
POMDPs for Robotic Tasks with Mixed Observability

Sylvie C.W. Ong Shao Wei Png David Hsu Wee Sun Lee
Department of Computer Science, National University of Singapore

Singapore 117590, Singapore

Abstract—Partially observable Markov decision processes
(POMDPs) provide a principled mathematical framework for
motion planning of autonomous robots in uncertain and dy-
namic environments. They have been successfully applied to
various robotic tasks, but a major challenge is to scale up
POMDP algorithms for more complex robotic systems. Robotic
systems often have mixed observability: even when a robot’s
state is not fully observable, some components of the state
may still be fully observable. Exploiting this, we use a factored
model to represent separately the fully and partially observable
components of a robot’s state and derive a compact lower-
dimensional representation of its belief space. We then use this
factored representation in conjunction with a point-based algo-
rithm to compute approximate POMDP solutions. Separating
fully and partially observable state components using a factored
model opens up several opportunities to improve the efficiency
of point-based POMDP algorithms. Experiments show that on
standard test problems, our new algorithm is many times faster
than a leading point-based POMDP algorithm.

I. INTRODUCTION
Planning under uncertainty is a critical ability for au-

tonomous robots operating in uncontrolled environments,
such as homes or offices. In robot motion planning, uncer-
tainty arises from two main sources: a robot’s action and
its perception. If the effect of a robot’s action is uncer-
tain, but its state is fully observable, then Markov decision
processes (MDPs) provide an adequate model for planning.
MDPs with a large number of states can often be solved
efficiently (see, e.g., [2]). When a robot’s state is not fully
observable, maybe due to noisy sensors, partially observable
Markov decision processes (POMDPs) become necessary,
and solving POMDPs is much more difficult. Despite the
impressive progress of point-based POMDP algorithms in
recent years [9], [11], [16], [19], [20], solving POMDPs
with a large number of states remains a challenge. It is,
however, important to note that robotic systems often have
mixed observability: even when a robot’s state is not fully
observable, some components of the state may still be fully
observable. For example, consider a mobile robot equipped
with an accurate compass, but not a geographic positioning
system (GPS). Its orientation is fully observable, though
its position may only be partially observable. We refer to
such problems as mixed observability MDPs (MOMDPs), a
special class of POMDPs. In this work, we separate the fully
and partially observable components of the state through
a factored model and show that the new representation
drastically improves the speed of POMDP planning, leading
to a much faster algorithm for robotic systems with mixed
observability.

In a POMDP, a robot’s state is not fully observable. Thus
we model it as a belief, which is a probability distribution
over all possible robot states. The set of all beliefs form the
belief space B. The concept of belief space is similar to that
of configuration space, except that each point in B represents
a probability distribution over robot states rather than a
single robot configuration or state. Intuitively, the difficulty
of solving POMDPs is due to the “curse of dimensionality”:
in a POMDP with discrete states, the belief space B has
dimensionality equal to |S|, the number of robot states.
The size of B thus grows exponentially with |S|. Consider,
for example, the navigation problem for an autonomous
underwater vehicle (AUV). The state of the robot vehicle
consists of its 3-D position and orientation. Suppose that after
discretization, the robot may assume any of 100 possible
positions on a 10× 10 grid in the horizontal plane, 5 depth
levels, and 24 orientations. The resulting belief space is
12,000-dimensional!
Now if the robot has an accurate pressure sensor and a

gyroscope, we may reasonably assume that the depth level
and the orientation are known exactly and fully observable,
and only maintain a belief on the robot’s uncertain horizontal
position. In this case, the belief space becomes a union
of 120 disjoint 100-dimensional subspaces. Each subspace
corresponds to an exact depth level, an exact orientation,
and beliefs on the uncertain horizontal positions. These
100-dimensional subspaces are still large, but a substantial
reduction from the original 12,000-dimensional space.
The main idea of our approach is to exploit full observabil-

ity whenever possible to gain computational efficiency. We
separate the fully and partially observable state components
using a factored model and represent explicitly the disjoint
belief subspaces in a MOMDP so that all operations can be
performed in these lower-dimensional subspaces.
The observability of a robot’s state is closely related to

sensor limitations. Two common types of sensor limitations
are addressed in this work. In the first case, some components
of a robot’s state are sensed accurately and considered fully
observable. Our approach handles this by separating the state
components with high sensing precision from the rest. The
second case is more subtle. Some sensors have bounded
errors, but are not accurate enough to allow any assumption
of fully observable state components a priori. Nevertheless
we show that a robot with such sensors can be modeled as a
MOMDP by (re)parameterizing the robot’s state space. The
reparameterization technique enables a much broader class
of planning problems to benefit from our approach.

We tested our algorithm on three distinct robotic tasks
with large state spaces. The results show that it significantly
outperforms a leading point-based POMDP algorithm.

II. BACKGROUND
A. POMDPs
A POMDP models an agent taking a sequence of actions

under uncertainty to achieve a goal. Formally a discrete
POMDP with an infinite horizon is specified as a tuple
(S,A,O, T , Z,R, γ), where S is a set of states, A is a set
of actions, and O is a set of observations.
In each time step, the agent lies in some state s ∈ S.

It takes some action a ∈ A and moves from s to a new
state s′. Due to the uncertainty in action, the end state s′ is
modeled as a conditional probability function T (s, a, s′) =
p(s′|s, a), which gives the probability that the agent lies in s′,
after taking action a in state s. The agent then makes an
observation to gather information on its own state. Due to
the uncertainty in observation, the observation result o ∈
O is again modeled as a conditional probability function
Z(s, a, o) = p(o|s, a). See Fig. 1 for an illustration.
To elicit desirable agent behavior, we define a suitable

reward function R(s, a). In each time step, the agent receives
a reward R(s, a) if it takes action a in state s. The agent’s
goal is to maximize its expected total reward by choosing a
suitable sequence of actions. For infinite-horizon POMDPs,
the sequence of actions has infinite length. We specify a
discount factor γ ∈ [0, 1) so that the total reward is finite
and the problem is well defined. In this case, the expected
total reward is E [

∑∞
t=0 γtR(st, at)], where st and at denote

the agent’s state and action at time t, respectively.
For a POMDP, planning means computing an optimal

policy that maximizes the expected total reward. Normally,
a policy is a mapping from the agent’s state to an action. It
tells the agent what action to take in each state. However, in
a POMDP, the agent’s state is partially observable and not
known exactly. We rely on the concept of a belief, which is a
probability distribution over S. A POMDP policy π:B → A
maps a belief b ∈ B to a prescribed action a ∈ A.
A policy π induces a value function V (b) that specifies the

expected total reward of executing policy π starting from b.
It is known that V ∗, the value function for the optimal policy
π∗, can be approximated arbitrarily closely by a convex,
piecewise-linear function

V (b) = maxα∈Γ(α · b), (1)

where Γ is a finite set of vectors called α-vectors, b is the
discrete vector representation of a belief, and α · b denotes
the inner product of an α-vector and b. Each α-vector is
associated with an action. The policy can be executed by
evaluating (1) to find the action corresponding to the best α-
vector at the current belief. So a policy can be represented
by a value function V (b) consisting of a set Γ of α-
vectors. Policy computation, which, in this case, involves
the construction of Γ, is usually performed offline.
Given a policy, represented as a value function V (b), the

control of the agent’s actions, also called policy execution,

is performed online in real time. It consists of two steps
executed repeatedly. The first step is action selection. If the
agent’s current belief is b, it finds the action a that maximizes
V (b) by evaluating (1). The second step is belief estimation.
After the agent takes an action a and receives an observation
o, its new belief b′ is given by

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑

s∈S
T (s, a, s′)b(s), (2)

where η is a normalizing constant. The process then repeats.

B. Related Work
POMDPs are a powerful framework for planning under

uncertainty [8], [17]. It has a solid mathematical foundation
and wide applicability. Its main disadvantage is high com-
putational complexity [10]. As mentioned in Section I, the
belief space B used for POMDP policy computation grows
exponentially with the number of states that an agent has.
The resulting curse of dimensionality is one major obstacle to
efficient solution of POMDPs. There are several approaches
to overcome the difficulty, including sampling B, building
factored models of B [1], or building lower-dimensional
approximations of B [13], [14]. In recent years, point-
based algorithms, which are based on the idea of sampling,
have made impressive progress in computing approximate
solutions to large POMDPs [9], [11], [16], [19], [20]. They
have been successfully applied to a variety of non-trivial
robotic tasks, including coastal navigation, grasping, target
tracking, and exploration [5], [11], [12], [19]. In some cases,
POMDPs with hundreds of states have been solved in a
matter of seconds (see, e.g., [7], [16], [19]).
Our work aims at overcoming the difficulty of high-

dimensional belief spaces and further scaling up point-based
POMDP algorithms for realistic robotic tasks. The main idea
is to use a factored model to represent separately the fully
and partially observable components of an agent’s state and
derive a compact lower-dimensional representation of B. We
then use this new representation in conjunction with a point-
based algorithm to compute approximate POMDP solutions.
A related idea has been used in medical therapy planning [4].

III. MIXED OBSERVABILITY MDPS
A. The MOMDP Model
In the standard POMDP model, the state lumps together

multiple components. Consider again our AUV navigation
example from Section I. The robot’s state consists of its hor-
izontal position, depth, and orientation. In contrast, a factored
POMDP model separates the multiple state components and
represents each as a distinct state variable. If three variables
p, d, and θ represent the AUV’s horizontal position, depth,
and orientation, respectively, then the state space is a cross
product of three subspaces: S = Sp×Sd×Sθ. This allows for
a more structured and compact representation of transition,
observation, and reward functions in a POMDP.
We propose to represent a robotic system with mixed

observability as a factored POMDP, specifically, a factored
POMDP model with mixed state variables. We call our

st-1

ot-1

at-1

st

ot

yt-1

ot-1

at-1

yt

ot

xt-1 xt

st-1 st

Fig. 1. The standard POMDP model (left) and the MOMDP model (right).
A MOMDP state s is factored into two variables: s = (x, y), where x is
fully observable and y is partially observable.

model a MOMDP. In a MOMDP, the fully observable state
components are represented as a single state variable x,
while the partially observable components are represented as
another state variable y. Thus (x, y) specifies the complete
system state, and the state space is factored as S = X × Y ,
where X is the space of all possible values for x and Y is
the space of all possible values for y. In our AUV example,
x represents the depth and the orientation (d, θ), and y
represents the horizontal position p.
Formally a MOMDP model is specified as a tuple

(X ,Y ,A,O, TX , TY , Z,R, γ). The conditional probability
function TX (x, y, a, x′) = p(x′|x, y, a) gives the probability
that the fully observable state variable has value x′ if the
robot takes action a in state (x, y), and TY(x, y, a, x′, y′) =
p(y′|x, y, a, x′) gives the probability that the partially ob-
servable state variable has value y′ if the robot takes action
a in state (x, y) and the fully observable state variable has
value x′. Compared with the standard POMDP model, the
MOMDP model uses a factored state-space representation
X × Y , with the corresponding probabilistic state-transition
functions TX and TY . All other aspects remain the same. See
Fig. 1 for a comparison.∗
So far, the changes introduced by the MOMDP model

seem mostly notational. The computational advantages be-
come apparent when we consider the belief space B. Since
the state variable x is fully observable and known exactly, we
only need to maintain a belief bY , a probability distribution
on the state variable y. Any belief b ∈ B on the complete
system state s = (x, y) is then represented as (x, bY). Let
BY denote the space of all beliefs on y. We now associate
with each value x of the fully observable state variable a
belief space for y: BY(x) = {(x, bY) | bY ∈ BY}. BY(x) is
a subspace in B, and B is a union of these subspaces: B =⋃

x∈X BY(x). Observe that while B has |X ||Y| dimensions,
where |X | and |Y| are the number of states in X and
Y , each BY(x) has only |Y| dimensions. Effectively we
represent the high-dimensional space B as a union of lower-
dimensional subspaces. When the uncertainty in a system is
small, specifically, when |Y| is small, the MOMDP model
leads to dramatic improvement in computational efficiency,
due to the reduced dimensionality of the space.
Now consider how we would represent and execute a

∗A MOMDP can be regarded as an instance of dynamic Bayesian
network (DBN). Following the DBN methodology, we could factor x or
y further, but this may lead to difficulty in value function representation.

MOMDP policy. As mentioned in Section II-A, a POMDP
policy can be represented as a value function V (b) =
maxα∈Γ(α · b), where Γ is a set of α-vectors. In a MOMDP,
a belief is given by (x, bY), and the belief space B is union
of subspaces BY(x) for x ∈ X . Correspondingly, a MOMDP
value function V (x, bY) is represented as a collection of α-
vector sets: {ΓY(x) | x ∈ X}, where for each x, ΓY(x) is a
set of α-vectors defined over BY(x). To evaluate V (x, bY),
we first find the right α-vector set ΓY(x) using the x value
and then find the maximum α-vector from the set:

V (x, bY) = maxα∈ΓY(x)(α · bY). (3)

In general, any value function V (b) = maxα∈Γ(α · b) can be
represented in this new form, as stated in the theorem below.
Theorem 1: Let B = ⋃

x∈X BY(x) be the belief space of a
MOMDP with state space X×Y . If V (b) = maxα∈Γ(α·b) is
any value function over B in the standard POMDP form, then
V (b) is equivalent to a MOMDP value function V ′(x, bY) =
maxα∈ΓY (x)(α·bY) such that for any b = (x, bY) with b ∈ B,
x ∈ X , and bY ∈ BY(x), V (b) = V ′(x, bY).†.
Geometrically, each α-vector set ΓY(x) represents a re-

striction of the POMDP value function V (b) to the subspace
BY(x): Vx(bY) = maxα∈ΓY (x)(α · bY). In a MOMDP, we
compute only these lower-dimensional restrictions {Vx(bY) |
x ∈ X}, because B is simply a union of subspaces BY(x)
for x ∈ X .
A comparison of (1) and (3) also indicates that (3) often

results in faster policy execution, because action selection
can be performed more efficiently. First, each α-vector in
ΓY(x) has length |Y|, while each α-vector in Γ has length
|X ||Y|. Furthermore, in a MOMDP value function, the α-
vectors are partitioned into groups according to the value
of x. We only need to calculate the maximum over ΓY(x),
which is potentially much smaller than Γ in size.
In summary, by factoring out the fully and partially

observable state variables, a MOMDP model reveals the
internal structure of the belief space as a union of lower-
dimensional subspaces. We want to exploit this structure and
perform all operations on beliefs and value functions in these
lower-dimensional subspaces rather than the original belief
space. Before we describe the details of our algorithm, let us
first look at how MOMDPs can be used to handle uncertainty
commonly encountered in robotic systems.

B. Modeling Robotic Tasks with MOMDPs
Sensor limitations are a major source of uncertainty in

robotic systems and are closely related to observability. If a
robot’s state consists of several components, some are fully
observable, possibly due to accurate sensing, but others are
not. This is a natural case for modeling with MOMDPs. All
fully observable components are grouped together and mod-
eled by the variable x. The other components are modeled
by the variable y.

†Due to space limitations, the proofs of all the theorems are provided
in the full version of the paper, which will be available on-line at http:
//motion.comp.nus.edu.sg/papers/rss09.pdf

Sometimes, however, a system does not appear to have
mixed observability: none of the sensed state components is
fully observable. Is it still possible to model it as a MOMDP?
The answer is yes under certain conditions, despite the
absence of obvious fully observable state components.
1) Pseudo Full Observability: All sensors are ultimately

limited in resolution. It is task-dependent to decide whether
the sensor resolution is accurate enough to make the sensed
state component fully observable. For example, a robot
searches for an unseen target and has small uncertainty on
its own position. It is reasonable to assume that the robot
position is fully observable, as the uncertainty on the robot
position is small compared to that on the target position and
the robot’s behavior depends mostly on the latter. By treating
the robot position as fully observable, we can take advantage
of the MOMDP model for faster policy computation and
execution. Note, however, that treating the unseen target’s
position as fully observable is not reasonable and unlikely to
lead to a useful policy.
For increased robustness, we can actually execute a com-

puted MOMDP policy on the corresponding POMDP model,
which does not assume any fully observable state variables.
The POMDP treats both state variables x and y as partially
observable and maintains a belief b over them. To account
for the additional uncertainty on x in the POMDP, our idea
is to define a new value function VP(b) by averaging over
the value function V (x, bY), which represents the computed
MOMDP policy. For this, we first calculate a belief bX on
x by marginalizing out y: bX (x) =

∑
y∈Y b(x, y). We then

calculate the belief bY|x on y, conditioned on the x value:
bY|x(y) = b(x, y)/bX (x). Now the new value function

VP(b) =
∑

x∈X
bX (x)V (x, bY|x)

can be used to generate a policy for the POMDP through
one-step look-ahead search.
Let V ∗(b) and V ∗(x, bY) be respectively the optimal value

functions for a POMDP and the corresponding MOMDP
under the assumption of fully observable state variables. It
can be shown that the value function VP(b) constructed from
V ∗(x, bY) is an upper bound on V ∗(b). In this sense, the
MOMDP model is an approximation to the POMDP model.
The MOMDP model is less accurate due to the additional
assumption, but has substantial computational advantages.
2) Reparameterized Full Observability: Sometimes sen-

sors are not accurate enough to justify an assumption of full
observability for any sensed component. However, we can
still model such a system as a MOMDP by reparameterizing
the state space S. For example, in a navigation task, the posi-
tion sensor is noisy, but accurate enough to localize the robot
to a small region around the actual position. Define h(o),
the preimage of an observation o, to be the set of states that
have non-zero probability of emitting o. We say that a system
has bounded uncertainty if the preimage of its observation
is always a small subset of S: maxo∈O(|h(o)|/|S|) < c
for some constant c � 1. We show below that any system
modeled as a POMDP, can be equivalently constructed as an

MOMDP by reparameterizing S , even if none of the sensed
state components are fully observable.
We first illustrate the reparameterization technique on

the robot navigation task, modeled as a standard POMDP
(S,A,O, T , Z, R, γ). The state s ∈ S indicates the robot
position, which is partially observable, due to inaccurate
sensing, and o ∈ O is the observed robot position. Our goal
is to reparameterize S so that s = (x, y), where x is fully
observable and y is partially observable. We choose x to
be o, the observed robot position, and define y as the offset
of the actual position from the observed position. Using this
parameterization, we can construct the new state-transition
functions TX and TY from the old state-transition function
T and observation function Z:

TX (x, y, a, x′) =
∑

σ∈S
T (s, a, σ)Z(σ, a, x′), (4)

TY(x, y, a, x′, y′) = T (s, a, s′)Z(s′, a, x′)/TX (x, y, a, x′),(5)

where s = (x, y) and s′ = (x′, y′). The correctness of this
construction can be verified by applying the definitions and
the basic probability rules. Similarly, we construct the new
observation function ZM and the new reward function RM:
ZM(x, y, a, o) = 1 if and only if x = o, and RM(x, y, a) =
R(s, a), where s = (x, y).
In the general case, we use x to index the preimage of

each observation o ∈ O and use y to indicate the exact state
within the preimage. The resulting reparameterized MOMDP
has the following property:
Theorem 2: The POMDP (S,A,O, T , Z, R, γ) and the

reparameterized MOMDP (X ,Y ,A,O, TX , TY , ZM, RM, γ)
with X = O are equivalent: Let b and b′ be the beliefs
reached after an arbitrary sequence of actions and observa-
tions, a1, o1, · · · , at, ot, by the POMDP and MOMDP models
respectively. Then b and b′ represent the same belief in the
original POMDP state space. The probability of observation
given the history, p(ot|a1, o1, · · · , at), and the expected total
reward for any sequence of actions and observations, is the
same in both models. Consequently, any policy has the same
expected reward for both models.
The reparameterization can be performed on any POMDP.

The resulting MOMDP brings computational advantages if
|Y| is small. This happens when a system has bounded uncer-
tainty with a small constant c, meaning that the observations
are informative. Furthermore, we can relax the condition
of bounded uncertainty and require that the preimages are
bounded for some, rather than all state components. The
reparameterization is beneficial in this general case as well.

IV. COMPUTING MOMDP POLICIES
A. Overview
For policy computation, we combine the MOMDP model

with a point-based POMDP algorithm. Point-based algo-
rithms have been highly successful in computing approx-
imate solutions to large POMDPs. Their key idea is to
sample a set of points from B and use it as an approximate
representation of B, rather than represent B exactly. They

Algorithm 1 Point-based MOMDP policy computation.
1: Initialize the α-vectors, Γ = {ΓY(x) | x ∈ X},
representing the lower bound V on the optimal value
function V ∗. Initialize the upper bound V on V ∗.

2: Insert the initial belief point (x0, bY0) as the root of the
tree TR.

3: repeat
4: SAMPLE(TR, Γ).
5: Choose a subset of nodes from TR. For each chosen

node (x, bY), BACKUP(TR,Γ, (x, bY)).
6: PRUNE(TR, Γ).
7: until termination conditions are satisfied.
8: return Γ.

also maintain a set of α-vectors as an approximation to the
optimal value function. The various point-based algorithms
differ mainly in their strategies for sampling B and construct-
ing α-vectors.
The MOMDP model enables us to treat a high-dimensional

belief space as a union of lower-dimensional subspaces. We
represent explicitly these subspaces and compute only the
restriction of the value function to these subspaces. The
idea is general and is independent of the strategies for
belief point sampling or α-vector construction. Hence the
MOMDP model can be used in conjunction with any of
the existing point-based algorithms. However, to make the
presentation concrete, we describe our approach based on
the SARSOP algorithm [9], one of the leading point-based
POMDP solvers.
Our point-based MOMDP algorithm is based on value iter-

ation [15]. Exploiting the fact that the optimal value function
V ∗ must satisfy the Bellman equation, value iteration starts
with an initial approximation to V ∗ and performs backup
operations on the approximation by iterating on the Bellman
equation until the iteration converges.
In our algorithm, we sample incrementally a set of points

from B and maintain a set of α-vectors, which represents
a piecewise-linear lower-bound approximation V to V ∗. To
improve the approximation V , we perform backup operations
on the α-vectors at the sampled points. A backup operation is
essentially an iteration of dynamic programming, which im-
proves the approximation by looking ahead one step further.
With suitable initialization, V is always a lower bound on
V ∗, and converges to V ∗ under suitable conditions [6], [11],
[19]. The MOMDP model enables the primitive operations
in the algorithm, such as α-vector backup and pruning, to be
performed more efficiently.

B. The Algorithm
After initialization, our algorithm iterates over three main

functions, SAMPLE, BACKUP, and PRUNE (Algorithm 1).
1) SAMPLE: Let R ⊂ B be the set of points reachable

from a given initial belief point b0 = (x0, bY0) under
arbitrary sequences of actions. Most of the recent point-
based POMDP algorithms sample from R instead of B for
computational efficiency. The SARSOP algorithm aims to

b0

a1 a2

o1 o2

x1 x2

Fig. 2. The belief search tree rooted at b0 = (x0, bY0). Each circle
indicates a node representing a MOMDP belief state (x, bY).

be even more efficient by focusing the sampling near R∗,
the subset of points reachable from (x0, bY0) under optimal
sequences of actions, usually a much smaller space than R.
To sample near R∗, we maintain both a lower bound V

and an upper bound V on the optimal value function V ∗.
The lower bound V is represented by a collection of α-
vector sets, {ΓY(x) | x ∈ X}, and initialized using fixed-
action policies [3]. The upper bound V is represented by a
collection of sets of belief-value pairs: {ΥY(x) | x ∈ X},
where ΥY(x) = {(bY , v) | bY ∈ BY(x)}. A belief-value
pair (bY , v) ∈ ΥY(x) gives an upper bound v on the value
function at (x, bY). They are used to perform sawtooth
approximations [3] in each of the subspaces BY(x). The
upper bound can be initialized in various ways, using the
MDP or the Fast Informed Bound technique [3].
The sampled points form a tree TR (Fig. 2). Each node

of TR represents a sampled point in R. In the following, we
use the notation (x, bY) to denote both a sampled point and
its corresponding node in TR. The root of TR is the initial
belief point (x0, bY0).
To sample new belief points, we start from the root of TR

and traverse a single path down. At each node along the path,
we choose a with the highest upper bound and choose x′ and
o that make the largest contribution to the gap ε between the
upper and the lower bounds at the root of TR. New tree
nodes are created if necessary. To do so, if at a node (x, bY),
we choose a, x′, and o, a new belief on y is computed:

b′Y(y
′) = τ(x, bY , a, x′, o)
= ηZ(x′, y′, a, o)

×
∑

y∈Y

TX (x, y, a, x′)TY(x, y, a, x′, y′)bY(y), (6)

where η is a normalization constant. A new node (x′, bY
′) is

then inserted into TR as a child of (x, bY). Clearly, every
point sampled this way is reachable from (x0, bY0). By
carefully choosing a, x′, and o based on the upper and lower
bounds, we can keep the sampled belief points near R∗.
When the sampling path ends under a suitable set of

conditions, we go up back to the root of TR along the same
path and perform backup at each node along the way.
2) BACKUP: A backup operation at a node (x, bY) collates

the value function information in the children of (x, bY) and
propagates it back to (x, bY). The operations are performed
on both the lower and the upper bounds. For the lower bound,
we perform α-vector backup (Algorithm 2). A new α-vector
resulting from the backup operation at (x, bY) is inserted into

Algorithm 2 α-vector backup at a node (x, bY) of TR.
BACKUP(TR,Γ, (x, bY))
1: For all a ∈ A, x′ ∈ X , o ∈ O,

αa,x′,o ← argmaxα∈ΓY (x′)(α · τ(x, bY , a, x′, o)).
2: For all a ∈ A, y ∈ Y ,

αa(y)← R(x, y, a) + γ
∑

x′,o,y′(TX (x, y, a, x′)
×TY(x, y, a, x′, y′)Z(x′, y′, a, o)αa,x′,o(y′)).

3: α′ ← argmaxa∈A(αa · bY)
4: Insert α′ into ΓY(x).

ΓY(x), the set of α-vectors associated with observed state
value x. For the upper bound backup at (x, bY), we perform
the standard Bellman update to get a new belief-value pair
and insert it into ΥY(x).
3) PRUNE: Invocation of SAMPLE and BACKUP generates

new sampled points and α-vectors. However, not all of them
are useful for constructing an optimal policy and are pruned
to improve computational efficiency. We iterate through the
α-vector sets in the collection {ΓY(x) | x ∈ X} and prune
any α-vector in ΓY(x) that does not dominate the rest at
some sampled point (x, bY), where bY ∈ BY(x).
Our description of the algorithm is quite brief due to space

limitations. More details and justifications for our particular
choices of the sampling, backup, and pruning strategies can
be found in [9].
We would like to point out that to solve a MOMDP, the

main modifications required in SARSOP are the belief update
operation (Eq. (6)) and the backup operation (Algorithm 2).
They are common to most point-based POMDP algorithms,
such as PBVI [11], Perseus [20], HSVI [18], and FSVI [16].
So using Eq. (6) and Algorithm 2 to replace the correspond-
ing parts in these algorithm would allow them to benefit from
the MOMDP approach as well.

C. Correctness and Computational Efficiency
Modifying the belief update and backup operations does

not affect the convergence property of SARSOP. The algo-
rithm above provides the same theoretical guarantee as the
original SARSOP algorithm. The formal statement and the
proof are given in the full version of the paper.
MOMDPs allow the belief space B to be represented as a

union of low-dimensional subspaces BY(x) for x ∈ X . This
brings substantial computational advantages. Specifically, the
efficiency gain of our algorithm comes mainly from BACKUP
and PRUNE, where α-vectors are processed. In a MOMDP, α-
vectors have length |Y|, while in the corresponding POMDP,
α-vectors have length |X ||Y|. As a result, all operations on
α-vectors in BACKUP and PRUNE are faster by a factor of
|X | in our algorithm. Furthermore, in a MOMDP, α-vectors
are divided into disjoint sets ΓY(x) for x ∈ X . When we
need to find the best α-vector, e.g., in line 1 of Algorithm 2,
we only do so within ΓY(x) for some fixed x rather than
over all α-vectors, as in a POMDP.
The efficiency gain in BACKUP sometimes comes at a

cost: although α-vectors in a MOMDP are shorter, they also
contain less information, compared with POMDP α-vectors.
In Algorithm 2, performing backup at (x, bY) generates an

α-vector that spans only the subspace BY(x). The backup
does not generate any information in any other subspace
BY(x′) with x′ �= x. In contrast, POMDP algorithms do
more computation while performing backup and generate
α-vectors that span the entire space B. If a problem has
many similar observable states in the sense that the α-vectors
in one belief subspace BY are useful in other subspaces
as well, then POMDP algorithms may obtain more useful
information in each backup operation and perform better
than our algorithm, despite the higher cost of each backup
operation. This, however, requires a special property which
may not hold in general for complex systems.

V. EXPERIMENTS
We used MOMDPs to model several distinct robotic tasks,

all having large state spaces, and tested our algorithm on
them. In this section, we describe the experimental setup
and the results.

A. Robotic Tasks
1) Tag: The Tag problem first appeared in the work on

PBVI [11], one of the first point-based POMDP algorithms.
In Tag, the robot’s goal is to follow a target that intentionally
moves away. The robot and the target operate in an environ-
ment modeled as a grid. They can start in any grid positions,
and in one step, they can either stay or move to one of four
adjacent positions (above, below, left, and right). The robot
knows its own position exactly, but can observe the target
position only if they are in the same position. The robot
pays a cost for each move and receives a reward when it
arrives in the same position as that of the target.
In the MOMDP for this task, the robot position, which

is known exactly, is modeled by the fully observable state
variable x. The x variable can also take one extra value
that indicates that the robot and the target are in the same
position. The target position is modeled by the partially
observable state variable y, as the robot does not see the
target in general. Experiments were performed on environ-
ment maps with different resolutions. Tag(M) denotes an
experiment on a map with M positions. Here |X | = M + 1
and |Y| = M , while in the standard POMDP model, the
state space has |S| = (M + 1)M dimensions.
2) Rock Sample: The Rock Sample problem [18] has

frequently been used to test the scalability of new POMDP
algorithms. In this problem, a rover explores an area modeled
as a grid and searches for rocks with scientific value. The
rover always knows its own position exactly, as well as
those of the rocks. However, it does not know which rocks
are valuable. The rover can take noisy long-range sensor
readings to gather information on the rocks. The accuracy of
the readings depends on the distance between the rover and
the rocks. The rover can also sample a rock in the immediate
vicinity. It receives a reward or a penalty, depending on
whether the sampled rock is valuable.
Here, the x variable in the MOMDP represents the robot

position, and the y variable is a binary vector in which each
entry indicates whether a rock is valuable or not. Experiments

R R R R R R R R R R R R R S S
R R R R R R R R R R S S
R R R R S S
R E R S S
R E S S
R R R S S
R R R R R R R R S S

Fig. 3. AUV navigation. Top: The 3-D environment and an AUV simulation
trajectory (marked in black) generated from the computed policy. The AUV
can localize its horizontal position only at the surface level (shaded in light
green). It rises to the surface level to localize, navigates through the rocks,
and then dives to reach the goal. Bottom: The grid map for the deepest
level. “S” marks the AUV starting positions, which are all located at this
level. The AUV is equally likely to start in any of them. “E” marks the end
positions, also located at this level only. “R” marks the rocks.

were performed on maps of different sizes and with different
number of rocks. RockSample(M,R) denotes a map size of
M ×M and R rocks.
3) AUV Navigation: An AUV navigates in an oceanic

environment modeled as a 3-D grid with 4 levels and 7×20
positions at each level (Fig. 3). It needs to navigate from the
right boundary of the deepest level to some goal locations
near the left boundary and must avoid rock formations, which
are present in all levels except the surface. In each step, the
AUV may either stay in the current position or move to any
adjacent position along its current orientation. Whether the
action is stay or move, the AUV may drift to a neighboring
horizontal position due to control uncertainty or ocean cur-
rents. The AUV does not know its exact starting position. It
knows its horizontal position only at the surface level, where
GPS signals are available. However, surfacing causes heavy
fuel consumption and must be avoided if possible. Using
its pressure sensor and gyroscope, the AUV can acquire
accurate information on the depth and the orientation, which
is discretized into 24 values.
In the MOMDP model, the x variable represents the

AUV’s depth and orientation, and the y variable represents
the AUV’s horizontal position. Although in our specific
setup, the belief over the AUV’s horizontal position is always
unimodal, the MOMDP approach is general and can be
applied without change if the belief is multimodal.

B. Results
We applied the MOMDP algorithm to the three tasks

above. For each task, we first performed long preliminary
runs to determine approximately the reward level for the
optimal policies and the amount of time needed to reach it.
We then ran the algorithm for a maximum of half an hour to
reach this level. To estimate the expected total reward of the
resulting policy, we performed sufficiently large number of
simulation runs until the variance in the estimated value was
small. For comparison, we also ran SARSOP [9], a leading
POMDP algorithm, on the same tasks modeled as standard

TABLE I
PERFORMANCE COMPARISON ON TASKS WITH MIXED OBSERVABILITY.

Reward Time (s)
Tag(29)
|X|=30,|Y|=29 MOMDP −6.03± 0.04 4.7
|S|=870, |A|=5, |O|=30 SARSOP −6.03± 0.12 16.5
Tag(55)
|X|=56,|Y|=55 MOMDP −9.90± 0.11 19
|S|=3,080, |A|=5, |O|=56 SARSOP −9.90± 0.12 736
RockSample(7,8)
|X|=50,|Y|=256 MOMDP 21.47± 0.04 160
|S|=12,545‡, |A|=13, |O|=2 SARSOP 21.39± 0.01 810
RockSample(10,10)
|X|=101,|Y|=1,024 MOMDP 21.47± 0.04 318
|S|=102,401, |A|=15, |O|=2 SARSOP 21.47± 0.11 1589
RockSample(11,11)
|X|=122,|Y|=2,048 MOMDP 21.80± 0.04 188
|S|=247,809, |A|=16, |O|=2 SARSOP 21.56± 0.11 1369
AUV Navigation
|X|=96,|Y|=141 MOMDP 1020.0± 8.5 124
|S|=13,536, |A|=6, |O|=144 SARSOP 1019.8± 9.7 409

POMDPs. Both algorithms are implemented in C++, and the
experiments were performed on a PC with a 2.66GHz Intel
processor and 2GB memory.
1) Mixed Observability Tasks: The results are shown in

Table I. Column 3 of the table lists the estimated expected
total rewards for the computed policies and the 95% confi-
dence intervals. Column 4 lists the running times.
For all tasks, the MOMDP algorithm obtained good ap-

proximate solutions well within the time limit and outper-
formed SARSOP by many times. We ran multiple experi-
ments for Rock Sample with different map sizes and numbers
of rocks. As the problem size increases, both |X | and
|Y| increase. The performance gap between our algorithm,
which uses the MOMDP model, and SARSOP, which uses
the standard POMDP model, tends to increase as well.
In particular, for the largest problem, RockSample(11,11),
SARSOP never reached the same reward level attained by
the MOMDP algorithm within the time limit. This is not
surprising as the computational efficiency gain achievable
from the MOMDP model depends on |X | (Section IV-C).
The experiments on Tag show a similar trend.
2) Pseudo Full Observability: We also tested our algo-

rithm on robotic tasks in which all sensed state components
are partially observable and obtained promising results.
The original Tag problem is modified to create a noisy

version, in which the robot has p% chance of observing
its own position correctly and (1/8)(100 − p)% chance of
observing each of the 8 surrounding positions. In this case,
both the robot position and the target position are partially
observable. However, applying the technique in Section III-
B.1, we modeled the robot position by the fully observable
state variable x in the MOMDP and solved the MOMDP with
our algorithm. The value function computed by the algorithm
was used to generate a policy to control the robot without
assuming any fully observable state variables.
We ran experiments with different sensor accuracy p for

the Noisy Tag problem. The results are shown in Table II.

‡Small optimizations can be performed to reduce the number of states in
the POMDP model. So |S| may not be equal to |X||Y| for the corresponding
MOMDP. However, this is not significant enough to affect |S|=O(|X||Y|).

TABLE II
PERFORMANCE COMPARISON ON TASKS USING PSEUDO OR
REPARAMETERIZED FULL OBSERVABILITY TECHNIQUES.

Reward Time (s)
NoisyTag(29,90%)
|X|=30,|Y|=29 MOMDP −11.12± 0.14 4.5
|S|=870, |A|=5, |O|=30 SARSOP −11.12± 0.14 228.0
NoisyTag(29,50%)
|X|=30,|Y|=29 MOMDP −12.14± 0.14 1.5
|S|=870, |A|=5, |O|=30 SARSOP −12.15± 0.14 11.6
NoisyTag(29,10%)
|X|=30,|Y|=29 MOMDP −12.53± 0.14 1.5
|S|=870, |A|=5, |O|=30 SARSOP −12.59± 0.14 176.4
NoisyTag(55, 3× 3)
|X|=56,|Y|=495 MOMDP −10.62± 0.10 32
|S|=3,080, |A|=5, |O|=2 SARSOP −10.61± 0.08 927

NoisyTag(M,p%) denotes a modified Tag problem with a
map of M positions and sensor accuracy p%. The MOMDP
algorithm drastically outperformed SARSOP, even when p
was as low as 10%. This is a little surprising. The MOMDP
model brings computational advantages, but is less accurate
than the POMDP model, due to the assumption of fully ob-
servable state variables. One would expect that the MOMDP
algorithm may reach a reasonable reward level faster, but lose
to SARSOP in the long run. However, in this case we did not
observe any significant performance loss for the MOMDP
algorithm. To confirm the results, we ran SARSOP for two
additional hours, but its reward level did not improve much
beyond those reported in the table.
3) Reparameterized Full Observability: The Tag problem

is again modified so that the robot never observes its own
position exactly, but only the 3 × 3 region around it in the
grid. Both the robot and the target positions are partially
observable. However, the preimage of any observation on the
robot position is always bounded. We can apply the approach
described in Section III-B.2 and reparameterize the robot
position as (or, δr), where or indicates a 3× 3 region in the
grid and δr indicates the actual position of the robot within
the region. We then model the reparameterized problem as
a MOMDP: the x variable represents or, and the y variable
represents δr and the target position.
Again the MOMDP algorithm significantly outformed

SARSOP (Table II). This suggests that extracting fully
observable state variables through reparameterization is a
promising idea and deserves further investigation.

VI. CONCLUSION

POMDPs have been successfully used for motion planning
under uncertainty in various robotic tasks [5], [11], [12],
[19]. A major challenge remaining is to scale up POMDP
algorithms for complex robotic systems. Exploiting the fact
that many robotic systems have mixed observability, our
MOMDP approach uses a factored model to separate the
fully and partially observable components of a robot’s state.
We show that the factored representation drastically improves
the speed of POMDP planning, when combined with a
point-based POMDP algorithm. We further show that even
when a robot does not have obvious fully observable state
components, it still can be modeled as a MOMDP by

reparameterizing the robot’s state space.
Ten years ago, the best POMDP algorithm could solve

POMDPs with a dozen states. Five years ago, a point-
based algorithm solved a POMDP with almost 900 states,
and it was a major accomplishment. Nowadays, POMDPs
with hundreds of states can often be solved in seconds, and
much larger POMDPs can be solved in reasonable time. We
hope that our work is a step further in scaling up POMDP
algorithms and ultimately making them practical for robot
motion planning in uncertain and dynamic environments.
Acknowledgments. We thank Yanzhu Du for helping with the
software implementation. We also thank Tomás Lozano-Pérez and
Leslie Kaelbling from MIT for many insightful discussions. This
work is supported in part by AcRF grant R-252-000-327-112 from
the Ministry of Education of Singapore.

REFERENCES
[1] C. Guestrin, D. Koller, and R. Parr. Solving factored POMDPs with

linear value functions. In Int. Jnt. Conf. on Artificial Intelligence
Workshop on Planning under Uncertainty & Incomplete Information,
pp. 67–75, 2001.

[2] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution
algorithms for factored MDPs. J. Artificial Intelligence Research,
19:399–468, 2003.

[3] M. Hauskrecht. Value-function approximations for partially observable
Markov decision processes. J. Artificial Intelligence Research, 13:33–
94, 2000.

[4] M. Hauskrecht and H. Fraser. Planning medical therapy using partially
observable Markov decision processes. In Proc. Int. Workshop on
Principles of Diagnosis, pp. 182–189, 1998.

[5] K. Hsiao, L. Kaelbling, and T. Lozano-Pérez. Grasping POMDPs. In
Proc. IEEE Int. Conf. on Robotics & Automation, pp. 4485–4692,2007.

[6] D. Hsu, W. Lee, and N. Rong. What makes some POMDP problems
easy to approximate? In Advances in Neural Information Processing
Systems (NIPS), 2007.

[7] ——–. A point-based POMDP planner for target tracking. In Proc.
IEEE Int. Conf. on Robotics & Automation, pp. 2644–2650, 2008.

[8] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1–
2):99–134, 1998.

[9] H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces.
In Proc. Robotics: Science and Systems, 2008.

[10] C. Papadimitriou and J. Tsisiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[11] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In Proc. Int. Jnt. Conf. on Artificial
Intelligence, pp. 477–484, 2003.

[12] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards
robotic assistants in nursing homes: Challenges and results. Robotics
& Autonomous Systems, 42(3–4):271–281, 2003.

[13] P. Poupart and C. Boutilier. Value-directed compression of POMDPs.
In Advances in Neural Information Processing Systems (NIPS),
15:1547–1554. The MIT Press, 2003.

[14] N. Roy, G. Gordon, and S. Thrun. Finding aproximate POMDP solu-
tions through belief compression. J. Artificial Intelligence Research,
23:1–40, 2005.

[15] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

[16] G. Shani, R. Brafman, and S. Shimony. Forward search value iteration
for POMDPs. In Proc. Int. Jnt. Conf. on Artificial Intelligence, 2007.

[17] R. Smallwood and E. Sondik. The optimal control of partially observ-
able Markov processes over a finite horizon. Operations Research,
21:1071–1088, 1973.

[18] T.Smith and R.Simmons. Heuristic search value iteration for POMDPs.
In Proc. Uncertainty in Artificial Intelligence, pp. 520–527, 2004.

[19] ——–. Point-based POMDP algorithms: Improved analysis and
implementation. In Proc. Uncertainty in Artificial Intelligence, 2005.

[20] M. Spaan and N. Vlassis. A point-based POMDP algorithm for robot
planning. In Proc. IEEE Int. Conf. on Robotics & Automation, 2004.

