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Abstract—Truly versatile robots operating in the real world ‘
have to be able to learn about objects and their properties ‘
autonomously, that is, without being provided with carefully
engineered training data. This paper presents an approach that
allows a robot to discover object classes in three-dimensional
range data in an unsupervised fashion and without a-priori
knowledge about the observed objects. Our approach builds on
Latent Dirichlet Allocation (LDA), a recently proposed prob-
abilistic method for discovering topics in text documents. We
discuss feature extraction, hypothesis generation, and statisal
modeling of objects in 3D range data as well as the novel
application of LDA to this domain. Our approach has been Fig. 1: Example of a scene observed with a laser range scanner
implemented and evaluated on real data of complex objects. mounted on a pan-tilt unit. Points with the same color resemble
Practical experiments demonstrate, that our approach is able objects belonging to the same class (best viewed in color).
to learn object class models autonomously that are consistent
with the true classi cations provided by a human. It furthermore  a signi cant amount of training data becomes infeasiblehwit

outperforms unsupervised method such as hierarchical clusteri@  jncreasing model complexity and larger sets of objects to
that operate on a distance metric. identify. Furthermore, in applications where the objeds t
distinguish are not known beforehand, a robot needs to build
) ] o its own model, which can then be used to classify the data.
Home environments, which are envisioned as one of the-l-he contribution of this paper is a novel approach for

key application areas for service robots, typically camtai discovering object classes from range data in an unsupgetrvis
variety of different objects. The ability to distinguishjebts fashion and for classifying observed objects in new scans
based on observations and to relate them to known Classe%(%ording to these classes. Thereby, the robot has no a-
objects therefore is important for autonomous service tbo riori knowledge about the objects it observes. Our approac
The identi cation of objects and their classes based oncseng erates on a 3D point cloud recorded with a laser range
daFa is a hard_problem dge to the varying appearances of Snner. We apply Latent Dirichlet Allocation (LDAP], a
objects belonging to speci ¢ classes_. In this paper, we idems method that has recently been introduced to seek for topics i
a robot that can observe a scene with a 3D laser range scanaet. ocumentggl. The approach models a distribution over
The goal is to perform feature distributions that characterize the classes ofabdj
unsupervised learning of a model for object classes, Compared to most popular unsupervised clustering methods
consistent classi cation of the observed objects, and  sych ask-means or hierarchical clustering, no explicit distance
correct classi cation of unseen objects belonging to on@etric is required. To describe the characteristics ofem@s
of the known object classes. belonging to objects, we utilize spin-images as local fiestu
Figure 1 depicts a typical point cloud of a scene considanedthat serve as input to the LDA. We show in practical experi-
this paper. It contains four people, a box, and a ballooa-likments on real data that a mobile robot following our approach
object. The individual colors of the 3D data points illugtra is able to identify similar objects in different scenes whdit
the corresponding object classes that we want our algoritiihe same time labeling dissimilar objects differently.
to infer.
An important distinction between different approaches to Il. RELATED WORK

object detection and recognition is the way the objects " The problem of classifying objects and their classes in 3D
classes are modeled. Models can be englneereq manua?,gyfge data has been studied intensively in the past. Several
!earned from a set of labeled training data (superv5edﬂga5uthors introduced features for 3D range data. One popular
ing) or learned from unlabeled data (unsupervised Iea)nmgree_form surface descriptor are spin-images, which haenb

Wh"? the _former two categories havg the advantgge t plied successfully to object recognition probleft8; 12;
detailed prior knowledge about the objects can be mcludti ~15. In this paper, we propose a variant of spin-images

easily, the effort for manually building the model or lalbei that—instead of storing point distributions of the surface—

F. Endres, C. Stachniss, and W. Burgard are with the Uniyeo§iFreiburg, sto_res the angles b?tween the Surfac_e normals O_f points,
Germany. C. Plagemann is with Stanford University, CA, USA. which we found to yield better results in our experiments.
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An alternative shape descriptor has been introducefl1B)

It relies on symbolic labels that are assigned to regiong Th

symbolic values, however, have to be learned from a labeled

training set beforehand. Stein and Medifit®] present a point ol * V |7
descriptor that, similar to our approach, also relies offiaser \f' [>»

orientations. However, it focuses on the surface normals in n
a speci c distance to the described point and models theiig. 2: Variant of spin-images used to compute a surface signature:
change with respect to the angle in the tangent plane of tthe 3D object structure (yellow circle) is rotated around the surface

; . ; ; rmal of a query point (large red point) and a grid model accumu-
query point. Additional 3D shape descriptors are descnb?aates the average angular distances between the surface normal at the

in [5] and[6]. . uery point and those of the points falling into the grid cells (small
A large amount of work has focused on supervised aed points).

gorithms that are trained to distinguish objects or object
classes based on a labeled set of training data. For examdeglated to ours, to the best of our knowledge the algorithm
Anguelov et al. [1] and Triebelet al. [20] use supervised described in this paper is the rst to apply LDA on laser range
learning to classify objects and associative Markov neltwéo data and which addresses the specic requirements of this
improve the results of the clustering by explicitly considg domain.
relations between the class predictions. In a different@aogh,
Triebel et al. [21] use spin-images as surface descripto
and combine nearest neighbor classi cation with asso@ati As most approaches to object detection, identi cation, and
Markov networks to overcome limitations of the individuatlustering, we operate on local features computed from the
methods. Another approach using probabilistic technigunes input data. Our primary focus lies on the descriptiorsbépe
histogram matching has been presented by Heizeal. [10]. as this is the predominant feature captured in 3D range data.
It requires a complete model of the object to be recognizedpwever, real-world objects belonging to the same classoflo n
which is an assumption typically not ful lled when workingno necessarily have the same shape and vice versa. Humans, for
3D scans recorded with a laser range nder. Ruhekal.[17] example, have a signi cant variability in shape. To dealfwit
proposed an approach to reconstructing full 3D models tifis problem, we model classes of objects as distributidns o
objects by registering several partial views. The work afes local shape features.
on range images from which small patches are selected baselth the next sections, we rst describe our local feature used
on a region of interest detector. to represent the characteristics of surfaces and after than
In addition to the methods that operate on 3D data, muekidress the unsupervised learning problem to estimate the
research has also focused on image data as input. A comnagstributions over local features.
approach to locate objects in images is the sliding window ) )
method[4; 7]. Lampertet al.[16] proposed a new frameworkA- Representation and Data Pre-processing
that allows to ef ciently nd the optimal bounding box withub Throughout this work, we assume our input data to be a
applying the classi cation algorithm explicitly to all psible point cloud of 3D points. Such a point cloud can be obtained
boxes. Another prominent supervised detector is the fasith a 2D laser range nder mounted on a pan-tilt unit, a
detector presented by Viola and Jor2g]. It computes Haar- standard setting in robotics to acquire 3D range data. An
like features and applies AdaBoost to learn a classi er. example point cloud recorded with this setup is shown in the
In the domain of unsupervised classi cation of text docmotivating example in Figure 1 on the rst page of this paper.
uments, several models that greatly surpass mere countind\s in nearly all real world settings, the acquired data is
of words have been proposed. These include probabilistiffected by noise and it is incomplete due to perspective
latent semantic indexing (PLSI)11] and Latent Dirichlet occlusions. The segmentation of range scans into a set of
Allocation [2], which both use the co-occurrence of wordsbjects and background structure is not the key focus of
in a probabilistic framework to group words into topics. Inthis work. We therefore assume a ground plane as well as
the past, LDA has also been applied successfully to imagells that can be easily extracted and assume the objects to
data. In contrast to text documeri@, images often contain be spatially disconnected. This allows us to apply a spatial
data of many different categories. Wang and Grim§28, clustering algorithm to create segments containing onlg on
therefore, rst perform a segmentation before applying LDAobject.
Bosch et al. [3] used PLSI for unsupervised discovery of )
object distributions in image data. As shown [g], LDA B. Local Shape Descriptors
supersedes PLSI and it has been argued that the latter caRor characterizing the local shape of an object at a query
be seen as a special case of LDA, using a uniform prior apdint, we propose to use a novel variant of spin-imades.
maximum a posteriori estimation for topic selection. Fatm Spin-images can be seen as small raster images that aredalign
Schiele[7] propose the sliding window approach on a grid afo a point such that the upwards pointing vector of the raster
edge orientations to evaluate topic probabilities on sisbsE image is the surface normal of the point. The image is then
the whole image. While the general approach of these papeisually rotated around the surface normal, “collectintye
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neighboring points it intersects. To account for the dédferes
in data density caused by the distance between sensor ar
object, the spin-images are normalized. °

To actually compute a normal for each data point, we |
compute a PCA using all neighboring points in a local region
of 10cm. Then, the direction of the eigenvector correspamdi
to the smallest eigenvalue provides a comparably stable bu *
smoothed estimate of the surface normal.

We have developed a variant of spin-images that does no.
count the points “collected” by the pixels of the raster imagFig. 3: Three Dirichlet diStr!bUtiOﬂS. On the left for the parameter
Instead, we compute the average angle between the norma;fgtrﬂf;r_alefllzazl?_%?'l'” the middle fora = 13;6,3g and on the right
the query point for which the spin-image is created and the © =~ 77 g
normals of all collected points. See .Figure 2_for an illutstra is_ uniform. One can think ofa; 1) for a; 2 N>° as the
The average between the normals is then discretized tonobtgy, er of observations of the statdhe Dirichlet distribution
a dlsgrete feafture space, as requweq in the LDA apprpach. &85 be calculated as
we will show in our experiments, this variant of spin-images

provides better results, since they contain more inforomati Gak,a K .,
about the shape of the object. fX) = = =2-0%x" 75 (2)
Oy i1
IV. PROBABILISTIC TOPICMODELS FOROBJECT SHAPE Normalization

After segmenting the scene into a nite set of scan segments ) i
and transforming the raw 3D input data to the discrete featd#Neré) is the Gamma function and where the elements of
space, the task is to group similar segments to classes nfdpVve to be positive and sum up to one.
to learn a model for these classes. Moreover, we aim atConsider the following example: let there be three object
solving the clustering and modeling problems simultangousclasses “human”, “box”, and “chair” with a Dirichlet prior
to achieve a better overall model. Inspired by previous veork Parameterized bya = f2:2;2g. This prior assigns the same
topic modeling in text documents, we build on Latent Dirathl Probability to all classes and hence results irsyanmetric
Allocation for the unsupervised discovery of object classirichlet distribution. A 3D Dirichlet distributiorDir(a) can
from feature statistics. be visualized by projecting the the manifold whéra; = 1 to

Following this model, a multinomial distribution is usedhe 2D plane, as depicted in the left plot of Figure 3. Here the
to model the distribution of discrete features in an objedfird variable is given implicitly byaz= 1 a; ap. Every
class. Analogously, another multinomial distribution ised corner of the depicted triangle represents the distribstio
to model the mixture of object classes which contribute to'#here only the respective class occurs and the center point
scan segment. In other words, we assume a generative motffiresents the uniform distribution over all classes. Now
in which (i) segments generate mixtures of classes and @gnsider an observation of one human, four boxes, and a chair
classes generate distributions of features. By adding the observation counts to the elements pthe

Starting from a prior distribution about these latent (i.ePosterior distribution becomeSir (f 5;8;5g) which is shown
hidden) mixtures, we update our belief according to tH@ the middle plot in Figure 3. The same result would of course
observed features. To do this ef ciently, we express ouerpri °ccur when calculating the posterior using Eq. (1).
P(q) as a distribution that is conjugate to the observation However choosing the values @f; larger than 1 favors
likelihood P(yj q). P(q) being a conjugate distribution todistributions that represent mixtures of classes, i.e. xgeet

P(yj g) means that the classes to occur together. To express a prior belief that
. either one or the other dominates we need to choose values

P(gjy) = R P(y_J DP(q) (1) smaller than 1 for allaj. The shape of the distribution then

P(yj q)P(q) dg changes in a way that it has a “valley” in the middle of the

is in the same family aB(q) itself. For multinomial distribu- Simplex and peaks at the corners. This is depicted in the righ
tions, the conjugate prior is the Dirichlet distributionhish Plot in Figure 3. In our setting, where a Dirichlet distrilmut

we explain in the following. is used to model the distribution of object classes, suchica pr
N S would correspond to the proposition that objects are tyiyica
A. The Dirichlet Distribution assigned to one (or only a few) classes.

The Dirichlet distribution is a distribution over multivate The calculation of thexpected probability distributioaver
probability distributions, i.e., a distribution assiggia prob- the states and can be performed easily basedaorThe
ability density to every possible multivariate distrilarti For expected probability fok; is given by

statesx;, the Dirichlet distribution is parameterized by a vector Ex] = - ai . ©)
a=faj;::1;akg. If a;= 1 for alli, the Dirichlet distribution aiodio



B. Latent Dirichlet Allocation Unfortunately, the partition functio®(w) is not known and
Latent Dirichlet allocation is a fully generative probagtic ©annot be computed directly because it involVe'$ terms,

model for semantic clustering of discrete data, which waéhere T is the number of topics andll is the number of
developed by Bleét al. [2]. In LDA, the input data is assumed €ature occurrences. _ o

to be organized in a number of discrete data sets—thesd® COMMON approach to approximate a probability distri-
correspond to scan segments in our application. The scdffion. for which the partition functiorP(w) is unknown,
segments contain a set of discretized features (a spin imgé/arkov chain Monte Carlo (MCMC) sampling. MCMC
for every 3D point). Obviously, a feature can have multipl@PProximates the target distributiof(z j w) by randomly
occurrencessince different 3D data points might have thdnitializing the states of the variables—here the topic grssi
same spin image. Often, the full set of data (from multipl&'€Nts. Subsequently, it samples new states using a Monte

scans) is referred to as “corpus”. A key feature of LDA is thagarlo transition function leading to the target distrilouti

it does not require a distance metric between features as mpaerefore, the target distribution has to be the equiliriu

approaches to unsupervised clustering do. Instead, LDA u§i(1;.stribution of the transition function. The transitionnfttion

the co-occurrence of features in scan segments to assign tiRP€YS the Markov property, i.e., it is independent of altesta
probabilistically to classes—calledpicsin this context. but the last. In our approach, we use Gibbs sampling as the

Being a generative probabilistic model, the basic assignptitransition function where the new state (the topic assigrjne

made in LDA is that the scan segments are generated by ri}f-8ach feature occurrence is sampled successively.

dom processes. Each random process represents an individu®'PPS sampling requires groposal distributionto generate

topic. In this work, we distinguish topics using the indeand "€W states. Therefore, the_ne?(t section describes how &nobt

scan segments are indexed diyA random process generate@N @ppropriate proposal distribution for our problem.

the features in the segments by sampling them from its o

speci ¢ discrete probability distributiofi()) over the features. T -

A segment can be created by one or more topics, each topic-,r.he proposal probability dlstr|but|on_over the possmlplqzq

having associated a distinct probability distribution otee @SSignments of a fgature occurrence is calculated condio

features. on the current assignments of the other feature occurrences
To represent the mixture of topics in a segmehta A new topic assignment is then sampled from this proposal

multinomial distribution g@ is used. For each feature indistribution.

the segment, the generating topic is selected by samplind™©r €stimatingP(zj w), we successively sample from the
from q@. The topic mixtureq® itself is drawn from a distribution in the numerator on the right hand side of Eq. (4

Dirichlet distribution once for every segment in the corpudh® topic assignmerg for each feature occurrence given
The Dirichlet distribution represents the prior belief abo the topics of all other features. The distribution over igids

the topic mixtures that occur in the corpus, i.e., whether tfior Samplingz is given by

') Computing the Proposal Distribution for Gibbs Sampling

segments are generated by single topics or from a mixture of likelihgpd ofw; prigr of z
. . . . z ?r {z (i| {
many topics. We express the prior belief with respect to the P(WjZ = jiz 1w ) PGz = jjz )
topic distribution using the Dirichlet parameter vector P(z=jjz ;w)= - 4 = ), — Nz 1) . g
Grifths and Steyvers[9] extended LDA by additionally &j=1P(Wijz = J;z itw i)P(zjz i)

specifying a Dirichlet priorDir(b) on the conditional dis- | Eq. (5),w ; denotes the set withoutw; andz ; the cor-

tributions f(J) over the features. This prior is useful in OUrresponding assignment vector. We can express the comdlition

application since it enables us to model a preference fgistributions in the nominator of Eq. (5) by integrating pye

selecting few characteristic features of a topic. and g, wheref denotes the feature distribution of all topics

and g denotes the topic distribution for each scan segment.
The likelihood ofw; in Eq. (5) depends on the probability
In this section, we describe how to nd the assignmenif the distribution of topicj over features, so we need to

of topics to 3D data points in range scans following thiategrate over all these distributiori$)):

derivation of Grifths and Steyverd9]. Given the corpus _ _

w = fwq;Wo;::whg as the set of all feature occurrences, where P(WiZ: Wjz= [z 3w i)=

C. Learning the Model

each occurrencav; belongs to exactly one scan segment. r(wi =wjz= j;f(j)? r(f(j)jz W i?df(l') (6)
We are then looking for the most likely topic assignment {? {z —
vector z = fz;2;:::2,g for our dataw. Here, eacly is an £ posterior off ()

index referring to topicj that generateahi. Hence, we seek  gjnce the Dirichlet distribution is conjugate to the multi-
to estimate the probablht_y d|str|but|oﬁ>(21 w)..Base.d ON nomials (to whichf ) belongs to), this posterior can be
P(zjw), we can then obtain the most likely topic assignmeni, o ted easily from the prior and the observations by agdin
for each 3D data point. Using Bayes rule, we know that o gpservations to the respective elements of the paramete
P(wj2)P(2) vector b of the prior (see also Section IV-A). As a result, we

P(w) 4 obtain a Dirichlet posterior with parameter vector+ n("‘i’)

P(zjw)= .
i



where the elements 01(",V) are the number of occurrences oE. Unsupervised Topic Discovery and Classi cation of Newly
featurew assigned to topig by the assignment vectar ;. Observed Objects

The rst term on the right hand side of Eq. (6) is the proba- Ths section brie y summarizes how the components pre-
bility for featurew under the multinomiaf () and the second gented so far are integrated to perform the unsupervised
term denotes the probability of that multinomial. Therefordiscovery of object classes and the classi cation when new
solving this integral results in computing the expectat®n gpservations are made.
fi which is the probability ofw under f (). According First of all, we preprocess the data according to Section Il
to Eq. (3), this expectation can be easily computed. Theto extract the scan segments which correspond to objects in

probability that an occurrenos; is featurew is the scene and for which we aim to learn a topic model. For
_ ™. + b, each data point in a scan segment, we compute our feature,
Pwi=wjz=j;z ;wj)= E(f\fvl)): % (7) a variant of the spin-image, according to Section IlI-B to
awon™ i+ byo describe the surfaces characteristics.

In the same way, we integrate over the multinomial distribu- For the discovery of topics, we then compute the feature
tions over topicgy, to nd the prior of z from Eq. (5). Withd distributions f of the object classes as well as the topic
being the index of the scan segment to whighbelongs, we mixtures g for the scan segments using MCMC as described
can compute the probability of a topic assignment for featutn the previous section. The learned distributiansienote a

occurrencen; as: probabilistic assignment of objects to topics.
N ) @) @) Class inference, that is, the classication of objects con-
Pz=jjzi)= (z “ g '? r(i{lzi}') dg™ (8) tained in new scenes can be achieved using the feature

distribution f . In this casef andq can be used to compute
the proposal distribution directly and are not updated.
Let n(di‘.)- be the number of features in the scan segngnt Note that the approach presented here does not automati-

that are assigned to topic Then, analogous to Eq. (7), thecally determine the number of object classes. This is simila
expected value Ot’j(di) can be calculated by addimﬁd{.)j to to other unsupervised techniques suchkameans clustering

the elements of the parameter vectiof the prior: or EM-based Gau_ssian mixture models in which the_number
) of object classes is assumed to be known. We experimentally
N+ aj ) evaluated settings in which the number of topics was higher o
8.on® + a0 lower than the number of manually assigned classes in tlee dat
I ) set. Our observation was that a higher number of topics leads

qj(di) posterior ofg(d)

P=jjz )= Eg®) =
i
Combining the results of Eq. (7) and (9) in Eq. (5), Wy the detection of shape classes such as “corner”, “edge”, 0

obtain theproposal distributionfor the sampling of; as “at surface” and that the objects are modeled as mixtures of
Pz =i ) n("iv?j + by, n(dii')j ¥ a . those.
Z=jjz ;W) M d ) | N o X
é’\mpn(vi"?j + by & 00D o+ ajo F. The In uence of the Dirichlet Prioréd and b

5] ~ ~ )

Eq. (10) is the proposal distribution used in Gibbs samplina(‘gs-rtvr‘:o hypetr[i[)artak:meters 2 ?:ndb 2R Qe_?_ﬂ to t(;e prO\t/r;ded :

to obtain next generation of assignments. . .s inpu fo he presente f agproacl - 'hey edne € prior
After a random initialization of the Markov chain, a ne\/\}j'Strl utions for the mixture of object classes in a dat

state is generated by drawing the topic for each featufr%r the mixture of features in an object class respectively.

occurrence successively from the proposal distributioonF S brie y discussed in Section IV-A, choosirg larger than
these samples, the distributiogsand f can be estimated by one favors the occurrence of many topics in each scan segment

using the sampled topic assignmeats while lower values result in less topics per scan segment.

Note that in our work, we restrict the Dirichlet priors to be(?_'m'_'g“% the lOWEr tfhe hyperpr?rametbr for ;he D'fr'cglft
symmetric. This implies that all topics and all featuresehthe f'St” l]ft'on over the egturez, the Stgf’“ge” € preiezanc o
same initial prior occurrence probability. As a result, weyo [€Wer features per topic and unambiguous ones. Due to the

have to specify only value for the elements of the parame{é‘?gmemaﬂon in.the preprocessing step, we assume that ther
vectorsa andb which we denote bya andb. This leads to: &€ only few topics per scan segment and thus a low value for
the hyperparameter is favored in this setting. Bdnolds: On

nﬁW) +b (d) nﬁd) +a 1 the one hand different objects can yield the same individual
8 AW Wh g 2009 +7Ta (11) features (yet in distinct distributions). On the other hawe
W 70 expect features to be related to speci c topics.

W)

£

i i
whereT is the number of topics an\ the number of features. From this intuitions about the Dirichlet parameters, a high

To summarize, we explained how to compute the propogarformance can be expected if both parameters are selected
distribution in Eq. (10) used in Gibbs sampling during MCMCbetween zero and one. This could be con rmed experimentally
The obtained samples can then be used to estimate #ma the results are given in Section V-D, where we analyze

distributions f and g. Due to our restriction to symmetricthe in uence of the hyperparameters on manually labeled dat
priors, only two parametersi{b 2 R) have to be specied. sets.
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Fig. 4: Example point cloud segments of Corpus-A (box, balloon)
and Corpus-B (box, balloon, human, swivel chair, chair) Fig. 7: Visualization of the confusion matrix of classi cation based
on matching spin-image histograms.
V. EXPERIMENTAL EVALUATION
enes. Here, the points are color-coded according to their

evaluate our approach on recorded data. All results aredbaS&*SS assi.gnrrr:ents. détlelemznts %f C_or}pus—ﬁ cl)nbtfre IefF ang
on scans of real scenes acquired with an ActivMedia pione%Prpus'B in the middle and on the right). The labels assigne

robot equipped with a SICK LMS range nder mounted of® € indvidual points are taken from a sample of the pos-
a Schunk pant-tilt unit. No simulator was involved in thderior distributionP(zj w) as generated during the clustering
evaluation. process. It can be seen that the point labels are almostggrfe

gonsistent within each object segment and, thus, the marimu

The goal of the evaluation is to answer the followin lihood cl ) . bi
guestions: (i) Are the proposed local shape features in c fkelihoo | class as&gnment per gegment_ls unamoiguous.
p!n addition to that, Figure 6 gives a visual impression of

junction with the topic model approach expressive enou X X
to represent real-world objects? (ii) Is the approach atilée topics assigned by our approach to the 82 scan segments

to discover object classes from unlabeled point clouds aRfCOrPUs-B. The labels in this diagram show the true object
are these classi cations consistent with human-providegsc ¢/ass- Each color in the diagram denotes one topic and the

labels? (iii) How does our LDA-based approach compare fglios of colors denote for each object segment the class
conceptually simpler approaches for unsupervised clnster assignment weight. As the diagram shows, except of one,chair

(iv) How sensitive is the proposed algorithm w.r.t to theicko &/ Objects are grouped correctly when using the maximum

of parameters for the feature extraction step as well aseof t#€linood assignment. _ _
Dirichlet priors? We furthermore analyzed the runtime requirements of our

approach, disregarding the time for pre-processing and the

A. Test Data computation of the spin images. In Corpus-B (82 objects from

For the experimental evaluation, we prepared and r@9 different 3D scans, 300000 spin image in total), it took
arranged indoor scenes Containing ve different Objecte&p less than 20s to learn the tOpiC distributions via MCMC and
balloons, boxes, humans, and two types of chairs. In totf®, classify the objects. Thus, the computation time per 3D
we recorded 51 fu” |aser-range scans Containing 121 Objﬁan is around 500 ms which is faster than the time needed to
instances. The rst part of this data set is term@drpus-A record a 3D scan.
It contains 31 object instances of low geometric complexit
(different boxes and balloons). The second and larger p
comprising of 82 object instanceorpus-B additionally In order to compare our LDA-based approach to an un-
contains complex and variable shapes of chairs and humaswpervised clustering technique, we implemented hieieath
See Figure 4 for examples of such object segments represemiestering (HC) using the similarity between spin-imags- hi
as 3D point clouds. tograms as the distance metric. In this implementation, we

The data was acquired and pre-processed as describeduitd a feature histogram for each object segment by cogntin
Section 1lI-A. Some dif culties, inherent in 3D data rece the occurrences of the individual spin-images from thetéhi
in this way, should be pointed out: Only one side of an objespin-image dictionary (see. Section IlI-B). To compare two
can be recorded and non-convex objects typically occludean segments, we rst normalize their histograms to sum
themselves partially. Objects were scanned from diffeveaw up to one over all bins. Among the popular measures for
points and thus different parts are observed. Differenéatsj comparing histograms, namely histogram intersecfib@l,
of the same class were scanned (different humans, differert distance, and the Kullback Leibler divergence (KL-D),
chairs, etc.). Metal parts, such as the legs of chairs, tafee histogram intersection appeared to provide the best gesult
laser beams and, thus, are invisible to the sensor. Fiadlg) in our domain. This is due to the fact that tleé distance
shape features extracted from the scans of humans are higiig the KL-D are heavily in uenced by features with few
diverse compared to the simpler objects. or no occurrences—an effect that can be observed frequently

Figure 5 shows typical classication results achieved b our data sets. The quantitative results comparing LDA to
our algorithm when applied to entire scans in three examphC are given in Table I. As can be seen for the simpler

In this section, we present experiments carried out

Clustering by Matching Shape Histograms



Fig. 5: Example classi cation results on test scans from Corpus-A (left) ang@eB (middle and right). The detected object classes are

colored according to the LDA-assigned shape model.
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Fig. 6: Resulting topic mixtureg for 82 segments of Corpus-B computed via LDA (the labels were notiged to the system).
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Setting Of CoerS-A HC gives acceptable reSUItS bUt |$ st ss0 Evaluation of Correctly Classified Document Percentages per Spin Image Type
! . Type 1
outperformed by LDA. In the more complex setting of Corpus 3% = Typez ‘
Figure 7 visualizes the similarity matrix between sca 0 50 60 70 80 90 100
segments obtained using histogram intersection. Due fo the o ) o ) i
rather uniform shape, balloons can be well distinguishethfr F19- 8: Classi cation using standard spin-image features (“Type 1

B, however, HC was not able to nd a good clustering of ths §2oo
scene. In multiple runs using different setups, we found th g*°
Percent Correct Classified
ther obiects. Obiects with a mor mplex sh how Vshown in blue) generally labels less documents correctly than classi-
othér objects. Jects a more complex shape, NOWeVELy;qn upon the features we proposed (“Type 27, yellow).

(L 100
the difference is statistically signi cant. 50 .|I||||||||||
20 30 4
are confused easily. This indicates that approaches wgrkin
only based on such a distance metric are likely operate less

accurately in more complex scenes. In contrast to that, LDA _Average Correct Classifications ;o

considers distributions of features and their dependeranel 8 0-10m 18 %°

therefore perform substantially better. go20m % N ] 38
N 030m 1 60 %

C. Parameters of the Spin-Image Features HC ‘éo,mm 150

In this experiment, we analyzed the difference of the cluste (%0-50 mpg o .

ing performance when the regular spin-images (referrecsto a 273 4 6 9 13719 28 42 63 94

i . Discretization Resolution
“Type 1”) and our variant (referred to as “Type 2”) is used. We

also investigated the in uence of the parameters used t@tere Average Correct Classifications

the features. These parameters are (i) the support disteace g 0.10m %
the size of the spinning image, (ii) the grid resolution, &iiyl §o020m 80
the discretization of the stored values. A 030m 0 g
To compare the two alternative types of spin images, wdDA £ 00 gg
collected statistics measuring the LDA clustering perfance & som 40
on a labeled test set, integrating over the three feature pa- o 273 4 6 O 13 19 28 42 63 o1 —30

rameters. That way, we analyzed 10780 different parameter Discretization Resolution

settings—each for regular spin-images and for our variagy o Classi cation accuracy on Corpus-B for different discretiza-
Figure 8 shows the results of this experiment as a histogragibn resolutions and respect to support distances for HC (top) and
The higher the bars on the right hand side of the histograen, thDA (bottom).

better the results. As can be seen, our approach outperforms - _
regular spin-images. In addition to that, we computed the clustering performance

_ o of our approach and HC for a wide variety of feature param-
TABLE I: Summary of the classi cation results on the test data se ters using Corpus-B. Figure 9 shows the results for HC and
The percentages give the average correct classi cations achieve

d .
hierarchical clustering (HC) and the proposed model based on LDAPA- Again, our approach clearly outperforms HC. The broad
spread of high classi cation rates over the range of pararset
Data set || No. of scenes| No. of segments| HC | LDA

demonstrates that the results presented in the previotisrsec
Corpus-A 12 31 94.84% | 99.89% .
Corpus-B 39 82 71.19% | 90.38%  Were not caused by selecting feature parameters that were
suboptimal for HC.




Average Correct Classifications grouped objects. We furthermore demonstrate that our ap-

proach clearly outperforms unsupervised clustering aggres

0.800
90 . . . .
0.400 o such as hierarchical clustering. Not only does LDA achieve
% higher classi cation accuracy throughout the entire pagten
020 range, it is also less sensitive to the choice of parameters.
%-O 100 N
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