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Abstract—Recent trends pushing robots into unstructured
environments with limited sensors have motivated considerable
work on planning under uncertainty and stochastic optimal
control, but these methods typically do not provide guaranteed
performance. Here we consider the problem of bounding the
probability of failure (defined as leaving a finite region of state
space) over a finite time for stochastic nonlinear systems with
continuous state. Qur approach searches for exponential barrier
functions that provide bounds using a variant of the classical
supermartingale result. We provide a relaxation of this search
to a semidefinite program, yielding an efficient algorithm that
provides rigorous upper bounds on the probability of failure for
the original nonlinear system. We give a number of numerical
examples in both discrete and continuous time that demonstrate
the effectiveness of the approach.

I. INTRODUCTION

Consider the problem of a legged robot quickly traversing
unknown rough terrain, a vision-based autonomous vehicle
flying through a dense forest at high speeds, or a mobile
manipulator fetching a beer out of the refrigerator. Each of
these robots will be subject to many sources of uncertainty
— including uncertainty from imperfect perception, imperfect
models of robot and environment, and any unexpected distur-
bances. At the same time, we hope that our robots are able
to accomplish these tasks by executing high-speed dynamic
maneuevers, which demands that a high-performance control
system will have to reason about the nonlinear dynamics
of the machine. While there has been considerable progress
recently in designing impressive control systems for this class
of machine (e.g., [2, 16} 116} 26} 22| 21]]), there is relatively
little work on guaranteeing that these systems can achieve their
goals in the presence of significant uncertainty.

In particular, we are motivated by the case where the effects
of the uncertainty are large when compared to the control
authority and passive stability of the robot (e.g. the small
vision-based UAV flying through a cluttered environment in a
strong wind). Consider, for instance, a closed-loop maneuver
that is only locally stable for the deterministic plant, subjected
to an unbounded uncertainty (for instance, Gaussian) from a
perceptual system. In this case, the system will eventually be
unstable with probability 1 and hence, robust control design
and verification methods that consider worst-case performance
are not appropriate. Instead, here we attempt to analyze the
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stochastic stability of the nonlinear system over a finite time
horizon — a framework considered in [12]], which is also a
special case of planning with chance constraints as formulated
in [3)]. In particular, we would like to verify an activation set
— a set of intial conditions from which the control policy will
provably achieve its goal with a desired probability. In addition
to certifying performance, efficient algorithms for verifying
this stochastic stability will lend themselves naturally to im-
proved methods for feedback design and planning algorithms
under chance constraints.

A common approach to nonlinear systems is via a finite-
dimensional interpolation of the state-space — either by direct
discretization, or through some more sophisticated technique
like volumetric interpolation. However, this approach has
multiple shortcomings — first, such approximations can end
up having large effects on the result, even for relatively
large numbers of interpolating functions and for well-behaved
systems. Second, for more than a few dimensions there will
not be enough memory on the computer to store even coarse
approximations to the continuous-state dynamics (for instance,
a discretization-based approach in a recent paper hits compu-
tation limits around 5 to 8 dimensions [1]]; we can solve a
similar problem in 10 dimensions). For both of these reasons
we have been led to consider continuous-state verification. In
other words, we would like to perform verification directly on
the original system instead of first making a finite-dimensional
approximation.

Unfortunately, it appears that so far little progress has been
made on the problem of continuous-state, nonlinear, stochastic
verification, although many special cases have been studied. If
we eliminate stochasticity, then continuous-state nonlinear re-
gional verification falls into the framework of sum-of-squares
verification on Lyapunov functions [20, 24} 25} [15, [17]]. If we
eliminate continuous-state, then exact solutions can be found
by taking a matrix exponential (in continuous-time) or matrix
power (in discrete-time) of the transition matrix for the Markov
process, after adding an appropriate absorbing state to capture
all of the failed states. If we assume linearity of the system
then the problem falls into the risk-sensitive control framework
[10l], which handles not only verification but control design.
Risk-sensitive control also deals with nonlinear systems, but
in the nonlinear case typically requires a discretization of the



state space.

There has been some progress on dealing with the general
case. The main approach is to find supermartingales of the
system, which bound the probability of leaving a region [3l.
These supermartingales can be thought of as stochastic ana-
logues of Lyapunov functions, and are called barrier functions
in [18]]. They can alternately be thought of as upper bounds
on a certain cost-to-go function.

However, unless the noise goes to zero near the desired
point of stability, no supermartingale exists (assuming the
dynamics of the system are sufficiently differentiable). This
requires a slight variation on the supermartingale criterion,
as in Kushner [12], which gives bounds very similar to our
Theorems [[T.T|and[[T.2] In fact, the mathematical theory of [12]]
is more complete than that presented here, as Kushner derives
a version of with the correct asymptotic form (exponential,
rather than linear, decay of the success probability as time
increases). Kushner also works through many nice examples
of applying the derived bounds to different types of noise.
The drawback of Kushner’s work is that it does not provide
any general algorithms for finding good supermartingales. We
hope to remedy this with our work.

Much of the continuous-state verification research has fo-
cused on nonlinear systems with Gaussian noise [18| 27],
which we continue to focus on in this paper. Both here and
in [18} [27] the results should be extendable to the case where
the noise is a mixture of Gaussians and discrete switches (in
the DT case) or a mixture of Wiener and Poisson processes
(in the CT case). This is a fairly common form for noise
models, although sometimes more complicated noise models
are considered, such as Gaussian noise filtered through a
nonlinear function [4]].

The results in [18]] are as far as we know the first to provide
an algorithm for finding supermartingales. However, their
approach has a few shortcomings that we address. The first
is that their method requires their barrier function to be a true
supermartingale, which for a time-invariant barrier function
requires them to pre-suppose stochastic stability for suffi-
ciently small initial conditions, a condition which is difficult to
check and not always true. A second issue is that they search
over polynomially growing barrier functions, which will not
give as strong of guarantees as exponentially growing barrier
functions. At the same time, while it is tractable to search
over relatively high-degree barrier functions in the CT case,
we believe that such a search becomes quickly infeasible in the
DT case because the Lyapunov function composed with the
dynamics leads to a polynomial whose degree is the product
of the degrees of the dynamics and Lyapunov functions; this
belief is based mainly on our own efforts to apply the methods
of [18]] to the DT case, as [18] only considers the CT case.

To summarize, we are interested in bounding the probability
that a nonlinear, possibly time-varying, system with Gaussian
noise leaves a region (either pre-specified or computed as
part of the optimization) in a certain time interval. We will
do this by using the supermartingale approach discussed
in [12], searching over a family of exponentially growing

barrier functions. We will use sum-of-squares programming
to identify a member of this class that provides a good bound
on the failure probability.

We start in Section [lI| by presenting Kushner’s bounds on
failure probability. In Section |lIf we also give an overview of
sum-of-squares programming, an optimization technique that
will be important for finding a good barrier function. Next, in
Section |} we will define the family of barrier functions that
we intend to search over, and provide semidefinite constraints
that allow us to bound the failure probability. In Section
we go over specific practical details of how we search for
a certificate that provides a good upper bound. We conclude
in Section [V| by providing examples of our approach on the
simple pendulum, cart-and-pole, and rimless wheel systems,
as well as for the heating system described in [[L].

II. BACKGROUND
A. A Bound on Markov Chains

We begin with an extension of the classical result about
stability of supermartingales. Recall that a supermartingale is
a function B(x,t) of a Markov process such that E[B(z(t +
At),t + At) | x(t)] < B(z(t),t) for all At > 0. We will
instead consider functions that are almost supermartingales, in
the sense that E[B(z(t + At), t + At)] | z(¢)] < B(z(t),t) +

tt+m ¢(s)ds for some function c that depends only on time.
We will call such functions c-martingales. In discrete time, we
instead consider the condition E[B(z(t +1),t + 1)] | z(¢)] <
B(z(t),t) + ¢(n). In continuous time, a sufficient condition
for being a c-martingale is that A B(x(¢),t) < c¢(t), where A
is the infinitesimal operator:

E[B(z(¥),¥) | 2(t)] - B(z(t),t)

AB(z(t),t) = lim "

1t

)

We require this limit to converge uniformly across all x(t)
and ¢, which means in particular that B must be a continuous
function of both z and ¢. For a more detailed treatment of
this material, see Dynkin’s book on Markov processes [7]]; we
refer the reader in particular to equations (1.2) and (5.8) and
the surrounding exposition.

This relaxation of the supermartingale condition allows us
to consider systems that are only locally stable and have non-
zero noise at the origin.

We can draw an analogy between c-martingales and amor-
tized analysis in computer science — if there is some function
of our state that increases slowly, then it will be a long time
before it can reach a large value. If we can find a function B
of our state that increases slowly in expectation (such as a c-
martingale), and B is large outside of a region of state space,
then it will take a long time for a trajectory of the system
to escape that region. We more formally define the escape
probability from a region S at time 7" as the probability that
a trajectory of the system leaves S by time 7' (this includes
leaving .S before time 7', even if it later re-enters).

Our main theorems are given below. We only prove the
continuous-time version, as the discrete-time proof is essen-
tially the same but without the extra analytical technicalities.



For another exposition of these same ideas, see Theorem 1 of
[L1]].

Theorem IL.1. Let M be a Markov chain over a space X with
initial condition x(0), let S be an open subset of X, and let B
be a non-negative real-valued function on X x [0, T]. Suppose
that B is a c-martingale inside S, and that B(x,t) > By for

all x ¢ S, 0 <t < T. Then the escape probability at time T
(1(0)70)41;2523 e(n)
0

. B
1S at most

Theorem I1.2. Let M be a strong Markov process over a
space X whose trajectories are almost surely right-continuous.
Let 2(0) be the initial condition of the Markov process, let S be
an open subset of X, and let B be a non-negative real-valued
Sunction on X x[0,T)]. Suppose that B is a c-martingale inside

S, and that B(z,t) > By for all © € S, 0 <t < T. Then the
escape probability at time T is at most B(w(o)’o);;f“T clt)dt.

Proof of Theorem [[[.2}: Modify M to a new Markov
process M’ that stops as soon as a trajectory leaves S. More
formally, if z(to) & S, then z(t) = x(t) for all ¢ > ty. Also
add a state variable 7 that is equal to ¢ up until the time ¢
and that is equal to tg for all ¢t > ¢;.

With this new Markov process defined, B(xz(t),7(t)) is a
c¢(t)-martingale for M’ across all of X. Consequently, we
have E[B(x(T),7(T)) | 2(0)] < B(z(0),0) + [ c(t)dt.
Since B is non-negative, by Markov’s inequality we must
have P[B(x(T),7(T)) > By | =(0)] < EEDADIZOL <

T o
B(:E(O)7O)+j(] C(t)dt_ Since B(l’,'r) > BO for all x € S,

0 < TBOS T, we also have Plz(T) ¢ S | z(0)] <
P[B(x(T),7(T)) > Bp | (0)]. On the other hand, since M’
stops upon leaving .S, the escape probability of M at time T
is exactly the probability that 2(T") ¢ S for M’, which proves
the theorem. [ |

In the following sections, we will discuss how to usefully
apply this bound to dynamical systems with Gaussian noise.

B. Sum-of-squares Programming

Suppose that we want to compute the global minimum of
a polynomial p(z1,...,2,). We could formulate this as the
optimization problem

maximize 9§
0 2
subject to  p(x) —d >0 Vaz.
This problem is NP-hard in general; however, if we could
write p(z) — & = h(z)TQh(z) for some matrix Q = 0, then
we would know that p(x) > § for all z. We can more generally
consider programs with several positivity constraints, e.g.
maximize h'a
“ 3)

subject to ol p;(z) >0, i=1,...,m,
which are then replaced with
maximize h'a
a,Q
subject to  aTp;(x) = hi(z)T Q;hi(x),
Qi t 07

Note that (@) is a semidefinite program, and can thus be solved
efficiently. The « are referred to as decision variables and the
x are referred to as free variables.

We may also wish to only enforce a constraint p;(x) > 0
in some region described by ¢;(z) < 0. In this case, we
can introduce a Lagrange multiplier A(xz) and impose the
constraints p;(x) + A(z)g;(z) > 0 and A(z) > 0.

Sum-of-squares programs can be formulated using the MAT-
LAB package yalmip [13]]. Yalmip is a modeling language
for both convex and non-convex programs. Yalmip has built-
in support for several optimizers; we used SeDuMi [23]] for
our work. SeDuMi is a software package for optimizing over
symmetric cones.

While the final version of our code uses yalmip, we also
used CVX [8, 9] and SOSTOOLS [19] during development.
CVX is a modeling language for convex programs; SOS-
TOOLS is a MATLAB toolbox for sum-of-squares programs.
All of the software mentioned here is freely available online.

III. CERTIFICATES OF STABILITY

Theorems [[L1] and L2l show us how to obtain true certifi-
cates of stability from approximate certificates. In order to
usefully apply these theorems, we need to pick a suitable
barrier function for a given noise model. For now, we will
consider systems with polynomial dynamics and (possibly
state-dependent) Gaussian noise. In the DT case, this means
systems of the form x,+1 = f(x,) + g(z,)w,, where w,
is unit covariance white noise. In the CT case, this means
systems of the form dz(t) = f(z)dt + g(z)dw(t), where w is
a vector of independent Wiener processes. All of the following
results also hold for time-varying f and g, but we will omit the
possible dependence on ¢ to keep the equations more readable.

We will consider barrier functions of the form Bg(z,t) =
¢3S _ 1 Note that including cubic or higher terms in
the exponent would make the expected value of Bg infinite
with respect to Gaussian noise.

A. Discrete-time

In discrete-time, we can compute

]
det(] — gTSg)~ b M= S(s-5aa™8) " ss) _
Applying Theorem to Bg lets us bound the failure
probability by
e32(0)T5(0)z(0) _ 1 4 27]:/:1 C(n)

1
ezf —1

&)
as long as 7S(n)x > p for all x ¢ R,, and

C’(n) > _e%wTS(n—l)m +
det(I — gTS(n)g) 2e2 ! SM(S(n)=S(n)gg" S(n)~"S(n)f

whenever 27'S(n)x < p. The expression for C(n) is cumber-
some, as it involves a determinant as well as the difference of
two exponential functions. The following two lemmas let us
relax the expression to a condition on polynomials.



Lemma IIL1. det(] — M) > 1 — Tr(M) when 0 < M < I.

Proof: This is the same as showing that [ (1 —X;) >
1 =" A whenever 0 < \; < 1. Since A(1 —\) = A —
AN > A—)\ > B—)X whenever B < A < 1, the lemma follows
by induction on n (with A = []'"(1-\;), B =1-57"" A,

and A = \,). [
Lemma IIL.2. Suppose that 0 < rq < 1 and
(1—r0) 2" (p —po) — e®(q —qo) < & (©6)
r < 7p. (7
Then
(1—7r)"%eP —e? < Mer, (8)

with M = (1 —rg)~2ePo — e,

Proof: Since the left-hand side of (@) is increasing with r,
by condition (/) it suffices to consider the case r = ry. We can
then maximize (1 — ro)_%ep — e? against (6) using Lagrange
multipliers, and obtain a unique maximum at p = pg + %,
q = qo+ % as long as 0 < rp < 1. Substituting back in
yields (8). [ |

Setting pg = ¢o = 0 and b = 1 — (1 — ro)%, Lemmas
and imply that we can take C(n) to be 2b — b? as
long as (1 b)~' f7.S(n)(S(n) — S(n)gg” S(n)) " S(n)f <
2T S(n—1)z and Tr(g7 S(n)g) < 2b—b?. We handle this last
part by introducing a Lagrange multiplier, so that we end up
with the three constraints

2TS(n — D)x + Mz)(zTS(n — 1)z — p) )
— f1S(n)(S(n) = S(n)gg"S(n))~'S(n)f >0
1 b
b2 —Tr(g(z,n — 1)TS(n)glz,n—1)) | =0 1O
Az) >0. (11)

for all x. Note that (10) is equivalent to Tr(g7.S(n)g) < 2b—b?
by Schur complements.

Remark As the noise goes to 0, we can set b to 0. It is
easy to check that the constraints then reduce to the Lyapunov
equation f(z)TS(t)f(z) < 2TS(t — 1)z with a Lagrange
multiplier added to check regional stability.

B. Continuous-time

We now turn to the continuous-time case. Recall that we
are interested in the infinitesimal operator A B(z,t) defined
in Equation I} For systems of the form dxz(t) = f(z)dt +
g(x)dw(t), we can compute [27]

_ 0B 9B 1

et @y (s

WQ(@) . (12)

For functions of the form Bg(z) = g3z SWa becomes

AB(x,t) = & :

ABg(z,t) = eze ST

X %wTSx +2TSf+ %Tr (gTSg) + ;xTSggTSx} .

Then Theorem implies that the failure probability is
bounded by
e32(0)TS5(0)z(0) _ 1 4 foT C(t)dt
ezP — 1
as long as (i) 7Sz > p for all x ¢ R; and (i) C(t) >
ez Sw [%xTSx +2TSf+ 2 Te(g"Sg) + %xTSggTSﬂc]
whenever 7Sz < p. We would therefore like an analog

of Lemma [[IL.2| for functions of the form p(x)e?®). The
following will suffice:

13)

Lemma IIL3. Suppose that p(z) < po(l + qo — q(z)) and
po > 0. Then p(z)ed®) < poet.

Proof: Since 1 —xz < e™*, 14+ go — q(x) < ed0—4(z)
s0 p(z) < po(1+ g0 — ¢(x)) < poe® ). Multiplying both
sides by €9(®) yields p(z)e?®) < pye®. [ |

Applying Lemma [II1.3| with py = b and go = 0 allows us
to upper-bound A Bg(x,t) by b as long as

b2 —2TSx) —2eTSf — Tr(g7'Sg) — 2T Sz

— 2T Sgg" S+ 2\ (x, t) (T Sz — p) > 0

(14)

for some non-negative function A(z,t).

IV. OPTIMIZING OVER S

Assuming that we can find suitable values of S, b, A, and p,
conditions (9IT) and (T4} allow us to upper-bound the failure
probability. However, while checking these constraints for a
fixed tuple (S,b, \, p) is a sum-of-squares program, optimizing
against them is not, because the decision variables S, b, A, and
p appear nonlinearly.

We now describe one approach for finding good values of
these variables. Our approach is to first find values of S and b
(Sp and by, say) that work for the system linearized about some
fixed point. We then restrict our consideration to multiples ¢Sy
of Sy, and binary search over ¢ for several values of p, setting
b equal to (1—Tr(g"Sg))~7 in the DT case and  Tr(¢7 Sg)
in the DT case (these were obtained by solving analytically
for the value of b that would maximize the margin of (9) and
(T4), respectively).

This approach will work well for time-invariant systems; it
is similar to using the S matrix from LQR as a local Lyapunov
function for a deterministic system. However, it will not work
well for time-varying systems because it introduces extra
conservatism that compounds over the course of a trajectory.
Another approach based on alternating maximization between
(S,p) and (b, \) will work better for trajectories, but it is
more difficult to implement and more often runs into numerical
issues; we intend to describe this approach in a later paper.

For the linearization-based approach, we still need a way
to find good values of S and b for the linearized system. We
consider the DT constraints first, as they are the more difficult
case. If we apply Schur complements to (9) and linearize, we
obtain the matrix constraint

[ So — SoGGT'S,

SoF
(SoF)T =0

1-b)sy | =Y (15



where F' = Vf(0), G = ¢(0). If we introduce a dummy
variable P and require that Sy — Spgg” Sy = P, then we can
re-write (I5)) as the pair of constraints

P SoF
{ (SoF)T (1= b)Sy } (10
I (SoG)T
{ SoG So— P > 0. 17
The CT case can be dealt with similarly, leaving us with
I (So@)T
[ S0G  —bSy — SoF — (SF)T | =0 U9

In both the DT and CT cases, once we fix b we are left with a
semi-definite constraint, so we can just perform a line search
on b and then solve a semidefinite program over .S. However,
we would like a good objective to optimize against. If we can
identify major sources of nonlinearities, then it might be good
to have Sy be “large” in these directions. In other words, if M
is a matrix such that 2”7 Mz gives an indication of how “non-
linear” the system is at x, then we would like T Syz to be as
large as possible whenever 27 M« is large. This amounts to
maximizing « such that Sy > oM. The matrix M could also
be a matrix indicating some safety constraint, i.e. the system
is safe if 27 Mz < 1. In this case we would also like S to be
large relative to M in order to minimize the failure probability,
so maximizing « is still a good idea in this case. This is the
general form that the optimizations will take in the examples
below.

V. EXAMPLES

Now that we have covered the theoretical underpinnings
of our method, we will demonstrate its effectiveness in
both discrete and continuous time with several examples on
classical underactuated robots. For each example, we first
describe the system, then indicate which M matrix (described
in Section we used, the values of Sy and by, the values
of ¢ and p, and the final probability bound.

A. Example 1: Simple Pendulum, Discrete Time

Our first example is the simple pendulum, stabilized about
the upright, with a time step of A¢ = 0.01. The value of At
is purposely larger than normal to emphasize the discrete-time
aspects of the system. We use the following equations for the
pendulum dynamics (the sin term has been Taylor expanded

to third order):
Oni1 | _ 0, +0.016,, L
Ope1 | | —0.016763 — 0.36,, + 0.976,,

We would like to bound the probability that § leaves the region

(=%, %) after an hour of operation, or 360000 time steps. We

612
therefore set M to [ (?0) 8 } because then S = pM will

0.0lwlm
0.0511}2’71

imply that 27 Sz > p whenever 27 Mz > 1, and 27 Mz >
1 < 0| > 5.
142.71 7.49 .
For by = 0.0136, we get Sy = 749  5.09 ] with

a = 36.10. When we verify on the non-linear system, we get

[ I

¢ = 0.955, p = 34.48 (p ended up being equal to car because
the constraint that S > pM was the first to become tight).
Figure [I] shows the log base 10 of the failure probability after
360000 steps, plotted against initial conditions.

Note that we get very strong bounds (failure probabilities
less than 1 in 1000) for a fairly large region around the origin.
For the sake of comparison, we estimated the actual failure
probability using a Kalman filter for the linearized system,
also included in Figure[T] While the true probabilities are much
smaller than verified (10710 vs. 1073), the verified region of
stability is not much smaller than the actual region of stability.
For most robotics applications, we are most interested in the
operating region where we will have, say, a 99% success
probability, as opposed to how small the failure probability
is for trajectories starting at the origin. We conclude that for
practical purposes our verification method is close to the true
answer.

B. Example 2: Simple Pendulum, Continuous Time

We perform the same optimization as before, checking

against the continuous-time version of the constraints. For
156.90 8.34
bo

8.34 5.64
sponding o value of 39.63.

with a corre-

1.51, we get Sy =

\Lhen we verify on the non-linear
system, we get ¢ = 1.0, p = 39.63. The failure probability is
plotted in Figure [2]

C. Example 3: Cart-Pole Balancing, Continuous Time

The next example demonstrates that our approach is scal-
able to more complicated systems. It also is an example of
including observation noise in the model. The cart and pole
system is a pendulum with length L and mass m,, attached
to a cart with mass m,.. The system is actuated by a force
u on the center of mass of the cart. Letting # = 0 when the
pendulum is pointing straight up, the equations of motion are

L u—my, sin(0) (L2 — g cos(h))
N me + my, sin(6)?

)

wcos(f) — my, L% cos(8) sin() + (m. +m,)gsin(6)
L(m. + mysin(6)?) '

We set my, = 1.0, m; = 10.0, L = 0.5, g = 9.8, and take a

third-order Taylor expansion to get the following dynamics:

6=

dz T
ao | 0 it
di —.750% — .016%u — 0506 + .980 + .1u
do —5.750% — 12602y — .100% + 21.560 + .2u
+ diag ([ 0.03 0.03 0.1 0.1 ]) dw(t).
To stabilize this system, we apply LQR control
to the linear system with cost matrices @ =

diag([10,10,1,1]), R 0.1 to get a gain matrix of
K=[-10.0 289.83 —19.53 63.25 |.

Let us suppose that we also have measurement noises on z,
0, , and 9, with standard deviations of 0.01, 0.01, 0.03, and
0.03, respectively. Our feedback law will push this noise back
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Fig. 1: The log-base-10 of the failure probability for the discrete-time pendulum after one hour. Left: failure probability plotted
against initial conditions, verified with our algorithm. Right: estimated failure probability for the linearized discrete-time

pendulum, computed with a Kalman filter.

into the dynamics, adding 4 extra noise channels that end up
being functions of 6.

Because the major source of nonlinearity in both the
dynamics and the noise comes from 6, we would like
to search for Sy matrices for the linear system that
give strong bounds on . We will therefore set M to

diag ([0 1 0 0 ]). For by = 0.728, we get Sy =
245 —12.01 257 —1.85
~12.01 23142 -—21.72 22.72 .
957 —21.72 595 —d4¢ | With o = 124.36.
185 2272 —446 526

When we verify on the non-linear system, we get ¢ = 0.9023,
p = 20.75. Figure [2] contains a visualization of the failure
probability after one hour.

D. Example 4: Rimless Wheel

The rimless wheel is a common model for walking first in-
troduced in [14]. It is a wheel consisting of n4 spokes, each of
length L, connected at a point. The angle between consecutive
spokes is 6 = 2—” The spokes are massless; the central point
has a mass of M The rimless wheel typically rolls down a
hill, say with slope angle v. When a spoke impacts the ground,
the collision is inelastic, conserves angular momentum, and
immediately transfers support to the next spoke. Because of
the impacts, the rimless wheel is an inherently discrete-time
system. One way to compute its dynamics across several
collisions is via the Poincaré return map, which gives the
angular velocity at the point where the stance leg is vertical.
If we let w,, denote this angular Velocity between the nth and
(n + 1)st impacts, and let z,, = w2, then [4]

Tpy1 = cos>(0) (mn + 2fg(1 — cos,81)> — 2fg(l — cos f32),

where 1 = g + v and By = g — 7. As in [4], we model
~ as Gaussian with mean 7y = 8° and standard deviation
o = 1.5°. This means that the actual noise to the system is
non-Gaussian since it is filtered through a cosine. The system

is locally stable to some value £ > 0 as well as to the state
where both stance legs are on the ground and the wheel stops
moving. We will consider this second stable point a failure
state, which corresponds to x,, < 0.

We will compare the following approaches to bounding the
time until the wheel enters this failure state:

1) Find the smallest slope v, such that the rimless wheel
is still guaranteed to keep rolling. Then compute the
one-step probability that v < 7,. The expected time to
failure is at least the reciprocal of this probability.

2) Let v, denote v—~y for time n+1. Then v,, is Gaussian,
and it is okay that it affects the dynamics in a non-linear
way because it is a state variable. We can then apply the
techniques of this paper to find a time that has at most
a 50% probability of failure.

3) Approximate the noise as an appropriate Gaussian by
linearizing around -y, then apply the techniques of this
paper.

4) Discretize the state space and compute the expected time
to failure exactly (up to the discretization) by solving a
system of equations, as in [4].

In order to make the point of stability the origin, we make the
change of coordinates z — = — 7.

In the first approach, solving for ;s yields 3.91° in the non-
linear noise case and 3.76° in the linear case. The respective
bounds on expected time to failure are 313.08 and 427.74
impacts, respectively.

. On the

1
72
0 0 J
nonlinear system, we obtain ¢ = 0.972, p = 7.45, leading to
a bound of 0.4057T for initial conditions at the origin. We
thus hit 50% failure at T' = 2X4g"f§57 = 49.90 impacts. This
compares poorly to the first approach, which may imply that
dealing with non-Gaussian noise by filtering it through non-
linear dynamics does not work well in practice
In the third approach, we set M to ,2 We get ¢ = 1,

p = 19.19, which yields a 50% failure rate at T = 12646.90

In the second approach, we set M to
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Fig. 2: The log-base-10 failure probabilities for two continuous-time systems. Left: balancing for the pendulum, as a function
of initial conditions. Right: balancing for the cartpole, as a function of initial conditions in = and # (the initial conditions for

& and 6 are fixed to 0).

One-step slope bound (non-linear)
One-step slope bound (linear)
Noise as state variable
Linearized noise
Discrete-state

313 impacts

428 impacts

50 impacts
12647 impacts
643600 impacts

TABLE I. Expected failure time/50% failure probability
thresholds for the rimless wheel. The first, second, and last

bounds compute expected failure times, while the second and
third bounds compute the time with a 50% failure probability.

impacts, a significant improvement on both of the first two
approaches.

Finally, as computed in [4], the actual expected failure time
is 643600. These results are summarized in Table [l

E. Example 5: Room Heating

Our final example evaluates the scalability of our approach.
We compare our algorithm to the algorithm presented in Abate
et al [1]. To summarize the problem, it concerns bounding
the probability that a heating system allows any of A rooms
to leave given temperature ranges, where the response of a
room’s heating unit is governed by a sigmoidal function of the
temperature of that room, and heat flow between rooms obeys
a linear relationship. More explicitly, for a heating system with
h rooms, we represent the temperature of the h rooms as a
vector x = (x1,%2,...,2n), and consider the discrete-time
system 1 = f(x,) + g(z,)w, with

Z;
f(x)i= = +b(zpL — ;) +a ij —x; | +co <E -1
J#i
(19)
g(x) = vipxn, (20)

where o is a sigmoidal function rising from 0 to 1, which
we approximated as o(y) = 0.5 — 2.5y + 1.25y% + 20y3. For
our experiment we took a = 0.0625, b = 0.025, ¢ = 0.6,
zpr, = 6.0, « = 19.5, and v = 0.25. The goal was

to bound the probability of leaving the temperature region
defined by [17,22] x [16,23]"~1. The numbers given above
are based on Abate et al.’s paper, although we make a few
simplifying assumptions to the dynamics — first, we replace
some Bernoulli noise by its expectation; second, we assume
symmetric between-room interactions so that there will be an
easily identifiable fixed point about which to verify stability.
We also remove a one-step lag on noise, which increases the
discretization mesh of [1]] by a factor of 2 per dimension.

We observe that Abate et al. are able to (using 5 bins per
dimension) verify a 5-room heating system in 11 hours on a
3.4GHz PC with 1GB of RAM. Because of the factor of 2 per
dimension that they incur, a fair comparison of runtime would
be to test our SOS verification on a 7-room heating system
(the mesh size in [1] would decrease by a factor of 32 by
ignoring lag, then gain a factor of 25 when going from 5 to
7 dimensions, so that their 7-room times without lags would
be 6-7 hours, as their runtime scales about quadratically with
mesh size).

In this case a single SOS verification runs in an average
of 17.2 seconds (our algorithm performs several such verifi-
cations). We used a 3.4GHz PC with 24GB of RAM; we note
that our PC had 12 cores, with CPU diagnostics indicating
that 4 cores were actually utilized by our computation.

VI. CONCLUSION

We have presented a method for verifying stochastic non-
linear systems. However, the results here are by no means
a complete theory; there is much work left to be done.
Our hope is that the successful examples in this paper will
convince others that the methods first presented in [18] can
extend usefully to complex systems for suitable choices of
barrier functions. We chose exponentials of quadratic barrier
functions because the systems we had in mind were locally
well-approximated by linear systems and the noise model was
Gaussian. Other applications will possibly require different
families of barrier functions; hopefully the convex relaxations



given in Lemmas [[II.2| and will provide inspiration for
similar relaxations with other families of barrier functions.
It seems that usually one can obtain such relaxations from
simple analytical properties of the expressions in question, but
the authors do not yet have a way to make this observation
rigorous.

Some interesting modifications to the dynamics would be
to consider mixtures of Gaussians, as well as switching
processes, in the noise model; also to consider verification
about stabilized trajectories. For these cases, barrier functions
that are exponentials of quadratics should still work well.
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