
Multi-Level Partitioning and Distribution of the Assignment Problem
for Large-Scale Multi-Robot Task Allocation

Lantao Liu
Dept. of Computer Science and Engineering

Texas A&M University
College Station, USA

Email: lantao@cse.tamu.edu

Dylan A. Shell
Dept. of Computer Science and Engineering

Texas A&M University
College Station, USA

Email: dshell@cse.tamu.edu

Abstract— A team of robots can handle failures and dynamic
tasks by repeatedly assigning functioning robots to tasks. This
paper introduces an algorithm that scales to large numbers of
robots and tasks by exploiting both task locality and sparsity. The
algorithm mixes both centralized and decentralized approaches at
different scales to produce a fast, robust method that is accurate
and scalable, and reduces both the global communication and
unnecessary repeated computation. We depart from optimization
and bipartite matching formulations of the problem, observing
instead that an assignment can be computed through coarsen-
ing and partitioning operations on the utility matrix. First, a
coarse assignment is calculated by evaluating the global utility
information and partitioning it into clusters in a problem-domain
independent way. Next, the assignment solutions in each partition
are refined (either recursively, or via an existing algorithm).
This multilevel framework allows the repeated reassignment to
execute among interrelated partitions. The results suggest that
only a minor sacrifice in solution quality is required for gains
in efficiency. The proposed algorithm is validated using extensive
simulation experiments and the results show advantages over the
traditional optimal assignment algorithms.

I. INTRODUCTION
Task-allocation is a successful paradigm for coordinating

multiple robots in a task-domain independent way. In its
most straightforward form, each robot within the multi-robot
team quantifies their expected individual performance on the
pending tasks (their utilities). The robots then share this in-
formation and collectively allocate tasks among themselves so
as to maximize estimated team performance, either directly or
indirectly. It is not uncommon to perform the task assignment
step repeatedly to ensure that the multi-robot system acts
fluidly in a dynamic environment, deals with robot failures,
takes newly injected tasks into account, and adapts as utility
estimates are revised.

This paper is concerned with large-scale on-line assignment
problems involving hundreds of robots and tasks. When one
considers repeated allocation for large problems, it can be
costly to use the naı̈ve approach of recomputing by globally
aggregating the latest utility estimates, and then performing
a new allocation from scratch. Generally speaking, those
steps are unavoidable when no information about the task
structure is known. However, both spatial and temporal lo-
cality mean that after analyzing the utility matrix from a
first task-assignment problem, subsequent reassignments—
which typically involve quite similar inputs—may be greatly
ameliorated. The algorithm we describe achieves its efficiency
through parallelization of large allocation calculations, and

communication costs are lessened by confining messages to
subsets of the team.

The algorithm we introduce is based on the observation
that existing techniques for distributing jobs across multiple
processors can not only be applied to distribute the allocation
problem, but, in fact, recursive application of these techniques
may actually be used to compute an assignment directly. The
approach computes the assignment solution in two stages: the
first stage is a coarse assignment where strong “connected”
robot-task pairs are clustered together to produce an abstracted
problem of reduced size; the second stage refines the as-
signment solution inside each clustered partition, i.e., more
accurate assignment solutions are computed inside individual
partitions in a distributed fashion. By comparing with central-
ized and decentralized algorithms, we show that our divide-
and-conquer strategy possesses several advantages, and the
new formulation as a partitioning problem has potential for
further improvement via future research.
The contributions of this work include:–
• Identification of a new hypergraph (and related matrix)

partitioning formulation for the assignment problem which
enables a top-down, multi-level allocation of tasks.
• Demonstration that this leads to a new, naturally dis-

tributed solution in which centralized and decentralized
aspects can be combined and mixed up to any level of
recursion, to large scale problems.
• Evaluation and exploitation sparseness properties of the

utility matrix.
• A solution to what we term the “dynamic” optimal assign-

ment where changes in subsets of the utility matrix are only
propagated up to a level necessary to adjust the assignment.

II. RELATED WORK
As described in [1], task-allocation mechanisms are a form

of deliberative coordination, several of which were developed
in conjunction with, and as foundational elements of, multi-
robot software architectures. The focus of this paper is on the
most widely studied (and most widely applied) variant of this
problem, which [1] terms Single-Robot-Tasks, Single-Task-
Robots, involving an Instantaneous Assignment (ST-SR-IA).

A variety of algorithms exist for solving these problems,
we distinguish two general classes: Centralized approaches
involve a single decision-making agent that, after obtaining
information about expected task utilities from the other robots,



computes an assignment which it then broadcasts to the team.
Most implementations of the Hungarian algorithm [2] and
linear programming-based approaches fall into this family, as
do some auction protocols involving an auctioneer, several ex-
amples are analyzed in [1] and [3]. Decentralized/Distributed
approaches do not distribute the utility information globally,
instead individual agents may have little or no dependence
on other robots. Some algebraic, greedy, market-based, and
swarm-intelligence algorithms fall into this category (see e.g.,
[3, 4, 5]). Important prior work has looked at parallel im-
plementations of known centralized algorithms (e.g.,,[6, 7])
and under a variety of differing communication constraints
(e.g.,, [8]). The present work attempts to combine the merits
of centralized and decentralized methods: it employs global
information infrequently, and even then uses that information
to distribute the work in performing the task allocation.

Many variations and generalizations of the ST-SR-IA as-
signment problem have been developed: these include cases
in which coalitions of robots must be formed [9], fine-grained
robot resource sharing [10], incremental assignment [11],
and sensitivity analysis [12]. The similar underlying com-
binatorial task-assignment problems have also been tackled
from a hybrid systems perspective (e.g., role assignment
with preemption [13], and potential-field hybrid controllers
with relaxed mutual exclusion constraints [14]). An important
recent result is that of [15], who studied a class of problems
in which assigned robots must remain at targets indefinitely,
but for which important performance bounds under different
environmental models could be identified.

III. PROBLEM DESCRIPTION
A. Sparse Matrix Model

In the envisioned scenario information is provided in the
form of a utility matrix: entry uij represents the expected
utility (or reward, or benefit) of having robot i perform task j.
Since matrix transposition does not fundamentally change the
problem, without loss of generality we will consider utility
matrices of size m × n (m ≤ n). We denote the ith row
by ri, which represents all utility estimates involving the ith
robot. By cj we denote the jth column, viz., all estimates for
performance of the jth task. An assignment is an association
of each robot to exactly one task so that no two robots are
associated with the same task. The linear assignment problem
is to find the assignment that maximizes the sum of the
accompanying utilities and, in our context, thereby maximizing
the robot team’s expected performance.

The matrix need not have every entry filled: expected
utilities that are so small as to be unlikely to be part of
the final assignment may be omitted by introducing void
entries and producing a so-called sparse matrix representation.
Such matrices can enable considerable computational and
communication savings, e.g., when produced by having each
robot transmit only non-negligible values during the initial
utility aggregation procedure, or by a pre-processing step
before computing the assignment.

A sparse utility matrix is particularly intuitive if the utility
computation is dominated by factors that are a function of

distance, which is often the case for mobile robots. When
range limitations of physical sensors mean that data for utility
estimation is only collected with acceptable accuracy for
“nearby” tasks (cf. [4]), then the sparsity of the utility matrix
follows from the relative positions of robots and tasks. As
demonstrated by the results in Section VI-A, spatial calcu-
lations mean that nearby information often contributes most
significantly to the final task allocation solution; this is a useful
property because estimates of utilities for far away tasks are
also likely to be poorer than those nearby. Such distance effects
may also naturally correlate with communication ability; in
such cases partitioning (as described below) will not only
reduce the total number of agent-to-agent messages but is also
likely to localize them.
B. Graph Models

Besides the utility matrix representation, two graph repre-
sentations (one conventional and one novel) can describe the
quality of agent-task assignment pairs:

Bipartite Graph: A bipartite graph GB(V,E) with a vertex
set V and an edge set E has two vertex classes X and Y ,
such that V = X ∪ Y and X ∩ Y = ∅. An edge eij ∈ E
connects a vertex pair vi ∈ X and vj ∈ Y . In the popular
assignment problem interpretation, vertices X denote robots
while Y denote tasks.

Hypergraph: A hypergraph H is denoted by H = (V, E)
where V is a set of nodes (the counterpart of vertices), and
E is a set of non-empty subsets of V called hyperedges.
A hyperedge generalizes the notion of an edge in standard
graphs, and instead connects an arbitrary set of nodes.

For both bipartite graphs and hypergraphs the weights can
be added to the edges to specify utilities, and this is done in a
straightforward way. For assignment partitioning, a hypergraph
is superior to a bipartite graph representation, because we
can interpret the nodes of the hypergraph as robots and the
hyperedges as tasks, such that the hypergraph can be regarded
as a multi-robot network, as illustrated in Fig. 1.

Graphs or matrices are equivalent representations captur-
ing the same underlying assignment problem in our work.
Partitioning an assignment problem can be seen either in the
graph formulation (bipartite graph or hypergraph), or directly
in the utility matrix. However, the different formulations lead
to different interpretations for the solution finding process: the
bipartite graph formulation involves searching for the minimal
(weighted) cuts among sub-bipartite graphs (not necessarily
complete graph with all vertex pairs edge-connected), while
the hypergraph formulation involves shrinking hyperedges
into disjoint singletons of maximal weight. The partitioning
approach we introduce is most naturally viewed in this hyper-
graph form.

IV. BACKGROUND: PARTITIONING
Graph partitioning is a general computational problem con-

cerned with grouping vertices or nodes together so as to min-
imize the (weighted) cut-size of edges between these groups.
Many research areas have specific graphs which benefit from
partitioning, most relevant to this work is research on high per-
formance computing [16, 17, 18]. Graph partitioning is known



(a) (b)
Fig. 1. (a) Partitioned sparse matrix (each “×” represents a non-void utility,
and all non-void utilities are unit-weighted); (b) The corresponding hypergraph
representation (circles are nodes and squares denote hyperedges).

to be NP-complete [19], and consequently many heuristics
have been proposed. Spectral partitioning methods and their
variants (e.g. [20, 21, 22] have been used to partition a wide
variety of graphs and specialized strategies exist in order to
induce the particular properties (e.g., producing balanced par-
titions). The Kernighan-Lin/Fiduccia-Mattheyses heuristic [23,
24] performs well in refining partitions and converges quickly
when a good initial partitioning can be provided. Geometric
partitioning methods (e.g., [25, 26]) are generally the fastest
available but require multiple trials and the partitioning result
is not deterministic. The widely used—and most relevant to
this work—multilevel partitioning heuristic [27, 22] combines
different heuristics in its three principle phases: coarsening,
initial partitioning and uncoarsening.

Graph partitioning results in a pattern in the corresponding
matrix representation. An alternative approach is to directly
partition the matrix itself via re-ordering operations: non-void
entries of the sparse matrix are gathered into non-overlapping
blocks on the diagonal by performing row/column swaps.
This has been extensively researched for high performance
computing applications [16, 17, 28] where non-diagonal en-
tries represent costly communications between processors.
Total running time is reduced when (parallel) processor loads
are balanced, i.e., the diagonalized blocks are partitions of
equal sizes. Communication volume is minimized when non-
diagonal blocks have as few non-void entries as possible [29].

In this paper, the running time for the assignment problem
is reduced by introducing parallelism analogous to the matrix
partitioning treatment used more broadly in high performance
computing. Size-balanced and independent diagonal blocks of
the partitioned utility matrix represent sub-problems which
can be distributed with minimal overhead. We distribute our
assignment problem by partitioning the pre-processed utility
matrix, which is actually accomplished by partitioning the
equivalent hypergraph representation. Within the hypergraph
perspective, the partitioning of a sparse matrix produces clus-
tered sets of strongly connected nodes and hyperedges. A
partitioning example showing the equivalence of the utility
matrix and hypergraph representations is shown in Fig. 1. The
utility matrix is sparse since it has been processed so as to
retain only a subset of the utilities that are most important,
and the non-void entries are equally weighted (unit-weighted).

V. THE TWO-STAGE PARTITIONING AND
DISTRIBUTION STRATEGY

The goal of our work is to partition and distribute the
centralized assignment problem in order to address problems
involving large numbers of robots and tasks, and to maximize
responsiveness to task dynamics. The algorithm we describe
arose by observing that changing row (robots) or column (task)
ordering does not alter the outcome of the classical optimal
assignment problem treatment (e.g., [2]) for the multi-robot
task allocation. The problem is usually formalized as follows:

Maximize
m∑
i=1

n∑
j=1

uijxij

s.t.
n∑

j=1

xij = 1 i = 1, ...,m,

m∑
i=1

xij ≤ 1 j = 1, ..., n,

xij = 0 or 1.

where m ≤ n in this case (every robot must be assigned, but
some tasks may be redundant).

The computed assignment is a matrix X of entries xij
which are zeros and ones. When m = n it is most easy
to see that this is a permutation matrix: post-multiplying the
utility matrix by XT reorders the tasks and the value of the
optimal assignment is merely the trace of the result. Thus, a
matrix reordering which maximizes mass along the diagonal
represents the optimal assignment. This view is useful because
it leads to the interpretation of an incremental assignment
process: block-diagonalized utility matrices represent selection
of a subset of robots as candidates for a subset of tasks.

Proceeding along these lines, our approach uses a two-stage
assignment strategy. In the first stage, aggregated assignment
data is partitioned into K sub-assignment problems, in which
the robot-task pairs are strongly “connected” and are likely
to be assigned within the same partition. In the second stage,
the K sub-assignments are regarded as K new independent
assignment problems and the responsibility for solving each
sub-problem is delegated to robots within the respective par-
titions. This permits the assignment to be computed in a
distributed manner and in parallel. The approach is a multi-
level strategy because each of the sub-problems can either
be solved by applying the same procedure recursively, or by
directly employing a classical assignment algorithm.
A. Matrix Sparsity Control

Our implementation employs a pre-processing step in order
to control the degree of sparsity in the utility matrix: a
parameter ρ ∈ [0, 1] is used by a single robot which, after it
has aggregated all available utility information, removes the
(1 − ρ) · n smallest elements from each row. (An alternative
method is to remove those entries less than some threshold,
but this requires that utilities have an absolute scale rather
than a relative interpretation.) This filtering retains only the
highest weighted entries, which are most likely to contribute
to the assignment solution and produces a sparse matrix
consistent with the format required for matrix re-ordering.



Since negligible utilities are not needed by the algorithm,
the utility aggregation can be simplified to only gather the
highest weighted values. Significant computation can also be
avoided in calculating utilities, for example, if an admissible
heuristic is employed during planning a threshold permits early
termination for especially costly tasks.

The removal of any utility values may adversely affect the
quality of the final assignment solution: indeed it is possible to
contrive examples in which arbitrarily small utility values are
necessary to produce the optimal assignment. In practice (and
as demonstrated in Section VI) the utility matrices that arise in
actual robot task-allocation problems permit a large proportion
of the utility values to be discarded before a significant
reduction in solution quality occurs. By manipulating ρ the
quality/efficiency trade-off may be tuned to suit user needs; we
believe this to be more representative of our physical robots
than directly relating task sparsity to some fixed range (e.g.,
based on communication radius, although cf. [15] for such a
treatment).
B. Matrix Partitioning and Distribution

The matrix is partitioned by permuting rows and columns.
Like parallel computing applications, balanced partitions are
preferred so that the workload is equalized. The resultant K-
partitioned matrix forms blocks containing approximately m

K
rows and n

K columns and the non-void blocks finally lie on the
diagonal after simple re-ordering. Let U and Uk (k ∈ [1,K])
denote the sparse utility matrix and the partitioned diago-
nal blocks, then ideally we have U = diag(U1, U2, · · · , UK)
where Uk has dimension m(k) × n(k), and

∑K
k=1m

(k) = m,∑K
k=1 n

(k) = n. We have

n(k)∑
j(k)=1

xi(k)j(k) =

n∑
j=1

xi(k)j = 1 ∀k, i(k) = 1, ...,m(k),

m(k)∑
i(k)=1

xi(k)j(k) =

m∑
i=1

xij(k) ≤ 1 ∀k, j(k) = 1, ..., n(k),

where xi(k)j(k) , xi(k)j and xij(k) are the binary variables
defined analogously to xij but relevant to diagonal block Uk.
This shows that the assignment solutions from partitioned
blocks do not violate the assignment constraints and collec-
tively form a global assignment solution.

We call the 1st-level partitioned matrix the assignment table.
In the assignment table, m rows are partitioned into K belts,
with each belt having K−1 void blocks and a single non-void
diagonal block, as shown in Fig. 1(a). In each partition, we
randomly pick an agent as the sub-leading agent, i.e., there
are K sub-leading agents in total. The initial assignment table
is distributed to the K sub-leading agents, and the sub-leading
agents are responsible for solving the independent assignment
problems in their respective partitions.
C. Dynamic Assignment

The significant advantage of the initial partitioning lies in its
use for solving the assignment problem when task dynamics
make frequent reassignments necessary. Once an initial par-
titioning has been constructed for the assignment problem,

(a) (b)
Fig. 2. (a) Assignment table with interrelated blocks; (b) After row and
column permutations, interrelated blocks are “clustered” into an embedded
interrelated matrix which can be repartitioned again.

it is not necessary to do the whole partitioning procedure
for each reassignment query, but instead one may localize
the impact of changes in utility values. Computation should
focus on addressing those partitions which have changed
significantly in a way that undermines the acceptability of the
initial partitioning. Partitions operate in an entirely distributed
fashion and continue to be considered independent of each
other until sufficient utility values have “diffused” to entries
outside the block-diagonal. Those values reflect tasks that
should be currently assigned to robots in other partitions. A
repartitioning is necessary, but it need only repeated among
those interacting partitions.

To assess whether repartitioning is necessary, the sub-
leading robots monitor the utility density of associated blocks
in the respective partitioned belts. A parameter φ is defined in
order to describe the density change:

φ =
s′ − s
bm · bn

, (1)

where

s =

bm∑
i=1

bn∑
j=1

Iij . Iij =

{
1 if entry bij > 0

0 otherwise
, (2)

here s′ and s are the previous and current number of
non-void entries in a specific block b respectively, which
has the row size bm and column size bn. We compare
the density change of a diagonal block φd with a constant
threshold τ̂ ∈ [0, 1]. If φd > τ̂ , it means that the asso-
ciation of some agent-task pairs in this partition is weak-
ening, e.g., agents or tasks are becoming less suitable in
the current partition and are better candidates for other par-
titions. Similarly, we define φnd < τ̌ ∈ [−1, 0] to describe
the growing weight of a non-diagonal block. We term the
blocks involved in such interaction the interrelated blocks,
as the red outlined blocks in Fig. 2(a) show. Interrelated
blocks are blocks for which: (1.) diagonal blocks that sat-
isfy φd > τ̂ ∈ [0, 1]; (2.) non-diagonal blocks that satisfy
φnd < τ̌ ∈ [−1, 0]; (3.) complementary blocks to those from
1 and 2, such that all of them eventually form a rectangle with
original diagonal blocks still in the diagonal. If we treat each
block as an entry, then the interrelated blocks should finally
form an inner interrelated matrix embedded in the utility
matrix as illustrated in Fig. 2(b). This is because diagonal
blocks can be re-positioned with a few symmetric row and
column permutations.

Once repartitioning is triggered among the interrelated
blocks, the sub-leading robots in the newly interrelated blocks



communicate with each other and implement the repartitioning
work following our proposed 2-stage assignment procedure. If
no repartitioning is required, the sub-leading robots in indepen-
dent partitions periodically compute the assignment solution
either by using a centralized algorithm, or through recursive
application of the procedure to sub-sub-leading robots, etc.
D. Assignment Partitioning and Distribution Algorithm

Details from the previous subsections are captured in Algo-
rithm 1. The description of the algorithm omits two details
which must be considered for an implementation: (1.) the
choice of partitioning software; (2.) the criteria for selecting
whether to recurse on a sub-case or solve using centralized
allocation mechanism. These are discussed next.

Data: Utility matrix U
Result: Assignment solution
Filter out and keep ρ · |cols| smallest utilities per row;
Make K partitions (K diagonal blocks) in U ;
Distribute assignment table to each partition;
/*do below in distributed fashion*/ ;
forall the partitions do

for every update (at fixed frequency) do
Compute φd and φnd’s;
if interrelated partitioning required then

Locate interrelated blocks;
Communicate and repartition among interrelated
blocks;
Update assignment table;

end
else

Implement reassignment locally using either
Algorithm 1 recursively or by employing a
centralized allocation mechanism.

end
end

end
Algorithm 1: Assignment Partitioning and Distribution
As emphasized in Section IV, a significant body of work

exists to address the partitioning problem. We have tested
10 popular graph/matrix partitioning tools that are available
on the web, and found that hMeTis [27] and PaToH [17]
perform the best (hMeTis is a little faster than PaToH). It
is worth noting that our proposed assignment strategy itself—
along with the partitioning implementation—includes aspects
of the multilevel framework. The first stage of assignment,
which yields K partitions, is a coarsening phase that collapses
the strongly connected agent-task pairs into super nodes and
thereby capturing essential features of the global information.
The initial partitioning phase is trivial in our algorithm
since the particular diagonal blocks are non-overlapped, so
the partitions are independent and already identified. The
second stage of our algorithm, which computes the assignment
solution for each robot, corresponds to an uncoarsening phase
that refines the final results. As already pointed out, this
multilevel partitioning strategy has been broadly used in many
partitioning algorithms and much software, and the advantages
of this framework are discussed by several authors [27, 29, 30].

In our implementation, we opted to have a single parti-
tioning phase with the second stage operation that always
employed a centralized allocation algorithm. This was be-
cause our implementation was primarily used for evaluation

Fig. 3. Sparsity analysis showing that significant proportions of the task
matrix can be discarded, with little deterioration of assignment quality.

purposes; a single partitioning phase allows one to assess the
effectiveness of the distributed computation most easily. For
extremely large problem instances deep recursion may be the
only viable solution. The primary design criteria for whether
recursive subdivision is worth conducting is the cost of the
management that is required (keeping track of sub-sub-leading
agents, for example), and how naturally the problem instance
can be distributed. This latter property is partially a function of
the matrix block’s sparsity, density, and the interrelationships
between entries. Moreover, since the utility matrix does not
necessarily need to be square, the allocation of more than one
task to each robot also works with this multi-level partitioning
and distribution framework by simply treating the ultimate
partitioned units as new assignment problems.

VI. EXPERIMENTS
We simulated our algorithm by considering the problem of

dispatching a group of robots to a set of destination way-
points. This problem and variations on it has been employed
for evaluating allocation strategies in the literature and forms
a standard test problem (see, for example, [9, 12]). In order
to integrate several popular open-source partitioning tools, we
wrote a custom simulator in C++ and ran it in a GNU/Linux
environment. Homogeneous robots begin from random po-
sitions within a 100m × 100m square; they are provided
with their position information and are provided with the
target locations (randomly positioned in the environment).
The objective is to minimize the distance travelled by all of
the robots. Dynamic scenarios are modelled by associating
different drift speeds with both robots and tasks.

To adapt for our current optimal assignment software,
we transformed the minimization problem to maximization
problem by converting d to −d, where d is the real distance
between a robot-task pair. We employed hMeTis [27]. In
order to obtain blocks, we transpose the row-wise partitioned
matrix and do a second partitioning on it. The diagonal block
matrix is then obtained by simple block diagonalization.
A. Sparsity Analysis

In this work we filter out small utilities that are likely
to be dominated; first we need to investigate the effect that
discarding this information has on the final assignment quality.
We define metric ηx:y = x

y as a measure of the performance of
x over y. In our experiments, we compute and compare ηo:f (o:



(a) (b)

(c) (d)
Fig. 4. (a) An assignment problem to dispatch robots to nearest task locations
(circles are robots and square dots are tasks locations); (b) Centralized assign-
ment result (lines between the robots and tasks represent the assignment); (c)
Distributed assignment solution based on the partitioning results (circled areas
denote partitions); (d) Block matrix of the corresponding partitions.

optimum from original dense matrix; f:optimum from filtered
sparse matrix) under different conditions. Here an optimum
means the distance sum of all finally assigned robot-task pairs.
Our task assignment problem considers m robots and n tasks
chosen so that m + n ≈ 300. We manipulate the robot-to-
task ratio in order to evaluate different matrix shapes. We also
control the sparsity parameter ρ ∈ [0.005, 1] to retain only
the largest ρ times utilities in each row of the utility matrix.
Fig. 3 shows the mean results of ηo:f vs ρ for ∼20 random
experiments. The curves we plotted represent typical instances:
from Fig. 3 we can see that generally a good optimum can be
guaranteed when ρ ≥ 0.1 (more precisely, ∼15 nearest tasks
for each robot contribute most to the optima). The result also
shows that the more slender the matrix (with greater tasks than
robots), the smaller the ρ that is permissible.

B. Assignment Partitioning for the Static Case
We have outlined in Section V that the partitioning of

assignment problem can be transformed to the sparse matrix
partitioning problem, therefore the first level coarse assign-
ment is carried out by the leading robot, by partitioning the
filtered utility matrix. More specifically, the sparse matrix is
converted into the format of hypergraph, and fed to hMeTiS
which produces a block matrix that provides information on
the correspondence of robots and tasks in a way that causes
them to be partitioned into clusters. An arbitrary assignment
with partitioning results is shown in Fig. 4. In Fig. 4(c), there
are 5 partitions obtained from the 5 diagonal blocks in the
partitioned matrix in Fig. 4(d).

The robots and tasks in the same partitions/blocks are
considered as new assignment problems independent of the
others. The second level assignment is executed inside each
partition/block in a distributed manner. In our work, we
use the Hungarian algorithm [2] to solve the second level

(a) (b)

(c)
Fig. 5. (a) ηp:h vs ρ and #robots : #tasks; (b)ηg:h vs ρ and #robots :
#tasks; (c) Comparisons of assignment qualities, blue bars represent ηp:h
and maroon bars denote ηg:h (horizontal-axis:robots#: tasks#; vertical-axis:
η).

partitioned assignments. Note that it is possible that even
voided (removed) entries will be assigned, and in the same
row/column there could be many voided entries that equally
have zero-utility. The problem lies in that the assigned entry
is not the smallest in reality (the real utility before being
removed), and could be sub-optimal. This may deteriorate the
optima considerably when ρ is too small. To solve this, we
check such assigned pairs to avoid treating them as random
allocations, and if such assignments are found to be invalid,
we re-adjust and thereby improve these results by greedily
reassigning to the nearest available non-voided tasks.

We have run and compared our method with two other
popular assignment algorithms—Hungarian algorithm and a
greedy algorithm. The Hungarian algorithm is a deterministic
centralized algorithm that always yields the global optimum;
we use it as a gold standard for comparison. The greedy
algorithm is included because it provides insight into the
sacrifice of quality that several practitioners have been willing
to sacrifice (see [1] for detailed discussion). Entirely decen-
tralized variants of the greedy algorithm∗exist in which robots
independently evaluate the available tasks and occupies the
optimal one as the assignment.

We tested ηp:h and ηg:h (p, g, h denote our partitioned mul-
tilevel algorithm, greedy algorithm, and Hungarian algorithm,
respectively) under different sparsity and robot-to-task ratios.
Fig. 5(a) and 5(b) show the statistics of ηp:h and ηg:h (ηp:h,
ηg:h ∈ [1,+∞). For all these data, a value of η is close to 1
denotes good performance. Fig. 5(a) shows that the partition
based algorithm works well when ρ is small (the utility matrix
is sparse) and the robot-to-task ratio is close to 1 (the utility
matrix is square, i.e., the number of robots and tasks are
balanced). In contrast, Fig. 5(b) shows that a greedy selection
works well for the opposite conditions: greater numbers of
utilities and the case of many redundant tasks. Moreover,
in the region where our partitioning algorithm works well,
the standard deviations for ηg:h are much bigger than those

∗More precisely, a greedy choice can be employed locally, which is distinct
from the Greedy Algorithm but is the same in spirit.



Fig. 6. Observations with regard to differing numbers of partitions.

for ηp:h, suggesting that the greedy algorithm’s performance
depends more critically on the particular values and ordering
artifacts. Fig. 5(c) combines ηp:h and ηg:h together, where the
blue bars represent ηp:h and maroon bars denote ηg:h, from
which comparative performance is more directly observable
in detail. This figure also emphasizes the effect that ρ has on
the methods: choosing too small a value removes too many
utilities reducing the assignment quality. In our experiments
the results are accurate when ρ ≈ 0.1 (more precisely, ∼15
neighboring tasks).

We have also tested the assignment performance under
different number of partitions, as illustrated in Fig. 6. We
analyse the ηp:h as well as the total number of re-adjustments
of all partitions (for correcting invalid random assignments),
along with changing the number of partitions k ∈ [2, 20]. The
results indicate better performance when k is small, and ηp:h
converges to some value around 1.6 as k increases. However,
the number of re-adjustments increases monotonically with
increasing k, suggesting greater correction is required.
C. On-line Assignment in Dynamic Environment

Our algorithm is expected to be superior for handling the
on-line assignment problems in dynamic environments. To
simulate the dynamic change of utilities, we permit tasks
locations to “drift” with different velocities. The sub-leading
robots of each partition periodically collect the utilities from
other member robots in the same partition, and decide whether
reassignment or repartitioning is necessary. In our experiments,
we set τ̂ = .4 and τ̌ = −.2 to capture the interrelated
blocks. If interrelated blocks are detected, their sub-leading
robots communicate with each other and do the repartitioning
only among these interrelated blocks; otherwise the sub-
leading robots simply run the Hungarian algorithm to solve
the assignment inside their independent partitions.

Fig. 7 provides an example of how the on-line assignment
works with dynamic tasks. In Fig. 7(a) there are 5 partitions
obtained from partitioning the initial sparse utility matrix,
which has a partitioning result shown in Fig. 7(b). In Fig 7(c)
the tasks of the first 2 partitions, P1 and P2, gradually diffuse
into the other partitions, which corresponds to the addition
of non-void utility values in interrelated blocks. This is most
clearly visible in Fig. 7(d). This interrelationship between the

(a) (b)

(c) (d)

(e) (f)
Fig. 7. On-line assignment in a dynamic environment. (a)–(b) Original
partitioned assignment and block matrix; (c)–(d) Partitions P1 and P2 are
merging together, and correspondingly the interrelated blocks diffuse into each
other; (e)–(f) The repartitioned P

′
1 and P

′
2 and corresponding block matrix.

partitions is detected locally and repartitioning prompted. The
new partitions P

′

1 and P
′

2 as well as the corresponding new
block matrix are shown in Fig. 7(e) and 7(f), respectively.

We have also compared the performance of repartitioning
among only the interrelated blocks versus the all blocks. The
results show that the optimum repartitioning among interre-
lated blocks is only 5%–10% worse than that of among all
blocks. However, the interrelated block partitioning algorithm
significantly reduces the communication and computation
complexity since the number of interrelated blocks are usually
fewer than the total number of all blocks.

VII. DISCUSSION
Our algorithm improves the time complexity over the cen-

tralized solution in that it introduces parallelism with multiple
decision-making agents which solve part of the assignment
problem. First, the partitioning on initial global assignment
requires O(n3)†, where n denotes the number of tasks. Then,
during the on-line assignment, the time complexity for each
sub-leading agent to collect and filter the utility matrix as
well as check the interrelated blocks is O(K · ( n

K )2); to
solve the sub-assignment problem, the Hungarian algorithm
costs O(( n

K )3); there may be repartitioning of the interrelated
blocks, which requires O((d·n

K )3), where d is the number of
interrelated diagonal blocks and (d·nK ) actually denotes the
column size of interrelated matrix as illustrated in Fig. 2(b)).
Since d usually is much smaller than K, and executes less
frequently, we conclude that the overall running time of



dynamic assignment is generally reduced by a factor of K3

compared to the centralized algorithm which always requires
a running time of O(n3).

In addition, the overall communication and computation
work is also greatly reduced by eliminating transmission
of trivial utilities, e.g., we only communicate and compute
approximately 10% (ρ ≈ 0.1) of all utilities in our assignment
experiments. Apart from the first-phase, communication in our
problem domain is spatially localized to other robots within
the same partition.

Moreover, the introduction of multiple decision making
agents also addresses the drawback of limited robustness
in traditional centralized algorithm. Failure of a single sub-
leading agent will not halt the whole assignment task. It is
also possible for the failure to be automatically fixed along
with the repartitioning of merged partitions.

Finally, to guarantee the accuracy of global assignment, we
suggest that, a fresh global new partitioning could be imple-
mented after some time period. This is because the extracted
coarse features of initial global assignment can gradually lose
accuracy as many iterations of interrelated blocks coalesce and
are repartitioned. Such a mechanism could also be embedded
in a learning procedure so that the appropriate parameters,
such as ρ and K, can be dynamically adjusted for specific
accuracy requirements.

VIII. CONCLUSION
In this paper, we propose a method with attractive accu-

racy, speed and robustness for large-scale on-line assignment
problems. The approach employs a top-down approach which
permits the problem to be distributed and information to be
localized wherever possible. We demonstrated the effective-
ness of the proposed algorithm and showed the efficiency
with simulation experiments. The algorithm’s performance is
most promising for large problems when task dynamics require
reallocation and for which task locality (in space and time) and
sparsity can be exploited.
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