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Abstract—This paper presents a method for reasoning about
the effects of sensor error on high-level robot behavior. We
consider robot controllers that are synthesized from a set of high-
level, temporal logic task specifications, such that the resulting
robot behavior is guaranteed to satisfy these specifications when
assuming perfect sensors and actuators. We relax the assumption
of perfect sensing, and calculate the probability with which
the controller satisfies a set of temporal logic specifications.
We consider parametric representations, where the satisfaction
probability is found as a function of the model parameters,
and numerical representations, allowing for the analysis of large
examples. We illustrate our approach with three examples of
varying size that provide insight into unintuitive effects of sensor
error that can inform the specification design process.

I. INTRODUCTION

The creation of robot controllers for complex tasks is an
arduous and error-prone process, requiring the iterative design
and testing of large, complex controllers. In many cases,
these controllers extend beyond single continuous controllers
into large, hybrid controllers that allow for discrete switching
among a set of individual, continuous controllers. Recently,
researchers have developed methods for automatically syn-
thesizing complex, hybrid controllers from high-level task
specifications in a manner that provides guarantees about the
behavior of the robot [1, 2, 5, 9, 10, 15, 17, 18, 20].

These methods cover a variety of capabilities and applica-
tions. The approach presented in [8], for example, facilitates
the creation of a non-reactive controller from temporal logic
specifications. Conversely, other approaches such as [11, 20]
focus on creating controllers that react to the system’s per-
ception of environmental inputs. Another example of differing
approaches is that of [4, 9] when compared to [1, 8]; the
former two methods use feedback controllers, while the latter
two use sampling-based methods to allow for motion planning
involving complex dynamics and environments. The authors
of [19] present a a receding horizon framework for reducing
computational complexity, at the cost of completeness.

Previous work facilitated the creation of controllers that
were guaranteed to satisfy their underlying specifications, but
such guarantees were based on the assumption of perfect
sensing and actuation. In this paper, we relax the assumption
of perfect sensing, and use probabilistic analysis to investigate
the correctness of the high-level behavior of the controllers.

Related work includes [13], in which the authors control
linear, stochastic systems with temporal logic specifications
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by constructing a Markov Decision Process and using model
checking algorithms to find an execution satisfying the spec-
ifications. Building on the work presented in [9], they then
define a sequence of controllers to maximize the probability
of following the determined execution.

Similarly, in [14] the authors propose an algorithm for
finding a desirable control strategy for motion planning in the
presence of noise. By treating the outcome of the low-level
motion controllers in a probabilistic fashion, the authors were
able to find, under known operating conditions, the control
strategy most likely to satisfy the given specifications.

In this paper, we assume perfect actuation, and analyze
the effect that sensor error has on the behavior of the robot.
Specifically, we use probabilistic model-checking techniques
to analyze the effects of sensor error on the satisfaction of
behavioral specifications defined as temporal logic formulas.
The analysis can then be used to adjust the specifications and
change the controller to improve the robot’s performance. This
approach for analyzing the performance of the controller under
sensor error is, to the best of our knowledge, novel.

We consider a parametric model checking algorithm, based
on the algorithm described in [7]. This algorithm calculates
the probability with which the system model satisfies a set of
temporal logic formulas, as a function of the model param-
eters. Models with large state-spaces and numbers of transi-
tions can become intractable for our current implementation
of the algorithm; for these cases, we use the PRISM [12]
probabilistic model checking tool with the same system model
and specifications to find a numerical (rather than parametric)
probability for the satisfaction of the specifications.

The paper is organized as follows. Section II briefly de-
scribes the background information for the problem, and
Section III formally defines the problem statement. Section IV
describes our approach and the algorithms we use to analyze
the effect of sensor error. Section V presents three illustrative
examples, and the paper concludes in Section VI.

II. PRELIMINARIES

A. LTL Syntax and Semantics

The syntax of Linear Temporal Logic (LTL) is defined
using a set of atomic propositions (π ∈ AP ), the set of
boolean operators (“not”: ¬, “and”: ∧), and the set of temporal
operators (“next”:©, “until”: U). The syntax for the language
is then defined recursively as follows.

φ ::= true | π | ¬φ | φ ∧ φ | © φ | φUφ



We can define the additional boolean operators ∨ (“or”),
→ (“implies”) and ↔ (“if and only if”) using only ¬ and
∧. Likewise, © and U can be used to define the operators ♦
(“eventually”) and � (“always”).

To define the semantics of LTL, let ω represent an infinite
sequence of states in a transition system (Kripke structure [3]),
where each state is labeled with the set of truth assignments
for the atomic propositions π ∈ AP . Let state ωi in this
sequence represent the truth assignments to π at the position
i. Intuitively, ©φ is true if the formula φ is true in the next
step (at state ωi+1). The formula ♦φ = trueUφ is true if φ
holds in at least one state in ω, while �φ = ¬♦¬φ is true if
φ holds for all states in ω. For a formal definition, the reader
is referred to [3].

B. Restricted form of LTL

We consider a restricted class of LTL formulae [16] of the
form ϕ = (ϕe → ϕs) where ϕe represents the assumptions
about the behavior of the environment and ϕs defines the
desired behavior of the robot. We assign ϕe and ϕs the
following structure.

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g ; ϕs = ϕs

i ∧ϕs
t ∧ϕs

g

In the above formulas, ϕs
t represents the safety requirements

for the robot, which require certain behaviors to always be
satisfied, and consists of a conjunction of formulas of the form
�Bi, where each Bi is a Boolean formula over AP ∪©AP .
ϕs
g represents the specified liveness for the robot, which

requires that some desirable behavior occurs infinitely often,
and consists of a conjunction of formulas of the form �♦Bj ,
where each Bj is a boolean formula over AP . Because the
focus of this paper is on ϕs

t and ϕs
g , the other formulas are

not explicitly defined here. For more information, see [16].

C. Labeled Transition Systems (LTS)

A Labeled Transition System (LTS) is a tuple A =
{S, S0,Σ, δ,Π, L} where S is a set of states, S0 is the set
of initial states and Σ is the input alphabet. The transition
relation δ : S × 2Σ × S defines possible labeled transitions
(si, σij , sj) for σij ⊆ Σ. The labeling function L : S → 2Π

labels each state with a set of symbols belonging to the set Π.

D. Discrete Time Markov Chains

A Discrete Time Markov Chain (DTMC) is defined as a
tuple D = {Q,Q0,∆,Π,L}, where Q defines a finite set of
states with the set of initial states Q0. The transition function
∆ : Q×p×Q defines the probability with which state qi ∈ Q
transitions to state qj ∈ Q. The labeling function L : Q→ 2Π

labels each state with a set of symbols belonging to the set Π.

III. PROBLEM STATEMENT

We consider automatically-synthesized robot controllers
(e.g. [11]) for which the robot is guaranteed to achieve a
given high-level specification, if perfect sensing and actuation
are assumed. To analyze the behavior of the controller under
sensor error, we must define models for the robot controller,
the environment behavior and the sensor error.

The robot controller, R, is defined as an LTS where the
input set Σ is a set of binary propositions X̄ = {x̄1, . . . , x̄m}
that represent the information that the robot can attain about
the environment via its sensors. The set Π, used to label the
states, is a set of binary propositions for the robot, Y =
{r1, . . . , rn, a1, . . . , ak}. The set of propositions {r1, . . . , rn}
represents the location of the robot in a partitioned environ-
ment, where proposition ri is true if and only if the robot is
in region i. The set {a1, . . . , ak} is the set of propositions that
can be activated by the robot, where proposition aj is true if
and only if the robot performs action j.

The environment behavior, E, is captured by the set of
transition probabilities P (X ′|X,Y ) defining the probability of
the next environment proposition values X ′ = {x′1, . . . , x′m},
given the current environment and robot values, X and Y
respectively. This formulation allows us, if applicable, to place
assumptions on the behavior of the environment (by setting
transition probabilities to 0 or 1). Such assumptions enable us
to generate controllers that do not need to satisfy the desired
specification for any arbitrary environment, but rather only for
a restricted set of allowable environments. The environmental
assumptions, which restrict the values of X , are captured in
the temporal logic formula ϕe.

The sensor behavior, Ē, is modeled with the set of proba-
bilities P (X̄ ′|X ′, X̄, Y ) defining the values of the next sensor
propositions X̄ ′ = {x̄′1, . . . , x̄′m} given the next environment
values, X ′, and the current proposition values of the sensors
and the robot, X̄ and Y respectively.

The final piece we define is the system specification, Φ, for
the robot. It is expressed as a set of LTL formulas {φ1, . . . , φl}
that are part of the temporal logic formula ϕs [11].

Previous work has shown that, given assumptions on the
environment behavior and specifications for the robot behavior,
a controller can be synthesized that is guaranteed to behave
correctly in all admissible environments (i.e. E ‖ R |=
φ , ∀φ ∈ Φ) [11]. This guarantee, however, can only be made
when perfect sensors and actuators are assumed (i.e. E = Ē).

The focus of this paper is on the following problem.
Problem: Given a model of the robot controller R, and

models of the environment E and sensors Ē, determine the
probability that the synthesized robot controller will satisfy a
set of high level specifications when the sensor outputs contain
false positives and false negatives. That is, given that E 6= Ē,
find p(E ‖ R̄ |= φ) ∀φ ∈ Φ where R̄ = Ē ‖ R.

IV. APPROACH

To analyze the behavior of a synthesized controller (R)
under sensor error, we compose it with models of the en-
vironment (E) and sensors (Ē), and use probabilistic model
checking techniques on the resulting DTMC to assess the
performance of the controller with respect to a set of LTL
formulas. Figure 1 is a graphical overview of this process.

In the following, we describe an algorithm for creating a
DTMC representing the composition of the controller with the
environment and sensor model and discuss two approaches
to analyzing the robot’s behavior. The primary method we
use is a parametric model checking algorithm, based on the



Fig. 1. A flow chart of the approach presented in this paper for analyzing the
correctness of a controller that is generated from high-level task specifications.

work described in [7]. This algorithm returns the probabilities
as rational functions over a set of variables, in our case,
representing the environmental event frequency and sensor
error rates. Thus, we are able to provide information not only
on the probability a specification is satisfied given the sensor
error but also on the sensor error bounds that are required for
a given desired specification probability.

In addition to the parametric model checking algorithm, we
discuss the use of the off-the-shelf probabilistic model checker
PRISM [12] to evaluate probabilities when numeric model
parameters are given (non-parametric).

A. Building the DTMC
Analysis of a synthesized controller using the probabilistic

model checking algorithm requires first that a model of the
complete system be composed from the known models of the
environment, sensors, and robot automaton. This process is
described in Algorithm 1. The inputs are the LTS for the robot
controller, the set of atomic propositions AP = X ∪ X̄ ∪ Y ,
the environment transition probabilities P (X ′|X,Y ) and the
sensor transition probabilities P (X̄ ′|X ′, X̄, Y ).

Given these inputs, the algorithm defines a set of proba-
bilistic states for each deterministic state si ∈ S, such that
the new probabilistic state is labeled with the combination of
the environment propositions Xj = (x1, . . . , xn) ∈ 2X , the
labels on the transitions into the deterministic state σ∗i (sensor
propositions), and the labels of the deterministic robot state
(lines 3-6). Any probabilistic state created from si ∈ S0 is then
added to the set of initial states for the complete system (lines
7-8). The probabilistic transition function ∆ : Q × FV × Q
is then defined for all pairs of states (qij , qkl) such that
the underlying deterministic pair (si, sk) is in the transition
function δ, and the probability function fijkl ∈ FV (the
rational function representing the probability of transitioning
from state qij to qkl) is non-zero (lines 9-13). The resulting
DTMC D = {Q,Q0,∆, AP,L} can then be used to analyze
the performance of the controller.

Additionally, we can define a bounded system by unfolding
the DTMC obtained from Algorithm 1 over the range of time
0 ≤ t ≤ T where T is the desired time bound. Intuitively, this
process can be seen as building a tree such that root nodes
are defined as the set of initial states Q0, and each new level
(referring to the next time step) is defined as the union of
the sets of successors for each state in the preceding level of

Algorithm 1 Define Probabilistic DTMC
1: procedure PROBDTMC(A = {S, S0, X̄, δ, Y, L},
AP = X ∪ X̄ ∪ Y, P (X ′|X,Y ), P (X̄ ′|X ′, X̄, Y ))

2: Q = ∅, Q0 = ∅
3: for si ∈ S do
4: for Xj ∈ 2X do
5: Q = Q ∪ qij
6: L(qij) = Xj ∪ σ∗i ∪ L(si) | σ∗i ⊆ Σ
7: if si ∈ S0 then
8: Q0 = Q0 ∪ qij
9: for (si, sk) ∈ δ do

10: for (qij , qkl) ∈ Q×Q do
11: fijkl = P (X l|Xj , Y i)× P (X̄ l|X l, X̄j , Y i)
12: if fijkl 6= 0 then
13: ∆ = ∆ ∪ (qij , fijkl, qkl)

14: return D = {Q,Q0,∆, AP,L}

the tree. This process is repeated for each time step, and the
resulting DTMC is the bounded system.

B. Parametric Model Checking

Given a probabilistic system model as defined previously,
we find the function representing the probability with which it
satisfies a specification of the form φ = ♦ϕ (resp. φ = �ϕ =
¬♦¬ϕ). For the latter case, we find the probability of always
satisfying ϕ by calculating the probability of eventually satis-
fying ¬ϕ, and subtracting it from 1 (giving us the probability
of not satisfying ¬ϕ). This process is described in Algorithm
2, and is based on the algorithm in [7]. Intuitively, lines 2-5
of the algorithm find the set of states B ⊆ Q that satisfy the
formula ϕ (resp. ¬ϕ). From this set of target states, we use
a minimum fixed-point operation to reduce the model to the
set of states from which at least one target state is reachable
(line 6). Line 7 then calls Algorithm 4, to find the probability
of reaching the set of target states from an initial state. The
function P (resp. 1 − P) represents the probability that the
formula φ = ♦ϕ (resp. φ = �ϕ) is satisfied by the DTMC.

Algorithm 2 Parametric Model Checking
1: procedure PARAMETRICMC(D = {Q,Q0,∆, AP,L},
φ,X, Y )

2: if φ = �ϕ then
3: (B,∆) = TargetStates(Q,∆,¬ϕ,L, X, Y )
4: else
5: (B,∆) = TargetStates(Q,∆, ϕ,L, X, Y )

6: Qreach = ReduceStates(Q,B,∆)
7: P = Eliminate(Qreach, Q0, B,∆)
8: if φ = �ϕ then
9: P = 1− P

10: return P

Algorithm 3 defines the process of finding the set of states
that satisfy a given formula φ. To do this, we look at two
distinct forms of φ. In the first case, φ is a boolean formula
over the values of X and Y in a single state (in this paper, we
examine the performance of the controller with respect to the
environment, and do not use X̄ in any of the formulas). For



such a formula, the set of target states can be found by looping
through all of the states in the model. At each state, we map
each atomic proposition in the formula to a T/F value, based
on the state label (line 6). If the resulting formula evaluates to
true, we add that state to the set of target states and remove
all transitions out of it, treating it as a sink (lines 7-9).

Algorithm 3 Find Target States
1: procedure TARGETSTATES(Q,∆, φ,L, X, Y )
2: if φ is a formula over {X,Y } then
3: B = ∅
4: for qi ∈ Q do
5: for a ∈ {X,Y } do
6: φ[a 7→ (a ∈ L(qi))]

7: if eval(φ)==True then
8: B = B ∪ qi
9: ∆ = ∆\(qi, fij , qj) ∀ qj ∈ post(qi)

10: else if φ is a formula over {X,Y,©X,©Y } then
11: Q = Q ∪ q∗
12: B = {q∗}
13: for qi ∈ Q\q∗ do
14: fi∗ = 0
15: for qj ∈ post(qi) do
16: for a ∈ {X,Y } do
17: φ[a 7→ (a ∈ L(qi))]
18: φ[©a 7→ (a ∈ L(qj))]

19: if eval(φ)==True then
20: fi∗ = fi∗ + fij
21: ∆ = ∆\(qi, fij , qj)
22: if fi∗ 6= 0 then
23: ∆ = ∆ ∪ (qi, fi∗, q

∗)

24: return B,∆

The second case is that for which φ is a boolean formula
over propositions in the current and next state (X , Y , ©X ,
©Y ). For this case, we create a single goal state q∗ and loop
though each pair of states (qi, qj) where qj is a successor of
qi. We then map each atomic proposition to a T/F value based
on the state qj if it is under the scope of a “next” operator (line
18), or based on the state qi otherwise (line 17). If the formula
is true when evaluated over the pair, the transition from qi to
qj is removed and the transition probability is added to the
transition from qi to q∗ (lines 19-21).

Given the set of initial states Q0, the set of goal states B,
the set of states Qreach that can reach B, and the transition
function ∆, we can now eliminate all intermediate states
from the model, until we are left with only the initial states,
the goal states, and the associated transition probabilities.
Algorithm 4 describes this process, and the calculation of the
probability with which our model will reach a target state from
a specified initial state. This algorithm follows the process
described in [7], and can intuitively be described as removing
an intermediate state qi and accounting for the probability with
which a predecessor q1 ∈ Pre(qi) will transition through qi
to a successor q2 ∈ Post(qi), for all pairs (q1, q2) (lines 5-
9). Once all intermediate states are eliminated, the probability

Fig. 2. Workspace for the example of a housekeeping robot. The robot
can transition across boundaries marked with dashed red lines, but not those
marked with solid black lines.

with which the system will reach a state satisfying φ is the
sum of transition probabilities from the initial state to each
goal state (adjusting for self-transitions) (line 10).

Algorithm 4 State Elimination
1: procedure ELIMINATE(Qreach, Q0, B,∆)
2: for q0 ∈ Q0 do
3: Qelim = Qreach\{B, q0}
4: for qi ∈ Qelim do
5: for (q1, q2) ∈ Pre(qi)× Post(qi) do
6: f12 = f12 + f1i

1
1−fii fi2

7: (q1, f12, q2) ∈ ∆
8: ∆ = ∆\{(q1, f1i, qi), (qi, fi2, q2)}
9: Qelim = Qelim\qi

10: P(q0, B) = 1
1−f00

∑
b∈B f0b

11: return P

Our implementation of the preceding algorithms is done in
Python, using the SympyCore toolbox to perform the symbolic
manipulations. An alternate implementation of the algorithms
may alleviate some inefficiencies and problems that occur
when analyzing large models.

C. PRISM Non-Parametric Model Checking

In place of the Parametric Model Checking algorithm
discussed above, we can also use the off-the-shelf model
checking software PRISM, with the same system model and
specifications, to analyze the performance of the controller.
The PRISM software allows us to calculate the probability
that our system model satisfies an LTL formula, but it does not
use parametric algorithms, restricting the evaluation to specific
numerical valuations of the system model. In particular, we use
PRISM to evaluate models that are too large for our current
implementation of the parametric algorithm.

V. EXAMPLES

A. Example 1: Housekeeping Robot

Scenario: A housekeeping robot moves about an environ-
ment that is divided into five separate regions, as shown in
Figure 2. It is tasked with searching the Bedroom, Kitchen,
and Living rooms, and performing the action Clean whenever
it senses a Mess. Additionally, when the robot senses LDone
(signaling that the laundry is done), it must return to the
LRoom (laundry room), and perform the action Fold. Doing
so marks the end of the robot’s tasks.

Controller: The controller for this example was synthesized
from a set of high-level task specifications, using the LTLMoP



Fig. 3. Graphical representation of the environment finite state machine,
with probabilities and necessary conditions given for each transition.

Fig. 4. Graphical representation of the sensor finite state machine, with
probabilities and necessary conditions given for each transition.

[6] toolkit. An abridged set of the LTL specifications used to
generate the controller is given below.
• �(©Mess↔©Clean)
• �((©LDone ∧ LRoom)↔©Fold)
• �♦((¬LDone ∧ ¬Mess)→ Bedroom)
• �♦((LDone ∧ ¬Mess)→ LRoom)

Environment: The behavior of the environment proposi-
tions r Mess and r LDone (the prefix r is used to indicate that
it is a reflection of the “real” world), is captured by the automa-
ton shown in Figure 3. The transition probabilities are defined
with the parameters fMess00, fMess11, and fLDone00, which
represent the probability that r Mess remains false, r Mess
remains true, and r LDone remains false, respectively. Each
environment proposition is also restricted according to the
environmental assumptions defined in ϕe, and listed below.
• �(LRoom→ ¬©Mess) “No Messes in LRoom”
• �(LDone→©LDone) “Once true, LDone stays true”
Sensors: The sensor propositions, s Mess and s LDone,

were modeled as shown in Figure 4. The prefix s indicates
that the variables refer to the “sensed” values of the corre-
sponding environment propositions. The transition probabil-
ities were defined by the parameters aMess, referring to the
probability with which the s Mess sensor correctly mimics the
value of r Mess, and aLDone, which represents the probability
of a correct reading of r LDone.

Analysis properties: For this example problem, our robot
controller, R, consisted of 70 states. Composing the controller
with the probabilistic environment and sensor models yielded
a system with 280 states with probabilistic transitions. We an-
alyzed the controller with respect to the following properties.

1) �(Clean↔ r Mess) “Clean any and all Messes”
2) �(©Fold↔ (©r LDone∧LRoom)) “Fold if and only

if r LDone is true and you are in the LRoom”
3) ♦(Bedroom) “Visit the Bedroom”
Using the parametric model checking algorithm described

earlier, we find a symbolic formula for the probability of

Fig. 5. Plot of the probability with which each of the properties is satisfied
for a range of LDone sensor accuracies, evaluated at steps of 0.01.

satisfying each property, as a function of the environment event
frequency and sensor accuracy. For the following results, the
values of fMess00, fMess11, and fLDone00 were set at 0.75,
0.5, and 0.95, respectively. For the results in Figure 5, the
value of aMess was held at 0.75.

Non-monotonic performance: Figure 5 shows the perfor-
mance of the controller over a range of values for aLDone.
We see that the probability of satisfying the third specification
does not monotonically increase or decrease with respect to
changes in the accuracy of s LDone. Rather, it has a minimum
at a sensor accuracy of approximately 0.38. This specification
is satisfied when s LDone remains false long enough that the
robot reaches the Bedroom. This can occur when r LDone
immediately becomes true and s LDone remains false, ac-
counting for the small peak at very low sensor accuracies.
Alternately, this can occur when r LDone remains false and
s LDone correctly mimics it, accounting for the peak at high
values of aLDone. At intermediate accuracies, s LDone is
more likely to become true (either correctly or incorrectly),
causing the robot to go to LRoom before it reaches Bedroom.

Sensor effect on different specifications: Figure 5 also
shows the effects of the LDone sensor accuracy on the first
and second specifications. We see that improvements to the
accuracy of the LDone sensor have a negative effect on the
probability with which the robot satisfies the first property,
which does not depend directly on r LDone. This is because,
due to the low probability of r LDone becoming true, a lower
sensor accuracy is more likely to result in a value of true for
s LDone, which causes the robot to return to LRoom, where
the value of Mess is fixed as false, so no errors are made.
The second specification is directly influenced by the LDone
sensor, and improves as s LDone becomes more accurate. A
comparison of the two properties shows that a sensor accuracy
of about 0.65 would be desired for equal performance of the
controller with regards to each of the two specifications.

Picking sensor accuracies: If we wish to find the sensor
accuracies needed for the robot to obtain a particular perfor-
mance, it may be useful to look at the evaluation of a function
over ranges of multiple sensors. Figure 6 shows a surface plot
of the weighted average of all three specifications, with the
added requirements that the first and second specifications
maintain a probability greater than 0.25. The three specifica-
tions are weighted by 9, 2, and 5, respectively. This plot shows
that, while the best performance results from high accuracies
for both sensors, if the Mess sensor is inaccurate, a highly



Fig. 6. Plot of the surface representing the weighted average probability of
the three properties as a function of sensor accuracies for both the Mess and
LDone sensors. Additional requirements that the first and second properties
have a probability greater than 0.25 are imposed, constraining the surface.

Fig. 7. Workspace for the example of a an autonomous Taxi. Roads are
marked in green, with names beginning with R. Intersections are marked in
red, with names beginning with I. The Lot region is marked in blue.

accurate LDone sensor may result in undesirable behavior (i.e.
a point that is not part of the surface, due to the constraints).

B. Example 2: Taxi

Scenario: The second example we present is that of an
autonomous Taxi. The robot operates in a 9-block grid of roads
and intersections, with a single parking Lot. The discretized
workspace, which has 41 different regions, is shown in Figure
7. The robot is tasked to continually visit each of the roads and,
when it senses a Person, pick them up, activating the action
Passenger. Once Passenger is activated, the taxi is required
to take them to the Lot and drop them off. While doing this,
the robot is required to Stop for any RedLights it senses. The
final sensor the robot has is used to detect when the lot is Full;
once it is sensed, the robot Parks and the task is complete.

Controller: The deterministic controller that is synthesized
from the temporal logic specifications has a total of 4,102
states. Composing this controller with the models of the
environment and sensors results in a probabilistic model of the
system with 24,612 states. Due to the large number of states
and transitions in the model, the current implementation of the
parametric model checking algorithm introduced in Section IV
cannot efficiently calculate the probabilities with which the
controller satisfies a given set of properties. As such, we use
PRISM to analyze the performance of the controller.

Environment: For this example, the environment is re-
stricted in several ways. Firstly, a Person will attempt to flag-
down the taxi only while in Road regions. In those regions,

we model the proposition with a 0.2 probability of being true.
The second is that only the intersections contain stop lights
and, therefore, r RedLight can be true only at intersections.
For this proposition, we model it such that it has a 0.5 chance
of becoming true when previously false, and a 0.75 chance
of remaining true (approximating the tendency of stoplights
to remain red for a short duration). The final restriction we
place on the environment is that r Full has a 0.1 chance of
becoming true, after which it remains true.

Sensors: In each of the states where the sensor values were
not restricted by the assumptions placed on the environment,
the sensors were modeled such that they correctly mimicked
the corresponding environment proposition with a predefined
probability. For the following analysis, each of the sensors that
were not being varied were held fixed at accuracies of 0.9 and
0.75 for the s Full and s Person sensors, respectively. The
s RedLight sensor accuracy was held at a value of 0.85 in all
of the intersections, with the exception of intersections I02,
I08, and I10. For these three intersections, the sensor had a
lower accuracy, held constant at 0.7.

Analysis properties: We analyze the performance of the
controller with respect to the two properties listed below.

1) �(r RedLight↔ Stop) ”Stop at any and all RedLights”
2) �(Park → ¬Passenger) “No Passengers when Parking”

Unrealizable specification: The second property, which
requires that the robot never have a Passenger when it Parks,
is interesting because it can not be included in the controller
specification, as it is un-synthesizeable. We cannot guarantee
that, even if the sensors are perfect, the controller will always
satisfy this specification. If we analyze the specification under
perfect sensor accuracies we find that the controller has a 0.625
probability of satisfying the specification. In contrast, analysis
of the first property, which is part of the specification, shows
1.0 probability of satisfaction under perfect sensor accuracies.

Discontinuous case: Figure 8 shows the results of analyzing
the properties over variations in the accuracy of s Full. The
second specification shown in this figure has a discontinuous
data point at an accuracy of 0, where the sensor will always
have the wrong reading for the Full proposition. As a result,
s Full will always be true if the first r Full environment value
is false (once the sensor turns true, it remains so). Alternately,
if r Full becomes true immediately, the sensor will continually
be false. For the former case, the taxi will park before picking
up a passenger, guaranteeing that the specification will be
satisfied. For the latter case, the taxi will never park, again
guaranteeing that the specification will be satisfied. At sensor
accuracies greater than 0, the latter of the two cases will
no longer hold, and the sensor will eventually become true,
accounting for the discontinuity.

Adjusting the controller: Recognizing that the three inter-
sections with lower RedLight sensor accuracy may adversely
affect the performance of the robot, we can adjust the con-
troller by adding the specification �¬(©I02∨©I08∨©I10),
which requires that the robot always avoid these three regions.
Analyzing this new controller under the default model values
yields a 0.7004 probability of satisfying the first specification



Fig. 8. Plot of the performance of the autonomous Taxi, over a range of
different sensor accuracies for the Full sensor.

Fig. 9. Discretized workspace for the search and rescue example problem.

(as compared to the probability of 0.6986 for the original
controller) and a 0.5962 probability of satisfying the second
specification (as compared to 0.5964). We can see from these
results that the bad intersections had negligible effect on the
performance of the controller, due to the large number of inter-
sections and the relatively small impact of the poor accuracies
in just those three. For a smaller environment, or one where the
bad sensors had more impact, such an adjustment may result
in significant differences in the performance of the controller.

C. Example 3: Search and Rescue
Scenario: The final example we present is that of a Search

and Rescue robot. We consider a small workspace, with 3
rooms, a hallway, and a designated exit point, as shown in
Figure 9. The robot is tasked with searching the area for
people and, when it senses a Person, to lead them to the Exit.
While the robot does this, it is required to do the action Clear
when it senses Debris, and to Extinguish when it senses a Fire.
When the robot senses DistressSignal, however, it is required
to ignore any Debris or Fire and urgently search for a Person.
Additionally, if the robot is leading a Person to the Exit and
it senses an Alarm, it is required to stop moving and wait for
the Alarm to turn off.

Controller: The resulting controller for this specification
consists of 164 deterministic states. Because of the large
number of sensors in this example, the probabilistic system
expands to 1640 distinct states. Due to the size of the example,
particularly the large number of transitions, we use PRISM to
analyze the performance of the controller.

Time bound: Unlike the previous two examples, the con-
troller for this examples does not have an inherent ending
point (such as LDone or Full sensors). As such, the behavior
is infinite, and unbounded performance proves uninteresting.
For the results presented below, the evaluation of the controller
was restricted to a time bound of 30 discrete steps.

Environment: The environment proposition r Person was
modeled with a 0.25 chance of becoming true, and once it
was true, it remained true until the robot reached the Exit.

Fig. 10. Plot of the results for the Search and Rescue example over varying
sensor accuracies for the DistressSignal sensor (false positives only).

The r Fire proposition had a 0.25 probability of becoming
true when previously false, and a 0.5 chance of remaining
true. Similarly, the r Debris proposition had a 0.5 chance of
becoming true, and a 0.75 chance of remaining true. All three
of these propositions were assumed to be false in the Exit
region. Finally, the r DistressSignal and r Alarm propositions
had a 0.2 and 0.1 chance of becoming true, respectively. Once
true, both propositions remain so with a 0.9 probability.

Sensors: For this example, the s Fire, s Debris, and
s Person sensors had accuracies that were fixed at sym-
metric values of 0.85, 0.75, and 0.9, respectively. The
s DistressSignal sensor had a 0.8 and 0.95 probability of
correctly sensing false and true values of r DistressSignal,
respectively. Similarly, the s Alarm sensor had values of 0.85
and 0.95 for correctly sensing false and true, respectively.

Analysis properties: For this example, we analyzed the
performance of the controller with respect to three properties:

1) �((r Debris∧¬r DistressSignal)→ Clear) “Clear
all encountered Debris if there is no DistressSignal”

2) �((r F ire ∧ ¬r DistressSignal) → Extinguish)
“Extinguish all encountered Fire if there is no DistressSignal”

3) �♦((r Person ∧ ¬Clear ∧ ¬Extinguish ∧
¬r Alarm) → Exit) “Lead any Person to the Exit,
if not Clearing or Extinguishing, and there is no Alarm”

Indirect Effects: The effects of changes in the accuracy
of the s DistressSignal sensor (when r Distress is false) are
shown in Figure 10. We see, in this figure, that the third
specification, which is not directly related to the sensor in
question, improves as the sensor accuracy increases. This
indirect effect of the s DistressSignal sensor on the third
specification can be attributed to the rate at which the robot
senses DistressSignal to be true. As the sensor accuracy
increases, there are less occurrences of false positives, and
the robot more often activates Clear and Extinguish, either of
which satisfy the specification.

Event Frequency Effects: Figure 11 shows the effects of
changes in the rate at which r DistressSignal becomes true.
We can see that an increase in the frequency of DistressSignal
will dramatically affect the performance of our controller.
The probability that the controlloer will satisfy the third
specification is better at low frequencies of r DistressSignal,
where the robot would more often activate Clear or Extinguish
(either of which satisfy the specification). A larger rate of
occurrence, however, would improve the probability that the
controller would satisify the first two specifications, as both



Fig. 11. Results for the Search and Rescue example over varying frequencies
for the r DistressSignal proposition changing from false to true.

are satisfied when r DistressSignal is true.

VI. CONCLUSION

In this paper, we present a novel approach for assessing
the performance of automatically synthesized controllers under
the presence of erroneous sensors. By composing a model of
the system, including the behavior of the environment and
sensors, we can use probabilistic model checking techniques to
compute the probability with which the controller will satisfy
a set of high-level specifications. We discuss the calculation of
parametric formulas representing the satisfaction probability as
a function of the model parameters (frequency of environment
changes and sensor accuracies). The algorithms presented in
this paper allow for the inclusion of time bounds and the
nesting of a single “next” temporal operator in the analyzed
formulas. The applicability of this approach is presented with
reference to three different examples.

The work presented here facilitates the assessment and
redesign of a controller synthesized from temporal logic
specifications and provides a foundation for further related
work. In the future, we intend to extend the applicability of this
approach to include actuation uncertainty in the assessment of
controller performance, and to incorporate such analysis into
the automated selection and synthesis of the controller.
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