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Abstract—In this paper, we present a decentralized passivity-
based control strategy for the bilateral teleoperation of a group
of Unmanned Aerial Vehicles (UAVs). The human operator at
the master side can command the group motion and receive
suitable force cues informative about the remote environment. By
properly controlling the energy exchanged within the slave side
(the UAV group), we guarantee that the connectivity of the group
is preserved and we prevent inter-agent and obstacle collisions.
At the same time, we allow the behavior of the UAVs to be as
flexible as possible with arbitrary split and join maneuvers. The
results of the paper are validated by means of human/hardware-
in-the-loop (HHIL) simulations.

I. INTRODUCTION

For several applications like data collection, surveillance,
search and rescue and exploration of wide areas, the use
of a group of simple robots rather than a single complex
robot has proven to be very effective, and the problem of
coordinating a group of agents has received a lot of attention
by the robotics community (see [8] for a survey). Nevertheless,
when the tasks to be executed involve complex activities
(e.g., navigation in a very cluttered, possibly unknown, en-
vironment), complete autonomy is still far to be reached and
human’s intervention/assistance is necessary. In this context,
teleoperation systems, where an operator drives a remote robot
through a local interface, allow to exploit human’s intelligence
to solve tasks too complex for the skills of nowadays robots.
In particular, it has been proven that the use of bilateral
teleoperation systems, where a force information is fed back
to the user, guarantees superior performance with respect to
unilateral teleoperation where no feedback is present [4].

A lot of interest is arising in the robotics community in sin-
gle mobile robot teleoperation, see, for instance, [3, 11, 15] for
the case of a flying robot (UAV). However, the bilateral control
of multiple slaves through a single master imposes challenges
that are absent in the traditional single-master/single-slave
systems. For instance, it is not clear what is the best way to
dispatch the actions of the master to the slaves and what kind
of force information feed back to the master side. In [14], a
multi-master/multi-slave teleoperation system with no delay
is developed and a centralized strategy for controlling the
cooperative behavior of the robots is proposed. In [11], a
centralized bilateral control strategy that allows to coordinate
the motion between the master and the slaves under arbitrary

time delay is proposed. In our view, a main limitation of
this and similar approaches lies in the rigidity of the group
of teleoperated robots which is not allowed, for example, to
actively reshape the formation by means of autonomous split
and join maneuvers. Furthermore, because of their higher fault
tolerance and lower communication demand, decentralized
solutions should be preferred in multi-robot control (see,
e.g., [7, 8]).

In order to address these issues, we proposed in a recent
work [2] a general framework for establishing a bilateral
teleoperation system to control a remote group of mobile
robots in a decentralized and flexible way. This was achieved
by only requiring 1-hop information within the group, and a
single communication link between the human operator and
one of the robots (which was then referred to as the ‘unique’
leader). The operator was able to control the motion of the
overall group by acting on the leader, and could feel force
cues informative about the presence of obstacles and number
of agents at the remote site. However, we did not explicitly
consider any particular strategy for ensuring connectivity of
the group during motion: a sub-group could still potentially
detach from the component connected to the leader — a
features not desirable in all tasks. Goal of the present paper is
then to extend the approach of [2] to also enforce decentralized
connectivity maintenance of the group at all times.

In literature two classes of decentralized connectivity main-
tenance approaches are present: i) the conservative methods,
which aim at preserving the initial graph topology during the
task [1, 5, 10], and ii) the flexible approaches, which allow
to switch anytime among any of the connected topologies.
These usually produce local control actions aimed at keeping
(a decentralized estimate of) λ2, the second smallest eigen-
value of the graph Laplacian, positive over time [16, 17].
This paper can be considered as an extension of the latter
approaches. Indeed, our first main contribution is the design
of a novel decentralized control action which simultaneously
enforces (i) obstacle/inter-robot collision avoidance, and (ii)
flexible connectivity maintenance of the group despite loss
of sensing/visibility due to (too large) inter-robot distance
and/or occluding obstacles. The second major contribution is
the passivity-based design of such a control strategy. This
guarantees the passivity of the whole group (i.e. the slave



side) and allows the implementation of a stable bilateral
teleoperation system by properly coupling the group with a
passive master device driven by a human operator.

The rest of the paper is organized as follows: in Sect. II,
the structure of the slave side and of the decentralized con-
trol strategy for connectivity maintenance are illustrated. In
Sect. III, the master side and the overall teleoperation system
are described. Finally, results of several human/hardware-in-
the-loop (HHIL) simulations are reported in Sect. IV, and
Sect. V concludes the paper.

II. THE SLAVE SIDE

Following the framework introduced in [2], we consider the
slave side as a group of N agents that can be modeled as
floating masses in R3, and which are coupled by means of
suitable inter-agent forces. Among all the agents, a special one
(leader) is also controlled by the master, while the remaining
agents (not controlled by the master) are denoted as followers.
Exploiting the port-Hamiltonian modeling formalism [13], we
model each agent i as an element storing kinetic energy

ṗi = Fλi + F ei −BiM
−1
i pi

vi =
∂Ki
∂pi

= M−1
i pi

i = 1, . . . , N (1)

where pi ∈ R3 and Mi ∈ R3×3 are the momentum
and positive definite inertia matrix of agent i, respectively,
Ki(pi) = 1

2p
T
i M

−1
i pi is the kinetic energy stored by the

agent during its motion, and Bi ∈ R3×3 is a positive definite
matrix representing a velocity damping term (this can be either
artificially introduced, or representative of typical phenomena
of aerial robots such as wind/atmospehere drag). The force
input Fλi ∈ R3 represents the interaction of agent i with
the other agents and surrounding environment (obstacles) and
F ei ∈ R3 is an additional external force. Finally, vi ∈ R3 is
the velocity of the agent1.

Two agents are able to communicate, to measure their
relative position, and ultimately to interact if and only if they
are neighbors according to the following definition:

Definition 1: Agents i and j are neighbors if and only if:
i) their relative distance dij is less than D ∈ R+ (the sensing
range) and larger than dmin ∈ [0, D) (the safety range), ii)
their line-of-sight is not occluded by an obstacle, and iii)
neither i nor j are closer than dmin to any other agent.

The two latter conditions distinguish our work from most
of the past literature on connectivity maintenance and, as will
be explained in Sect. II-A, are crucial for embedding both
obstacle and inter-agent/collision avoidance within a unified
connectivity-preserving action2.

1Here we assume that the UAVs are endowed with a low-level controller
able to track the dynamical behavior reported in Eq. (1). Similar assumptions
have been made in previous related works (e.g., [15]).

2Although not commonly considered in the literature, enforcing a minimum
inter-agent safe distance dmin is also relevant in many practical circumstances
involving local sensing such as, e.g., limited focusing range of on-board
cameras, occlusions due to too close agents, or a generic safe distance to
prevent dangerous collisions.
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Fig. 1: The agents i and j and their closest obstacle point with the
main symbols defined in the paper.

The neighboring relationship defines an undirected graph
G = (V, E) where the vertices represent the agents and an edge
(i, j) represents the presence of a communication/interaction
link between agent i and agent j. Here, as usual, we denote
with Ni the set of neighbors of agent i. We now introduce
several definitions instrumental for writing in a compact and
powerful form the overall slave side.

With reference to Fig. 1, let xij = xi − xj ∈ R3

represent the relative position of agent i w.r.t. agent j and
xR = (xT12 . . . xT1N xT23 . . . xT2N . . . xTN−1N )T ∈ R

3N(N−1)
2 .

We also assume that an agent can measure the distance from
the surrounding obstacles within the range D, and we let Oi be
a set containing all the obstacle points sensed by agent i plus a
fictitious point o∞ at a distance greater than D from any agent
(i.e., at infinity). If j ∈ Ni, we let oij be the closest point in
Oi∪Oj to the segment (line-of-sight) joining agent i and agent
j. Notice that if Oi∪Oj does not contain any sensed obstacle
point, then we define oij = o∞. We also set oij = o∞, by
convention, whenever j 6∈ Ni. By letting xoij = xi − oij
represent the relative position of agent i w.r.t. obstacle point
oij , and xoi = (xToi1 . . . x

T
oik

. . . xToiN )T ∈ R3(N−1), k 6= i, we
can collect all such relative positions for all the N robots
into a unique vector xO = (xTo1 . . . x

T
oN )T ∈ R3N(N−1).

Analogously to the definition of xO, we also collect all
the obstacle point positions oij into a cumulative vector
o = (. . . , oTi1, . . . , o

T
ij . . . , o

T
iN . . .) ∈ R3N(N−1), with i =

1, . . . , N and j 6= i, and let vo = ȯ be the obstacle point
velocities seen from the corresponding agents3.

Finally, we define a suitable scalar lower-bounded potential
V λ(xR, xO) ∈ R+ whose exact shape will be detailed in
Sect. II-A. For now, V λ is meant to be a generic potential
function accounting for connectivity maintenance, inter-agent
collision avoidance, and obstacle avoidance for all the N
robots in the group. This allows to model the inter-agent and
environment interaction as a nonlinear elastic element whose
potential energy function is V λ and whose gradient ∂V λ

∂(xR xO)
drives the agents toward the desired behavior. We will show
that V λ is designed in such a way that xij and xoij do not
contribute to its variation w.r.t. the agent position xi when
j 6∈ Ni; thus, the control action implemented on agent i will
take the (decentralized) form:

Fλi =
∑
j∈Ni

(
∂V λ

∂xoij
+
∂V λ

∂xij

)
. (2)

3In fact, even though the obstacles are supposed to be fixed in space, the
obstacle points move as the agents move.
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Fig. 2: The shape of aij (left), bij (equiv. cij) (center), and V λ(λ2)
(right).

By defining p = (pT1 . . . pTN )T ∈ R3N , B = diag(Bi), and
F e = (F eT1 . . . F eTN )T ∈ R3N , and by noting that ẋij = vi−
vj , we can then model the overall slave-side as a mechanical
system described by:

 ṗ
ẋR
ẋO

 =

 0 I −I
−IT 0 0
IT 0 0

−
B 0 0

0 0 0
0 0 0

∇H +G

(
F e

vo

)
(

v

F o

)
= GT∇H

(3)
where

H =

N∑
i=1

Ki + V λ ∈ R+ (4)

represents the total energy of the system and ∇H =(
∂TH
∂p

∂TH
∂xR

∂TH
∂xO

)T
. Moreover, I = IG ⊗ I3, I = IN ⊗

1TN−1 ⊗ I3, and G =

(
IN ⊗ I3 0 0

0 0 −I

)T
, with IG being

the incidence matrix of the graph G whose edge numbering
is induced by the entries of the vector xR, I3 and IN being
the identity matrices of order 3 and N respectively, 1N−1 a
column vector of all ones of dimension N − 1, 0 representing
a null matrix of proper dimensions, and ⊗ denoting the
Krönecker product. Finally, v ∈ R3N and F o ∈ R3N(N−1)

are the conjugate power variables associated to F e and vo,
respectively: the system exchanges energy through the port
(F e, v) with the external world, and through the port (vo, F

o)
with the obstacles, which are considered as a passive system.

A. The connectivity potential V λ

Inspired by [16], we encode the connectivity relationship of
Def. 1 into the weights of the links joining neighboring agents.
To this end, let A ∈ RN×N be the adjacency matrix associated
to the graph G: each element Aij ∈ R+, representing the
weight of the edge among agents i and j, will be designed as
a function of di1, . . . , diN , dj1, . . . , djN , dijo, where dij =
‖xij‖ is the distance among agents i and j, and dijo the
distance between the segment sij connecting xi with xj (their
line-of-sight) and the closest obstacle point oij (see Fig. 1).
The weights Aij are defined as a product of terms which
vanish whenever one of the three properties in Def. 1 is not
fulfilled (see Fig. 3):

Aij = aijbijcicj , ci =
∏

k|dik≤D

cik, (5)

i
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Fig. 3: Graphical representation of the terms contributing to Aij =
aijbijcijcikcilcjh. In this example k and l are the neighbors of i,
h is the neighbor of j, and oij is the closest obstacle point to the
segment joining i and j.

with aij(dij) accounting for the constraint on inter-robot max-
imum sensing range D, bij(dijo) for the constraint on line-of-
sight/obstacle distance (and implicitly for obstacle avoidance),
and the cik(dik) accounting for the constraint on inter-robot
minimum distances (i.e., to avoid inter-agent collisions).

The weights aij are chosen to stay constant at a maximum
value ka for 0 ≤ dij ≤ d0, where 0 < d0 < D is a desired
inter-robot distance, and to smoothly vanish (with vanishing
derivative) if dij = D. To this end, we chose the following
function

aij(dij) =


ka 0 ≤ dij ≤ d0

ka
2
(1 + cos(αadij + βa)) d0 < dij ≤ D

0 dij > D

(6)

with αa = π
D−d0 , and βa = −αad0. Figure 2a shows the shape

of aij for d0 = 4, D = 6, and ka = 10. As for bij , assume
a minimum and maximum distance 0 ≤ domin < domax ≤ D
between the segment sij and oij are chosen: the weights bij
are defined as

bij(dijo) =


0 doij ≤ domin

kb
2
(1− cos(αbdijo + βb)) domin < dijo ≤ domax

kb dijo > domax

(7)
with αb = π

domax−domin
and βb = −αbdomin. Figure 2b shows

the shape of bij for domin = 2, domax = 4, and kb = 10.
Finally, weights cik are defined as being constant at a value
kc if dik ≥ d0, and to vanish, with vanishing derivative, for
dik = dmin, where 0 < dmin < d0 represents a minimum
desired distance between the agents. The equations and shape
of cik is conceptually the same as of bij in (7), so we refer
again the reader to Fig. 2b.

Notice that, because of (5) and the previous definitions,
if agent i gets too close to an obstacle or to another agent,
the entire i-th row of A will vanish, i.e., Aij = 0, ∀j.
Agent i would then become disconnected from the rest group,
and any action aimed at preserving the connectivity would
automatically enforce both obstacle and inter-agent collision
avoidance.

Now consider the Laplacian matrix L = diag(δi) − A,
δi =

∑N
j=1Aij , associated to the graph G. It is well known

that a measure of the connectivity of G is given by λ2 ≥ 0,
the second smallest eigenvalue of L: λ2 > 0 iff the graph
is connected [16]. Since A ∈ C1, its eigenvalue λ2 will be
a differentiable function of dij and dijo for all the pair of
agents, and will smoothly vanish as the graph approaches



disconnection. It is then possible to build the potential function
V λ described in Sect. II as a function of λ2 and try to follow
the gradient of this potential to keep λ2 > 0 at all times.

Assume λmax
2 > λmin

2 > 0 represent desired maximum and
minimum values for λ2. We define V λ(λ2) as

V λ(λ2) =

{
0 λ2 < λmin

2

kλ tan
2(αλλ2 + βλ) λmin

2 < λ2 ≤ λmax
2

0 λ2 > λmax
2

(8)

with αλ = π
2(λmax

2 −λmin
2 )

and βλ = −αλmax
2 . This potential

grows unbounded as λ2 → λmin
2 and vanishes (with vanishing

derivative) for λ2 = λmax
2 . Figure 2c shows an example for

λmin
2 = 0.1, λmax

2 = 1 and kλ = 10.
We can compute the force generated on the agent i by the

potential V λ as Fλi =
∑
j∈Ni

(
∂V λ

∂xij
+ ∂V λ

∂xoij

)
which can be

rewritten as Fλi = ∂V λ

∂λ2

∑
j∈Ni

(
∂λ2

∂xij
+ ∂λ2

∂xoij

)
. Evaluation of

∂V λ

∂λ2
follows from the definition in (8), while the terms in the

sum can be computed as shown in [16]:∑
j∈Ni

∂λ2

∂xij
=
∑
j∈Ni

∂Aij
∂xij

(ν2i − ν2j )
2 (9)

and similarly for the second term in the sum, with ν2 being
the (normalized) eigenvector of L associated to λ2. From the
definition of the weights in (6–7), it follows that ∂Aij

∂xoij
=

aij
∂bij
∂xoij

cicj and ∂Aij
∂xij

=
∂aij
∂xij

bijcicj + aijbij
∂(cicj)

∂xij
. The

latter terms can be straightforwardly evaluated by taking the
derivative of aij and cicj w.r.t. dij from the definition in (6–7),
and by noting that dij = ‖xi − xj‖ from which ∂dij

∂xij
=

xij
‖xij‖

easily follows. On the other hand, evaluation of the term
∂bij
∂xoij

needs a formal definition of the line-of-sight/obstacle
distance dijo that was chosen as follows: let sijo be the
orthogonal projection of oij onto the supporting line of sij (the
segment joining agents i and j). If sijo lies inside the segment
boundaries, then dijo is the standard point-line distance. If sijo
lies outside the segment boundaries and is, w.l.o.g., closer to
the segment vertex xi, then dijo = ‖xoij‖, and similarly in the
symmetric case. Thus, ∂bij

∂xoij
can be evaluated by computing

∂bij
∂dijo

from (7) and ∂dijo
∂xoij

depending on the particular case
illustrated above.

We note that, apart from the (global) quantities λ2 (needed
in ∂V λ

∂λ2
) and ν2 (needed in (9)), Fλi could be evaluated locally

since it only depends on the relative measurements dij , and
dijo, j ∈ Ni. Knowledge of λ2 and ν2 could be obtained by
a global observation of the group in order to recover the full
Laplacian L. In our case, we chose to rely on the decentralized
estimation strategy proposed in by Yang et al. in [16]. Therein,
the authors show how each agent i can obtain its own local
estimation of λ2, i.e., λ̂2, and of the i-th component of ν2, i.e.,
ν̂2i , by again exploiting only local and 1-hop information.We
refer the reader to this work for all the details.

Therefore, by exploiting these results, an estimation F̂λi of
the true Fλi can be implemented by every agent in a fully

decentralized way. We would like to summarize the main
features of the potential V λ and of Fλi introduced so far:

1) although V λ is a global potential, reflecting global
properties (connectivity) of the group, an estimation of
F̂λi can be computed in a fully decentralized way;

2) V λ will grow unbounded as λ2 → λmin
2 > 0, thus

enforcing connectivity of the group. Note that, during
the motion, agents are fully allowed to break or create
links as long as λ2 > λmin

2 . This provides large amounts
of flexibility to the group topology and geometry;

3) because of the shape of the terms aij and cik, k ∈ Ni,
in (6–7), minimization of V λ will lead the agents i and
j to keep a preferred inter-distance d0, without getting
too far or too close to each other, since in either cases
their link would approach disconnection resulting in a
decrease of λ2. Similarly, because of the shape and
definition of bij in (7), each pair of neighbors will try
to keep its line-of-sight not occluded by obstacles;

4) because of the term cicj in (5), λ2 → λmin
2 as any

inter-agent distance dij → dmin. Indeed, as an agent i
approaches an agent j, the corresponding weight cij will
vanish, implying that Aik → 0 ∀k ∈ Ni (since the same
weight cij is present in all the Aik, k ∈ Ni). Agent i
will loose all its links with the other agents and become
disconnected from the group. Therefore, minimization
of V λ will prevent any inter-agent collision;

5) similarly to the previous case, because of the terms bij ,
any collision among agents and obstacles would imply
λ2 → λmin

2 and, therefore, an unbounded growth of V λ.
As an agent i approaches an obstacle it will eventually
become the closest point to the obstacle on all the links
departing from it, i.e., on all the sik, k ∈ Ni. At the
minimum distance domin, all the bik, k ∈ Ni, would
vanish, leading to a disconnection of agent i from the
rest of group like in the previous case.

B. Passivity of the slave side

We refer to a split as the cancelation of the coupling forces
between a pair of agents i and j (because of too large/little
inter-distance or proximity to obstacles) and to a join as the
(re-)establishment of the coupling, e.g., after a split. As shown
in [2], a split does not threaten passivity of the slave side,
while this, in general, is not the case for a join decision. When
two agents join at some time t̄, they instantaneously switch
from a state characterized by no interaction to a new state
where a spring-like coupling is (re-)created. In this situation,
the potential used to model the inter-agent connection, say a
generic V , could instantaneously jump from the value V (t̄−)
to a new value V (t̄+) > V (t̄−) depending on the particular
state of the two agents, thus injecting extra energy ∆E =
V (t̄+)− V (t̄−) > 0 into the system.

Nevertheless in our case (V = V λ), no jumps are possible in
any situation because of the way the weights Aij are designed.
Indeed, when agents i and j split (or are initially disconnected)
it is Aij = Aji = 0, and the same condition holds when the
two agents join again at some t̄:



1) if dijo ≥ domin (line-of-sight not occluded) and
dij(t̄

−) > D followed by dij(t̄
+) = D (a link is

created), Aij(t̄−) = Aij(t̄
+) = 0 because of the weights

aij(dij);
2) if dij < D (agents within the sensing range) and

dijo(t̄
−) < domin followed by dijo(t̄+) = domin (a link is

created), Aij(t̄−) = Aij(t̄
+) = 0 because of the weights

bij(dijo).
Therefore, as V λ can never jump by construction, passivity
of the slave side is guaranteed without the need of additional
actions such as those reported in [2]. On the other side, non-
passive behaviors could happen due to estimation errors in
evaluating F̂λi . We will now discuss how to still enforce
passivity despite of this shortcoming.

1) Passive implementation of F̂λi : we first introduce the
fundamental concept of tanks [2, 12, 15]: the tanks are
artificial energy storing elements that keep track of the energy
dissipated by each agent because of the damping terms Bi. The
energy stored in these reservoirs can be used without violating
the passivity of the system. From Eq. (1), it follows that the
energy dissipated by agent i because of the damping is given
by

Di = pTi M
−T
i BiM

−1
i pi. (10)

Consider a tank with state xti ∈ R and associated energy Ti =
1
2x

2
ti : we propose to adopt the following extended dynamics

for the agents:
ṗi = Fλi + F ei − wixti −BiM

−1
i pi

ẋti = αi
1
xti
Di + wTi vi

yi =
(
vTi xti

)T . (11)

The total energy of the slave side is then now

H =

N∑
i=1

(Ki + Ti) + V λ. (12)

and the Tank/Kinetic power flows become Ṫi = αiDi + xtiw
T
i vi

K̇i =
∂KT

∂pi
(Fλi + F ei −BiM

−1
i pi)− vTi wixti

. (13)

The input wi ∈ R3 is meant to exchange energy between
the tank xti and agent i as can be seen from (13) while the
quantity αi ∈ {0, 1} is a design parameter. If αi = 1, all
the energy dissipated because of the damping Bi is stored
back into the tank: such energy can be re-injected into the
system without violating the passivity constraint. Because of
the reasons reported in [6], it is wise to disable the storing of
Di for avoiding an excess of energy stored that would allow
to implement unstable behaviors in the system. Thus, αi = 1
if Ti ≤ T̄i and αi = 0 otherwise, where T̄i is a suitable upper
bound depending on the particular application. Furthermore, in
order to avoid singularities in (11) (i.e. xti = 0), an additional
threshold ε > 0 is set restricting the amount of extractable
energy from the tank.

As explained before, estimation errors in F̂λi can potentially
lead to a loss of passivity. To see why, consider the two energy
storing elements in (3–4), that is, the elastic potential V λ

and the kinetic energy K =
∑N
i Ki. Passivity is preserved

if the energy exchange between these two elements occurs in
a passive way, i.e., without the creation of extra energy excess.
From (3) and previous definitions, the energy balance for the
element V λ can be written as

V λ(t)− V λ(t0) = −
N∑
i=i

(∫ t

t0

(Fλi )T vi dt

)
+

∫ t

t0

vTo Fodt

(14)
Since we are assuming that obstacles are passive, we have that
−
∫ t
t0
vTo Fodt ≥ 0, where we also assumed for simplicity that

the initial energy stored in the obstacles is zero. Thus we have
that

V λ(t)− V λ(t0) ≤ −
N∑
i=i

(∫ t

t0

(Fλi )T vi dt

)
= Λ(t) (15)

Since V λ(t) ≥ 0, condition (15) implies that Λ(t) ≥ −V λ(t0),
where V λ(t0) ≥ 0, i.e., the well-known fact that total
extractable energy from the (passive) element V λ is bounded
by V λ(t0). On the other hand, the energy absorbed by the
kinetic energy element K (the slave side) is

Γ(t) =

N∑
i=i

(∫ t

t0

vTi F̂
λ
i dt

)
. (16)

In absence of estimation errors, Γ(t) = −Λ(t), i.e., the
interconnection of the two energy storing elements is power-
preserving Γ(t) + Λ(t) = 0. On the other hand, estimation
errors can potentially lead to Γ(t) > −Λ(t), violating the pas-
sivity of the system. To overcome this obstacle, a possibility
is to monitor the energy Γ(t) absorbed by the slave side and
ensure that Γ(t) ≤ −Λ(t) ≤ V λ(t0), ∀t ≥ t0.

To this end, we proceed as follows: first of all, since
V λ(t0) cannot be in general evaluated by the slave side (it
would require exact knowledge of λ2), we aim at the (more
conservative) condition Γ(t) ≤ 0, ∀t ≥ t0. Secondly, we note
that Γ(t) is a global quantity (it depends on the state of all
the N agents): therefore, by letting Γi(t) =

∫ t
t0
vTi F̂

λ
i dt, we

relax the condition Γ(t) =
∑N
i=1 Γi(t) ≤ 0 to the (more

conservative) Γi(t) ≤ 0 that can be locally evaluated by every
agent.

The passification strategy is then the following: while,
during motion, Γi(t) ≤ 0, agent i can safely implement the
force F̂λi without extra actions. If Γi(t) > 0, tank Ti is
exploited to compensate for the extra energy. In particular,
the term Fλi is set to 0 in Eq. (11) to avoid production of
energy in the interconnection and the amount Γi(t) > 0 is
extracted from the tank allowing the agent to still imple-
ment F̂λi while preserving the total energy balance. This is
formally obtained by setting wi = −βiF̂λi /xti in (11) with
βi ∈ {0, 1} being a design parameter enabling/disabling the
energy transfer from the tank to agent i. In particular, βi = 1
when Γi > 0 and βi = 0 otherwise. Defining the matrices
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Υ = diag(−wi), P = diag( 1
xti
pTi M

−T
i ), α = diag(αi),

and ∇H =
(
∂TH
∂p

∂TH
∂xR

∂TH
∂xO

∂TH
∂xt

)T
the slave side can be

represented as

 ṗ
ẋR
ẋO
ẋt

 =




0 I −I Υ

−IT 0 0 0

IT 0 0 0

−ΥT 0 0 0

−
 B 0 0 0

0 0 0 0
0 0 0 0

−αPB 0 0 0


∇H

+G

(
F e

vo

)
(
v

F o

)
= GT∇H

(17)
Proposition 1: The slave side is passive with respect to the

storage function reported in Eq. (12).
Proof: Using Eq. (12), the following energy balance can

be easily obtained:

Ḣ = −∂
TH
∂p

B
∂H
∂p

+ α
∂TH
∂xt

PB
∂H

∂p
+ vTF e + vTo F

o (18)

Considering the definition of P , Eq. (18) becomes

Ḣ = −∂
TH
∂p

B
∂H
∂p

+ α
∂TH
∂p

B
∂H

∂p
+ vTF e + vTo F

o ≤

≤ vTF e + vTo F
o (19)

where the inequality comes from the fact that the energy stored
in the tanks (the second term) is at most equal to the energy
dissipated by the agents (the first term).
Tanks are continuously refilled by the energy dissipated by the
agents and, therefore, it is very likely that the energy stored is
sufficient for passively compensating the energy production
due to the estimation error. This has been confirmed in
our experiments. However, more energy could be left in the
tanks by implementing less conservative (but more complex)
strategies. For example, running a consensus on Γi(t) can
provide each agent with (an estimation of) the global quantity
Γ(t): in this way, only the amount of energy strictly necessary
for implementing the desired control action would be extracted
by the tank, resulting in much less conservative bounds.
Nevertheless, in case the energy stored in the tank falls below
an emergency level, the damping of the corresponding agent
can be raised to a maximum level. This has two advantages:
first, more energy is dissipated and the tank is recharged more
quickly and, second, the agent is forced to slow down and
to eventually stop for avoiding collisions in case the tank is
depleted and F̂λi cannot be implemented.

III. THE TELEOPERATION SYSTEM

The master can be a generic mechanical system and it can be
modeled by the following Euler-Lagrange equations:

MM (xM )ẍM + C(xM , ẋM )ẋM +DM ẋM = FM (20)

where MM represents the inertia matrix, C(xM , ẋM )ẋM is
a term representing the centrifugal and Coriolis effects, DM

is matrix representing both the viscous friction present in the
system and any additional damping injection via local control
actions. As often happens for master devices, we assume
that gravity effects are compensated by a local controller.
The variables xM and ẋM represent the position and the
velocity of the end-effector. A system described by Eq. (20) is
passive with respect to the force-velocity pair (FM , vM ) [13],
where vM := ẋM . This kind of passivity is well suited
in standard passivity based bilateral teleoperation, where the
velocity of the master and the velocity of the slave need to be
synchronized.

Nevertheless, in our setting, in order to consider the dif-
ference between the workspace of the master and that of
the robots at the slave side, we would like to transform the
position of the master into a velocity setpoint for the leader
at the slave side, and to feed back the mismatch between the
master position and the actual leader velocity as a force cue
at the master side in order to transmit to the user a feeling
of the remote side. As reported in [2], it is possible to build
a control loop that makes the master passive with respect to
the pair (FM , rM ), where rM = ρvM + σxM , where ρ and
σ are strictly positive gains. By properly setting ρ and σ it
is possible to make the contribution relative to the velocity
negligible and to render the master passive with respect to a
term that is arbitrarily close to the position and the force.

Exploiting the results developed so far, we have that both
master and slave sides are passive systems. Thus, by designing
a proper passive interconnection between the local and the re-
mote systems will yield a passive bilateral teleoperation system
characterized by a stable behavior in case of interaction with
passive environments (as the obstacles, modeled as potentials,
with which the group is interacting).

Suppose that agent i is chosen as the leader. It is possible
to write F ei = Fs+F env

i , where F env
i is the component of the

force due to the interaction with the external environment and
Fs is the component due to the interaction with the master
side. Similarly, we can decompose FM as FM = Fm + Fh,
where Fh is the component due to the interaction with the
user and Fm is the force acting on the master because of the
interaction with the slave.

For achieving the desired teleoperation behavior, we propose
to join master and slave using the following interconnection:{

Fs = b(rM − vi)
Fm = −b(rM − vi)

(21)

This is equivalent to joining the master and the leader using a
damper which generates a force proportional to the difference
of the two velocity-like variables of the master and the
leader. Since rM is “almost” the position of the master, we
have that the force fed back to the master and the control
action sent to the leader are the desired ones. The overall
teleoperation system is represented in Fig. 4 and it consists
of the interconnection of a passive master side, a passive
interconnection and a passive slave side. Recalling that the
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Fig. 6: Results of the first HHIL simulation. Left: superimposition of
the leader velocity v1(t) and the master command rm(t). Right: the
force Fm(t) displayed to the human operator on the master side

interconnection of passive systems is again passive [13], we
have that the teleoperation system is passive, as desired4.

IV. HUMAN/HARDWARE-IN-THE-LOOP SIMULATIONS

To validate the theoretical framework developed so far we
conducted several HHIL simulations (see Fig. 5) with a
commercial haptic device, the Omega.3,5 as a master robot.
The Omega.3 is a 3-DOF haptic device with 3 translational
actuated axes, and its local control loop runs at about 2.5 kHz
on a dedicated gnu/linux machine. The UAVs dynamics and
control logic, on the other hand, were simulated in a custom-
made simulation environment based on the Ogre3D engine (for
3D rendering and computational geometry computations), the
PhysX libraries for simulating the physical interaction between
the UAVs and the environment, and the MIP framework for
the multi-robot communication and control aspects.6

In the following, we assume w.l.o.g. that the leader is
agent 1 over a total of N = 6 agents composing the group.
During the first simulation, we tested the behavior of the
teleoperation system during free motion, i.e., sufficiently away
from obstacles and in quasi steady-state conditions. The goal
was to show the stability of the teleoperation system. Figure 6a
shows a superimposition of the leader velocity v1 (solid lines)
and the master variable rM (dashed lines). We can see that
the leader velocity tracks the master command with a constant

4If needed, one can also passively consider the communication delay
between local and remote site using one of the techniques developed for single
master single slave telemanipulation systems, as, e.g., wave variables [9]. In
this way, the system would keep on exhibiting a stable behavior independently
of any delay between local and remote site.

5http://www.forcedimension.com
6http://www.ogre3d.org, http://www.nvidia.com/object/physx_new.html,

http://www.dis.uniroma1.it/~labrob/software/MIP
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Fig. 7: Results of the second HHIL simulation. Left: superimposition
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Fig. 8: Results of the second HHIL simulation. Left: behavior of
Ein(t) (blue solid line) and Eout(t) (red dashed line) showing that
the passivity condition (19) is always met. Right: Behavior of the
tank energies Ti(t), ∀t ≥ t0. The tanks never deplete, allowing the
passive implementation of F̂λi (t)

steady-state error: in particular, at every change in the (piece-
wise constant) rM , v1 responds with an initial rise and then
settles down to the steady-state value. This behavior is the
normal outcome of our teleoperation framework and is due to
the viscous resistance that the followers exert on the leader
because of their damping terms Bi. After the initial transient,
the leader starts pulling all the followers and is constantly
dragged by them. Figure 6b shows the force Fm displayed
to the human operator. We can note that the force behavior
correctly reproduces the effects of the followers on the leader:
the operator is provided with a force opposing the commanded
motion, thus conveying the information that he is actually
pulling a ‘load with friction’.

In the second experiment, we tested the teleoperation
scheme in a more general motion involving several split and
rejoin maneuvers in a environment cluttered with obstacles.
Figure 7a shows the behavior of λ̂i2(t), i ∈ 1 . . . N (solid
lines), and of λ2(t) (dashed line). The quantities λ̂i2(t) are
the internal estimations of λ2(t) for each agent i and are
almost perfectly coincident: the ‘single’ solid line in the plot
is actually a superimposition of the N λ̂i2(t), showing that all
the agents agree on the current graph connectivity. One can
also appreciate the transitory mismatches between λ̂i2(t) and
λ2(t) due to the estimation convergence. However, despite the
estimation errors, the agents keep being connected (i.e., within
the sensing range D and without suffering from obstacle or

http://www.forcedimension.com
http://www.ogre3d.org
http://www.nvidia.com/object/physx_new.html
http://www.dis.uniroma1.it/~labrob/software/MIP


inter-agent collisions) as λ2(t) > λmin
2 = 0.1, ∀t ≥ t0. This

is also confirmed by the behavior of V λ(t) shown in Fig. 7b
which does not diverge to infinity over time.

Finally, Figs 8a– 8b are meant to illustrate that passivity
of the slave-side is enforced during the motion. Figure 8a
shows the behavior of Ein(t) = H(t)−H(t0) (blue solid line)
and Eext(t) =

∫ t
t0

(vTF e + vTo F
o)dt (red dashed line), i.e.,

the integral version of the passivity condition (19). The plots
confirm that the inequality in (19) is always met and, thus,
that the slave-side behaves in a passive way w.r.t. the external
forces. Figure 8b, on the other hand, shows the behavior of
Ti(t), i ∈ 1 . . . N (the tank energies of the N agents). The
blue line, rising to T̄ = 100 [J] at about t = 3 [s] is T1(t),
i.e., the tank energy of the leader. Since the leader is (almost)
always pulling the followers, i.e., it is releasing energy into
the elastic potential V λ, its Γ1(t) stays negative and its tank
T1(t) is not exploited by the passive strategy illustrated in
Sect. II-B1: T1(t) keeps on storing the dissipated energy D1(t)
until it reaches the maximum level T̄ . The followers, on the
other hand, receive energy from the elastic potential V λ so
that Γi(t) > 0, i ∈ 2 . . . N : the tanks Ti(t) are then exploited
to implement F̂λi . This is evident by the fact that all the tank
levels except T1(t) do not increase over time but, on average,
the energy stored from Di(t) is reused to implement F̂λi in
a passive way. Nevertheless, no tank depletes confirming that
the conservative strategy of Sect. II-B1 is not too restrictive
for the agent motion.

A videoclip showing a representative experiment is down-
loadable from http://dl.dropbox.com/u/18694382/video1.mov.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how to design a passivity based
control strategy to allow the bilateral teleoperation of a group
of UAVs by means of a single remote human operator while
enforcing global connectivity of the group in a decentralized
way. To this end, we proposed a unique connectivity potential
function V λ that encodes sensing and visibility (line-of-sight)
constraints, as well as inter-agent and obstacle avoidance. We
have shown that every agent can implement the gradient of this
potential in a decentralized way while preserving the passivity
of the overall slave-side system. This is a crucial point in
order to embed our multi-agent slave side within a bilateral
teleoperation scheme, where a human-controlled master device
gives motion commands to the slave and receives a suitable
force feedback from the remote (UAV) side. The approach was
validated by means of HHIL simulations.

We are currently investigating the possibility of having more
leaders at the slave side in order to have a better control of
the motion of the UAVs. Finally, we also plan to passively
implement some extra forces at the master side in order to
convey some extra information about the connectivity and for
improving the telepresence feeling of the user.
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