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Abstract— Accurate terrain estimation is critical for au-
tonomous offroad navigation. Reconstruction of a 3D surface
allows rough and hilly ground to be represented, yielding faster
driving and better planning and control. However, data from
a 3D sensor samples the terrain unevenly, quickly becoming
sparse at longer ranges and containing large voids because
of occlusions and inclines. The proposed approach uses online
kernel-based learning to estimate a continuous surface over the
area of interest while providing upper and lower bounds on
that surface. Unlike other approaches, visibility information is
exploited to constrain the terrain surface and increase precision,
and an efficient gradient-based optimization allows for realtime
implementation.

I. INTRODUCTION

Terrain estimation is a critical component of mobile robot
navigation, but accurate reconstruction of rough, hilly, and
cluttered terrain is very difficult. The distribution of data points
from a 3D sensor on a mobile robot decays rapidly away from
the scanner, and there may be large ground regions that return
no points at all. This variable resolution is inevitable as it is
due to discrete sampling, use of static scanning patterns, and
application to terrain whose geometry is unknown a priori.
Indeed, if the sampling density is dense enough, such as in
scanned 3D objects (Figure 1a) or regular enough, such as
on smooth roads (Figure 1b), then 3D reconstruction offers
less challenge. In rough outdoor terrain, however, complex
natural geometry, uneven ground, and inclines all exacerbate
the problem and make accurate terrain estimation difficult
(Figure 1c).

Variable distributions make terrain estimation very chal-
lenging, and many autonomous systems truncate their terrain
model to relatively short ranges or make do with a flat, 2D cost
map for this reason [8, 7]. Our approach exploits the visibility
aspect of laser scanning to improve the terrain estimate even
in sparse regions. Data points from a ladar sensor must be
visible to the sensor; i.e., the rays connecting sensor source
to data points must lie above the terrain surface. Thus, the
elevation function can be constrained by both the ladar points,
which must lie on the surface, and the ladar rays, which must
lie above the surface. This can be thought of as a space
carving approach, since it uses visibility information. The new
visibility constraints are incorporated in an reproducing kernel
Hilbert space (RKHS) framework rather than a voxel-based
approach, yielding a continuous surface estimate with high
accuracy that smooths noisy data.
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Fig. 1. Evenly sampled 3D objects (left) and laser scans on smooth roadways
(center) do not offer the same reconstruction challenges as scans of rough
terrain (right), which often have complex structure and very variable resolution
that decays rapidly with distance.

Many approaches simplify the problem considerably by rep-
resenting the terrain as a flat cost map, but this is insufficient
for modeling offroad terrain because hills and rough ground
are not accurately represented, forcing the vehicle to drive at
very low speeds and make conservative decisions. However,
an explicit 3D model of the world, based on points and
triangulated meshes, is infeasible: this sort of representation is
very expensive, and mesh interpolation over complex terrain is
non-trivial. Elevation maps provide a simplification of the full
3D model, but cannot represent overhanging structures and are
limited to a fixed resolution by a discretized grid. If the terrain
is represented by a continuous elevation function, however,
then the effect of the ground on the vehicle can be more
precisely predicted, allowing for faster autonomous driving
and longer range planning. Modeling the terrain as a 3D
surface is difficult because of the sparse, uneven distribution
of 3D sensor data. Current methods use interpolation to create
a continuous mesh surface, but this can be very difficult if the
terrain is complex and the data is sparse. In our approach,
the 3D surface is modeled as a elevation function over a
2D domain. This surface is estimated using kernel functions,
which allow non-linear, complex solutions.

In order to learn the elevation function, we propose a kernel-
based approach that models the surface as a hypothesis in a
reproducing kernel Hilbert space (RKHS). Using a kernel for-
mulation provides a principled means of optimizing a surface
function that can produce a highly nonlinear solution. In order
to pose the problem as an RKHS regression constrained by
visibility information as well as surface points, we incorporate
the space-carving constraint into the mathematical framework



and give a rule for functional gradient descent optimization,
yielding an efficient realtime program. The proposed method
is evaluated using LADAR datasets of rough offroad terrain.

II. RELATED WORK

Kernel-based surface estimation has been adopted by the
graphics community in recent years for modeling 3D scanned
objects [19, 25, 23]. These approaches fit radial basis functions
to scanned surface points, yielding an embedding function
f . The zero-set f−1(0) implicitly defines the surface. The
advantages of using radial basis functions to model the surface
of a scanned 3D object are that noise and small holes can
be dealt with smoothly, and multi-object interactions can be
efficiently computed. However, these approaches cannot be
directly applied to terrain data gathered from laser rangefinders
mounted on a mobile robot. Such data is dense and precise at
close range, but quickly degrades at longer ranges, where the
surface is sparsely and unevenly sampled. Given such data, an
implicit surface function is ill-constrained and often results in
a degenerate solution.

Explicit elevation maps are a standard approach for mod-
eling rough terrain for mobile robotics. There are many
strategies for building these maps, from mesh algorithms to
interpolation to statistical methods [5, 2, 14].

Burgard et al., following on the research done by Paciorek
and Schervish and Higdon et al. [13, 6], have successfully
applied Gaussian process regression to the problem of rough
terrain modeling, although their approach is computationally
expensive and has not been applied to large datasets [16, 15,
12]. Burgard’s research adapts Gaussian process regression
for the task of mobile robot terrain estimation by considering
issues such as computational constraints, iterative adaptation,
and accurate modeling of local discontinuity. Our approach
uses a kernel-based methodology as well, but we propose an
iterative algorithm that exploits both ray and point information
to fit basis functions to solve a system of constraints.

Using ray constraints, or visibility information, to improve
a 3D surface model has rarely been proposed in mobile
robotics. Space carving algorithms, originally suggested by
Kutulakos and Seitz [10], use visibility information to produce
a voxel model from calibrated images of a scene (a survey
of space-carving approach can be found in [21]), but this
strategy has not been adopted by the ladar community. Another
approach that exploited the visibility constraints was the locus
method of Kweon et al. [11]. These approaches produced
discrete maps, rather than continuous elevation functions, and
relied on unwieldy heuristics to ensure that the map had
desirable properties such as a watertight surface. In contrast,
the approach we propose exploits visibility information while
learning a continuous, bounded surface.

In addition, recent publications from several different re-
search groups have advanced the field of 2 and 3D map
construction in significant ways. In particular, Yguel et al.
proposed the use of sparse wavelets to model a 3D environ-
ment from range data [24], and Fournier et al. use an octree
representation to efficiently represent a 3D world model [3].

Fig. 2. Visualization in 2D of the point- and ray-based constraints on a
terrain elevation function. The estimated surface must intersect the data points
(“sensor hits”) and lie below the visibility rays from the sensor. If there is a
violation of the ray constraint, a support kernel function is added at the most
violating point x.

III. KERNEL-BASED REGRESSION FOR TERRAIN
ESTIMATION

Given a set of 3D points from a sensor mounted on a mobile
robot, we seek to estimate a continuous elevation function
f(x, y) = z that both intersects the data points and does
not exceed the height of the rays connecting sensor and data
points. A 2D example, in which the elevation map intersects
the data points but violates the ray constraint, is shown in
Figure 2. The dataset S consists of n tuples, each with a
3D point (xi, yi, zi) and a corresponding 3D sensor location
(sxi, syi, szi), which are summarized as a point xi = [xi yi],
a height zi, and a line segment, or ray, connecting source and
point, which we denote by si. The projection of si on the XY
plane is denoted ŝi, and the function gi(·) is used to denote
the height of si at a given point (gi = ∞ at every location
that does not intersect ŝi). Given this data, we learn a function
that meets both a point-based constraint (3) and a ray-based
constraint (4):

Given S = {(x1, z1, s1), (x2, z2, s2), ..., (xn, zn, sn)} (1)
find f : R2 → R (2)
s.t. f(xi) = zi ∀ xi, (3)

f(x) ≤ gi(x) ∀ si,x. (4)

In order to solve this problem for complex surfaces and
datasets, we use a kernel formulation whereby distances be-
tween points can be computed in a highly non-linear, high-
dimensional feature space without actually computing the
coordinates of the data points in that feature space, since any
continuous, symmetric, positive semi-definite kernel function
k(xi,xj) can be expressed as a dot product in a higher
dimensional space [1]. Thus the height function f(x, y) is
a hypothesis in RKHS and can be expressed by a kernel
expansion:

f(x, y) = f(x) =
n∑

i=1

αik(x,xi), (5)

where k(·, ·) is a radial basis function and α are learned coeffi-
cients. For efficiency, the kernel function k(·, ·) is a compactly



Fig. 3. The Wu φ2,1 function (6), shown with σ of 0.5, 1, and 2.

supported kernel suggested by Wu [18] (see Figure 3):

k(xi,xj) = k(ρ(xi,xj)) = (1− ρ)4+(4 + 16ρ+ 12ρ2 + 3ρ3),
(6)

where

ρ(xi,xj) =
||xi − xj ||

σ
, (7)

and σ is the lengthscale of the basis function. This kernel
function was chosen over other possible radial basis functions
because of the recommendations of Schaback [18] and the
empirical success of this kernel for surface estimation in [25].

A. Optimization by Subgradient Descent

To find f ∈ H that meets both point-based constraints
and ray-based constraints, we form the following convex
optimization problem:

L(f,S) = λ||f ||2H +
1
N

N∑
i=1

r(xi, zi, gi, f), (8)

where r(f, gi,xi, zi) penalizes both point and ray constraints.
Instead of optimizing an infinite set of linear constraints, i.e.,
the constraint that each ray must lie above the surface, we
optimize a single non-linear constraint and use a max function
to find the most offending point in the projection of each ray.
The cost function r(f, gi,xi, zi) is thus:

r(·) =
1
2

max(0,max
x

(f(x)−gi(x)))2 +
1
2
(f(xi)−zi)2. (9)

To solve the optimization problem above, which contains
linear and non-linear constraints (because of the max opera-
tion), we use a functional gradient descent approach that relies
on subgradients to tackle non-differentiable problems. Using
a stochastic gradient method allows fast online performance
which is critical for real-world application. Online subgradient
kernel methods have been successfully applied to several
problems [17].

The subgradient method iteratively computes a gradient-
like vector which is defined using a tangent to the lower
bound at a particular point of the non-differentiable func-
tion. There is a continuum of subgradients at each point of
non-differentiability, but only one subgradient, which is the
gradient, at differentiable points. A detailed examination of
the subgradient method can be found in the original work
by Shor [20]. Online gradient descent with regret bounds for
subgradient methods was developed by Zinkevich [26].

To learn using functional gradient descent, the function is
updated with the negative of the (sub)gradient stepped by a

learning rate η:

ft+1 = ft − ηt
∂L(ft, gt,xt, zt)

∂f
. (10)

Since f is a hypothesis in RKHS,

∂L(f(xt), gt,xt, zt)
∂f

= r′(f(xt), gt,xt, zt)k(xt,x) + λf.

(11)
We rely on the kernel expansion of f (Eq. 5) to derive
an efficient stochastic update, following the example of [9].
Following this stochastic approach, basis functions are added
iteratively, and at the same time the weights of previously
added basis functions are decayed. The number and location
of the basis functions is not identical to the training points, and
the final number of basis functions may be greater or fewer
than the sample size. Thus, at time t, a new basis function
may be added at location xt with coefficient

αt = −ηtr
′(f(xt), gt,xt, zt), (12)

and the existing coefficients are decayed:

αi = (1− ηtλ)αi for i < t. (13)

For our optimization problem, the gradient of r has 2 com-
ponents, for the different constraints in the loss function, so
up to 2 basis functions are added with different coefficients.
If f(xi) 6= zi, then the added basis function is centered at
xi, with coefficient αt = −ηt(f(xi − zi). The second basis
function is added at the most violating location along ray si,
if one exists. We compute x = argmaxx(f(x) − gi(x)) by
line search on ray si, and if x > 0 then a basis function is
added at x with a coefficient αt+1 = −ηt+1(f(x) − gi(x).
The algorithm is also described in Alg. 1.

The method that has been described in this section uses
a fixed lengthscale, σ. A fixed lengthscale with a compactly
supported kernel function does not give global support. Many
solutions have been proposed for this problem in the graphics
community, where radial basis functions are used to estimate
3D surfaces and compactly supported kernels are chosen for
efficiency [19, 25, 21]. Most commonly, backfitting, a general
algorithm that can fit any additive model, is used to decrease
the lengthscale incrementally [4]. The training data is parti-
tioned, and each subset is sequentially fit toward the residual
of the previous partition using a decaying lengthscale [25]. The
same strategy can be employed for our space carving terrain
reconstruction algorithm. In fact, there is no need for the
training data to be partitioned in our approach: the lengthscale
may be decayed on each epoch of gradient-based learning over
the full dataset.

B. Uncertainty Bounds

Uncertainty attribution is very valuable for a mobile robot
in rough terrain. A terrain estimate coupled with an uncer-
tainty bound is much more powerful than a terrain estimate
alone, because the planning and behavior of the robot will
be effected. Velocity may be modified, exploration behaviors
changed, and safety measures enacted based on the uncertainty
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Fig. 4. An upper bound on the terrain gives a lower bound on the slope
of the terrain under certain circumstances. For an interior chord to the upper
bound (AB) whose maximum point is coincident with the maximum point
on the terrain surface under the chord (at A in the illustration), the slope of
the chord is a tight lower bound on the actual slope of the underlying terrain.

attribute. In some circumstances, the upper bound of a region
induces a tight lower bound on the slope of the actual terrain,
which can be used to identify non-traversable steep slopes,
even if there are no data points in that region. In other words,
the slope of an interior chord of the upper bound is a lower
bound on the slope of the actual terrain, if the highest elevation
of the chord is equal to the local maxima of the terrain under
the chord. Thus lethal regions may be located entirely on basis
of the upper bound, as long as the upper bound is pinned to the
actual surface by at least one data point, an insight described
by [8] and provable by application of the mean value theorem.
This scenario is depicted in Figure 4: the slope of chord AB
is a lower bound on the maximum slope of the underlying
terrain, because at point A the chord and the terrain are both
at local maxima.

Upper and lower bounds can be learned using the kernel-
based terrain estimation method that has been proposed. At
time 0, the surface estimate is initialized by a positive or
negative offset corresponding to the globally maximum or
globally minimum expected elevation (in our experiments,
+5 meters and -5 meters were the “priors” used to initialize
the upper and lower bounds). The subsequent learning is
identical to the original algorithm: ray and point constraints
are applied to fit the surface by training a kernel function with
stochastic gradient-based learning. The outcome is an upper
bound surface and a lower bound surface. The three learning
processes can be run in parallel on a distributed system.

C. Online Algorithm and Implementation

The algorithm considers each data point on each epoch,
although basis functions may not be added if there are no
point or ray violations (see Algorithm 1). The learning rate η
is reduced at each update step: ηt ∝ t−

1
2 , and regularization

is applied after each learning step. The learning process is
halted if the average gradient at time t is below a threshold
or if the error rate on a validation set increases, resulting
in convergence after a small number of epochs. Since the
algorithm is stochastic and iterative in nature, data can be
continually added to the training set and the learning will
smoothly adapt to the additional information. This is a valuable
characteristic for a autonomous navigation system to have,
since new data is continuously arriving from sensors.

Another effect of the stochastic, iterative nature of the pro-
posed method is that the learning process can be viewed as an
anytime algorithm which can be run whenever computational
resources and data are available and which does not require the
algorithm to terminate in order to access and use the terrain
estimate. The upper and lower bounds can be computed in
parallel with the surface estimate and thus fit into the anytime
algorithm formulation. This quality is particularly beneficial
for realtime navigation systems that constantly modulate their
velocity and trajectory based not only on an estimate of the
terrain ahead but also on the uncertainty of that estimate.

Input: Training set S (points (Nx3) and sources (Nx3))
Output: Surface f : R2 → R
while Not Converged do

foreach Point xi do
Calculate f(xi);
if f(xi) 6= zi then

Add basis xt = xi;
With weight αt = −ηt(f(xi − zi);
incr t;

end
Calculate x = argmaxx(f(x)− gi(x));
if x > 0 then

Add basis xt = x;
With weight αt = −ηt(f(x)− gi(x);
incr t;

end
foreach Basis xj , j < t do

Decay weight αj = (1− λtηt)αj ;
end

end
end

Algorithm 1: Online algorithm using subgradients. The first
test (f(xi) 6= zi) tests for violation of the point constraint,
and the second test detects violation of the ray constraint.

One of the benefits of the proposed approach is that it can
deliver an accurate, continuous, bounded terrain reconstruction
in realtime. The choice of a gradient-based optimization strat-
egy, plus a compact kernel function that allows fast nearest
neighbor searching (through use of a kd-tree) to perform
the kernel expansion, permit this level of efficiency. The
experiments described in this paper were conducted on a 2.2
GHz computer using a non-optimized C++ implementation.
The timing results are promising; datasets with 10,000 points
converge within a second, and datasets with over 1 million
points converge in a few seconds. From this preliminary
evaluation, we conclude that deployment on a full realtime
navigation system would be feasible.

IV. EVALUATION AND ANALYSIS

Tests of the proposed method were conducted in order to
evaluate the effectiveness of the approach on both artificial
and natural datasets, and to demonstrate the convergence
properties. Mean squared error is calculated by comparing the
elevation of a set of test points with the predicted surface



elevation:

MSE(Stest) = Etest =
1
p

∑
i=1..p

(f(xi)− zi)2, (14)

where Stest is a set of p test points xi with known elevations
zi.

A. Evaluation: Sinusoid Data (2D)

A synthetic dataset was used to develop and test the
proposed method. Data points were sampled irregularly over
a sine function, using an exponentially decaying point density
and eliminating points that were not visible from a source
point, yielding 400 samples (see Figure 5a). The samples were
divided into training and test sets, and testing showed that
the algorithm converged and that the space-carving kernels
improved the surface estimate. Figure 5b shows the surface and
bounds after the first learning epoch and 5c shows the surface
after convergence. In addition, a single point was added to the
dataset during learning to demonstrate the online capability of
this method (Figure 5d).

B. Evaluation: Offroad Natural Terrain Data

The approach described in the previous section has been
implemented in Matlab and tested on an outdoor scene using
data from the 360◦ HDL-64 ladar scanner, manufactured by
Velodyne and installed on Boss, the Carnegie Mellon entry in
the 2008 DARPA Urban Challenge [22]. The left and right
images in Figure 6 show a slightly narrowed view of one
dataset. Note that the data is very dense within a few meters
of the sensor, but quickly degenerates to a sparse, uneven
distribution. The terrain in this dataset is extremely rugged,
composed of uneven piles of rubble.

The results of reconstructing the terrain are shown in
Figure 7, and 2D cross sections of the bounded estimate
are shown in Figure 8. The surface was estimated using a
training set of 10,000 points (shown as a point cloud in
Figure7d), and another set of 5000 points was partitioned for
testing. The algorithm was also tested with over one million
points to demonstrate computational efficiency. The stochastic
algorithm converged after 8 epochs, and a total of 21,392 basis
functions were used. To compute the upper and lower bounds,
the same training data was learned with an initial surface
height of +5 and -5 meters at time 0. The terrain estimate
is shown in Figure 7a, the lower bound is shown in 7b, and
the upper bound is shown in 7c. The surfaces are similar where
data is dense, but the upper and lower bound pull away as the
data becomes sparse at the edges of the region shown, and
also in the front center of the region, where the robot was
occluding the ground.

Looking at the results in 2D sections, as in Figure 8, allows
a graphical depiction of the upper and lower bounds, the esti-
mate, and the training points. In this figure, four cross sections
of the surfaces shown in Figure 7 are shown, corresponding to
the bisections overlaid on the training points in Figure 9. The
blue regions in the 2D plots show the uncertainty between the
estimated surface and the upper bound on the surface, and the

a.

b.

c.

d.

Fig. 5. a: An synthetic dataset containing irregularly sampled points on a
2D sine function. The density of points decreases exponentially with distance
from the sensor. Points not visible to a sensor were removed. b: The estimated
surface, plus low and high bounds, after 2 learning epochs. c: The estimated
surface, plus low and high bounds, after convergence (12 epochs). Note the
effect of ray constraints on the upper bound. d: A single point (shown in
blue) was added interactively to demonstrate the ability of the algorithm to
adapt to new data online.

Fig. 6. Left and right views of one of 5 rough terrain datasets used for
evaluation of the algorithm.
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Fig. 7. 3 estimated surfaces, using elevation priors of 0 meters (a.), 5 meters
(b.), and -5 meters (c.). Using high and low elevation priors gives uncertainty
bounds on the estimated surface. The training set point cloud is shown in d.

Fig. 8. Various cross sections of the estimated surface from Figure 7 are
shown. Upper and lower bounds for the surface are found by combining the
surface estimates obtained with different initial elevations. The location of the
cross sections in the dataset are shown in Figure 9.



Fig. 9. The locations of the cross sections shown in Figure 8.

TABLE I
ERROR RATES ON FIVE OFFROAD DATASETS.

Dataset No Visibility Info With Visibility Info
1 0.059 0.014
2 0.045 0.025
3 0.120 0.035
4 0.098 0.096
5 0.061 0.065

pink regions show the negative uncertainty. The upper bound
is often much tighter than the lower bound because of the ray
constraints that give additional constraint on the upper bound,
but do not impact the lower bound. In areas where no data at
all is given over an area larger than the maximum lengthscale
of the kernel (5 meters, in this case), the surface estimate will
be at 0 and the upper bound and lower bound will be at 5
and -5 meters respectively, since 0, 5, and -5 are the elevation
priors set for the surface and the bounds.

C. Contribution of Visibility Information

To evaluate the contribution of the ray constraints gained
from the laser visibility information, five offroad datasets are
used. For each dataset, a surface is estimated with and without
ray constraints and the mean squared error of a withheld
test set is calculated. Ideally, the test set would be uniformly
sampled on a grid across the terrain. Instead the test samples
are from the same distribution as the training set, which
effectively masks the benefit of the ray constraints by not
testing in the sparsest areas where the ray constraints have
the greatest effect.

Despite this bias, the results given in Table I and Figure 10
confirm the benefit of using visibility information. Using the
ray constraints helps substantially on all datasets but one, in
which the margin between the two results is very slim. The
datasets that are not aided as much by the ray constraints are
both flatter terrain, where the potential gain from the visibility
information is less because the data is evenly distributed. The
convergence of the online algorithms for each data set is
plotted in Figure 11.

Inclines are terrain types that are smooth yet problematic
for LADAR systems, typically producing very sparse returns
because of the high angle of incidence. However, due to that
same grazing angle, the ray information is extremely helpful.
To elucidate the point, an examination of the surfaces learned
for a downhill slope with and without visibility constraints is

Fig. 10. The performance of the method on a rough terrain dataset. The mean
squared error, computed on the test set after convergence of the algorithm, is
recorded for increasing sample sizes. The use of ray constraints decreases the
error rate at every sample size. Final error rates are given for other datasets
(see Table I). Unfortunately, the test data is from the same distribution as the
training set, so the benefit of using visibility information is somewhat masked.

Fig. 11. This graph shows the stable convergence of each natural terrain
dataset over 6 epochs.

given. In Figure 12a., the slope is shown (the incline is 30
meters long with a downward slope of roughly 5◦). In 12b.,
the distribution of training data over the test terrain is shown.
The data density is very high at the top of the hill, directly in
front of the vehicle, and on the embankment at the side of the
incline, but almost non-existent toward the bottom of the hill.
12c. and 12d. show the terrain estimation with and without
visibility information. The incline surface is poorly estimated
unless the visibility information is used.

V. CONCLUSION

Reconstruction of rough terrain using 3D sensor data is
a tough problem because of the highly variable distribution
of points in the region of interest. Our proposed approach
uses visibility information to carve the surface and produces
not only a terrain estimate but also uncertainty bounds. We
formulate the learning problem as an RKHS optimization and
derive a subgradient-based stochastic solution, which gives
computational efficiency, allows data to be added online, and
makes the approach an anytime algorithm. The evaluation,
on both synthetic and natural data, clearly demonstrates the
effectiveness of the approach and the utility of the space
carving visibility information.

The next phase of this project will incorporate color imagery
into the terrain estimation algorithm. The data can be fused
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Fig. 12. The laser hits become very sparse if the terrain inclines downward, as for this sloped driveway (a, b). If the visibility information is not used, the
surface is incorrectly estimated (c). When the visibility information is used to constrain the surface, the estimate is far better on the sloping drive (d).

using calibration, and the higher resolution, longer range color
data can be used to increase both the precision and the range
of the terrain model. We also look forward to developing a
realtime implementation of the algorithm and expanding the
evaluation of the method to include extensive data input over
multiple timesteps.
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