles we simply project them on the 2D horizontal plane
to obtain a virtual scan.

Laser range finders are widely known to have difficulty
seeing black objects. Since these objects absorb light, the
sensor never gets a return. Clearly it is desirable to “see”
black obstacles for driving applications. Other sensors could be
used, but they all have their own drawbacks. Here we present
a method for detecting black objects in 3D laser data. Figure8
shows the returns obtained from a black car. The only readings
obtained are from the license plate and wheels of the vehicle,
all of which get filtered out as low obstacles. Instead of looking
at the little data that is present, we can detect the presenceof
a black obstacle by looking at the data that is absent. If no
readings are obtained along a range of vertical angles in a
specific direction, we can conclude that the space must be
occupied by a black obstacle. Otherwise the rays would have
hit some obstacle or the ground. To provide a conservative
estimate of the range to the black obstacle we place it at
the last reading obtained in the vertical angles just beforethe
absent readings. We note that this method works well as long
as the sensor is good at seeing the ground. For the Velodyne
sensor the range within which the ground returns are reliable is
about 25 - 30m, beyond this range the black obstacle detection
logic does not work.

B. Tracking results

The most challenging traffic situation at the Urban Grand
Challenge was presented on course A during the qualifying
event (Fig. 9(a) and Fig. 9(b)) . The test consisted of dense
human driven traffic in both directions on a course with
an outline resembling the Greek letterθ. The robots had
to merge repeatedly into the dense traffic. The merge was
performed using a left turn, so that the robots had to cross
one lane of traffic each time. In these conditions accurate
estimates of positions and velocities of the cars are very
useful for determining a gap in traffic large enough to perform
the merge safely. Cars passed in close proximity to each
other and to stationary obstacles (e.g. signs and guard rails)
providing plenty of opportunity for false associations. Partial
and complete occlusions happened frequently due to the traffic
density. Moreover these occlusions often happened near merge
points which complicated decision making.

During extensive testing the performance of our vehicle
tracking module has been very reliable and efficient (see
Fig. 4 and Fig. 9). It proved capable of handling complex
traffic situations such as the one presented on course A. The
computation time of our approach averages out at 25ms per
frame, which is faster than real time for most modern laser
range finders.

We also gathered empirical results of the tracking module
performance on data sets from several urban environments:
course A of the UGC, Stanford campus and a port town in
Alameda, CA. For each frame of data we counted how many
vehicles a human is able to identify in the laser range data.
The vehicles had to be within 50m of the ego-vehicle, on or
near the road, and moving with a speed of at least 5mph.
We summarize the tracker’s performance in Fig. 10. Note that
the maximum theoretically possible true positive rate is lower

Datasets Total Frames Total Vehicles Correctly Detected Falsely Detected Max TP (%) TP (%) FP (%)
Area A 1,577 5,911 5,676 205 97.8 96.02 3.35
Stanford 2,140 3,581 3,530 150 99.22 98.58 4.02
Alameda 1,531 901 879 0 98.22 97.56 0
Overall 5,248 10,393 10,085 355 98.33 97.04 3.3

Fig. 10. Tracker performance on data sets from three urban environments. Max TP is the theoretically maximum possible true positive percent for each data
set. TP and FP are the actual true positive and false positiverates attained by the algorithm.

(a) test conditions on course A at the UGC

(b) Junior at intersection on course A

(c) vehicle size estimation on Stanford campus
Fig. 9. Test conditions and results of tracking. Purple boxes represent tracked
vehicles. In (c) yellow lines represent the virtual scan.

than100% because three frames are required to detect a new
vehicle. On all three data sets the tracker performed very close
to the theoretical bound. Overall the true positive rate was97%
compared to the theoretical maximum of98%.

Several videos of vehicle detection and tracking using the
techniques presented in this paper are available at the website

http://cs.stanford.edu/∼anya/uc.html

V. CONCLUSIONS

We have presented the vehicle detection and tracking mod-
ule developed for Stanford’s autonomous driving robot Junior.
Tracking is performed from a high-speed moving platform and
relies on laser range finders for sensing. Our approach models
both dynamic and geometric properties of the tracked vehicles

and estimates them with a single Bayes filter per vehicle.
In contrast to prior art, the common data segmentation and
association steps are carried out as part of the filter itself. The
approach has proved reliable, efficient and capable of handling
challenging traffic situations, such as the ones presented at the
Urban Grand Challenge.

Clearly there is ample room for future work. The pre-
sented approach does not model pedestrians, bicyclists, or
motorcyclists, which is a prerequisite for driving in populated
areas. Another promising direction for future work is fusion
of different sensors, including laser, radar and vision.

ACKNOWLEDGMENT

This research has been conducted for the Stanford Racing
Team and would have been impossible without the whole
team’s efforts to build the hardware and software that makesup
the team’s robot Junior. The authors thank all team members
for their hard work. The Stanford Racing Team is indebted
to DARPA for creating the Urban Challenge, and for its
financial support under the Track A Program. Further, Stanford
University thanks its various sponsors. Special thanks also to
NASA Ames for permission to use their air field.

REFERENCES

[1] T. Zielke, M. M. Brauckmann, and W. von Seelen. Intensity and edge
based symmetry detection applied to car following. InECCV, Berlin,
Germany, 1992.

[2] E. Dickmanns. Vehicles capable of dynamic vision. InIJCAI, Nagoya,
Japan, 1997.

[3] F. Dellaert and C. Thorpe. Robust car tracking using kalman filtering
and bayesian templates. InConference on Intelligent Transportation
Systems, 1997.

[4] L. Zhao and C. Thorpe. Qualitative and quantitative car tracking from
a range image sequence. InComputer Vision and Pattern Recognition,
1998.

[5] D. Streller, K. Furstenberg, and K. Dietmayer. Vehicle and object
models for robust tracking in traffic scenes using laser rangeimages.
In Intelligent Transportation Systems, 2002.

[6] C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte.
Simultaneous localization, mapping and moving object tracking. The
International Journal of Robotics Research, Sep 2007; vol. 26: pp. 889-
916, 2007.

[7] S. Wender and K. Dietmayer. 3d vehicle detection using a laser scanner
and a video camera. In6th European Congress on ITS in Europe,
Aalborg, Denmark, 2007.

[8] D. Schulz, W. Burgard, D. Fox, and A. Cremers. Tracking multiple
moving targets with a mobile robot using particle filters and statistical
data association. InICRA, 2001.

[9] S. S. Blackman. Multiple hypothesis tracking for multipletarget
tracking. IEEE AE Systems Magazine, 2004.

[10] S. S̈arkkä, A. Vehtari, and J. Lampinen. Rao-blackwellized particle filter
for multiple target tracking.Inf. Fusion, 8(1), 2007.

[11] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-blackwellised
filtering for dynamic bayesian networks. InUAI, San Francisco, CA,
2000.

[12] M. Montemerlo. FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem with Unknown Data Association.
PhD thesis, Robotics Institute, Carnegie Mellon University, 2003.

[13] A. Petrovskaya and S. Thrun. Efficient techniques for dynamic vehicle
detection. InISER, Athens, Greece, 2008.

