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Abstract—This paper considers the distributed data fusion
(DDF) problem for general multi-agent robotic sensor net-
works in applications such as 3D mapping and target search.
In particular, this paper focuses on the use of conservative
fusion via the weighted exponential product (WEP) rule to
combat inconsistencies that arise from double-counting common
information between fusion agents. WEP fusion is ideal for
fusing arbitrarily distributed estimates in ad-hoc communication
network topologies, but current WEP rule variants have limited
applicability to general multi-robot DDF. To address these issues,
new information-theoretic WEP metrics are presented along with
novel optimization algorithms for efficiently performing DDF
within a recursive Bayesian estimation framework. While the
proposed WEP fusion methods are generalizable to arbitrary
probability distribution functions (pdfs), emphasis is placed here
on widely-used Bernoulli and Gaussian mixture pdfs. Experi-
mental results for multi-robot 3D mapping and target search
applications show the effectiveness of the proposed methods.

I. INTRODUCTION

The problem of fusing information from an ensemble of
noisy data streams is critical to many existing and soon-to-
be-realized robotic systems operating in uncertain dynamic
environments. This is particularly true for distributed multi-
robot systems requiring distributed perception for applica-
tions such as collaborative mapping for exploration, target
search/tracking for surveillance, and futuristic unmanned ur-
ban transport systems. For sensor agents in a network to share
information and perform distributed data fusion (DDF), it
is most desirable to establish a scalable, flexible and robust
network over which the robots can transmit and receive infor-
mation. An ad-hoc and arbitrary connected network provides
scalability for fusion agents to join and drop off the network,
flexibility to allow agents to join at any point and robustness
to ensure multiple links or agents must fail before the network
becomes unconnected [5].

Implementation of DDF for general robot sensor networks
thus requires conservative data fusion techniques to maintain
estimates that avoid inconsistencies due to rumor propaga-
tion [3]. A common conservative fusion rule for estimates
with Gaussian probability distribution functions (pdfs) with
unknown correlation is Covariance Intersection (CI) [11]. This
rule is appropriate for certain types of problems, but it is
inadequate for handling non-Gaussian distributions that arise
in applications such as target search and 3D mapping. A suit-
able conservative fusion rule for arbitrary pdfs with unknown

correlation is the weighted exponential product (WEP) [1]. The
WEP is a generalization of CI to non-Gaussian distributions
[9] and different cost metrics to determine an optimal WEP
fusion weight have been proposed [3, 9]. However, these
existing WEP fusion approaches have drawbacks that can
limit their usefulness in robotic DDF, including the theoretical
nature of their cost metrics and difficult implementation for
arbitrary pdfs.

This paper makes the following contributions: (1) it pro-
poses novel information-theoretic metrics for performing WEP
fusion that address these issues and are suitable for fusing
arbitrary state estimates shared via ad-hoc network communi-
cation topologies in a wide range of robotic DDF applications;
(2) it presents new formally consistent algorithms for online
implementation of our proposed WEP fusion metrics that can
be used to quickly and robustly combine information in a
recursive Bayesian estimation framework, with emphasis on
the Bernoulli and Gaussian mixture distribution functions used
widely in robotics; (3) it demonstrates the effectiveness of
our proposed WEP fusion methods for performing online
collaborative 3D mapping and 2D target search with multi-
robot networks in loopy communication topologies.

A. DDF Preliminaries

Formally, let xk ∈ Rnx be an nx-dimensional state to be
estimated at discrete time steps k = 0, 1, ... by N independent
robotic sensor agents. Assume that each robot i ∈ {1, ..., N}
obtains ny local sensor measurements of xk in the vector yki
with likelihood function pi(yki |xk). Let pi(x

k|Zk
i ) be the local

posterior pdf for robot i given the set of all information Zk
i ={

Zk−1
i , yki

}
available to i before new information Zk

j arrives
from robot j 6= i, such that local fusion of yki is given by the
posterior pdf from Bayes’ rule,

pi(x
k|Zk

i ) ∝ pi(xk−1|Zk−1
i )pi(y

k
i |xk). (1)

For generality, the robot networks considered here are as-
sumed to have arbitrary dynamic node-to-node communication
topologies, such that: (i) N may vary; (ii) each robot is only
aware of nodes it connected to; (iii) no robot ever knows the
complete global network topology; (iv) no robot knows the
receipt status of messages it has sent.

Centralized fusion or raw data sharing can fully recover new
information in

⋃N
i=1 Z

k
i , but such methods scale poorly with



N and are vulnerable to node failures. DDF overcomes such
bottlenecks and can recover the centralized Bayesian fusion
result for a given pair of robots (i, j) [8], since

p(xk|Zk
i ∪ Zk

j ) ∝
pi(x

k|Zk
i )pj(x

k|Zk
j )

p(xk|Zk
i ∩ Zk

j )
, (2)

where the denominator is the common information pdf for
the local pdf pi(x

k|Zk
i ) ∝ p(xk|Zk

i ∩ Zk
j ) · p(xk|Zk

i\j),
where Zk

i\j is the exclusive local information set for node
i and similarly for node j. Hence, the common information
pdf must be explicitly known for DDF to optimally extract
only new information in Zk

i ∪ Zk
j . Note that if division by

p(xk|Zk
i ∩ Zk

j ) were ignored in (2), the resulting ‘Naive
Bayes’ fusion rule would always double-count p(xk|Zk

i ∩Zk
j )

and induce inconsistencies via rumor propagation. However,
tracking p(xk|Zk

i ∩ Zk
j ) in an arbitrary ad-hoc network re-

quires pedigree-sharing about each distribution to fuse; this
becomes computationally prohibitive for non-tree communi-
cation topologies with loops/cycles [3, 8]. The generality of
assumptions (i)-(iv) above leads to difficulties for implement-
ing DDF via graphical model techniques.

An alternative method for consistent DDF considered here
is the conservative weighted exponential product (WEP) fusion
rule,

pWEP(x
k|Zk

i ∪ Zk
j ) =

1

c
pωi (xk|Zk

i ) · p1−ω
j (xk|Zk

j ), (3)

≡ pWEP(x
k)

where ω ∈ [0, 1] and c is a normalizing constant. The WEP
rule has two properties that make it well-suited to general
multi-robot DDF problems: (1) it is applicable to arbitrary
non-Gaussian pdfs, and (2) for any ω ∈ [0, 1], it is guaranteed
to avoid double-counting of p(xk|Zk

i ∩ Zk
j ) [1]. However,

this also means some exclusive information from i and j
is always discarded. Hence, the WEP fusion weight ω must
be picked carefully to ensure useful information exchange
between robots i and j.

B. WEP Fusion Metrics

Ref. [9] considers two popular cost metrics on (3) for
optimal selection of ω ∈ [0, 1]. The first cost is the Shannon
entropy of pWEP(x

k), which is motivated by the idea that the
absolute uncertainty of (3) should be minimized. Ref. [9]
shows that the resulting Shannon fusion rule [3] is a direct
non-Gaussian generalization of the Gaussian CI rule. The
second cost selects the ω = ω∗ corresponding to the Chernoff
Information between pi(x

k|Zk
i ) and pj(x

k|Zk
j ) [4], and is thus

called Chernoff fusion [6, 10]. It can be shown that this equates
the Kullback-Leibler divergences (KLDs) between (3) and the
individual robot posteriors, which guarantees that the Chernoff
fusion result is ‘half-way’ between the original local i and j
posteriors in an information gain/loss sense. Both the Shannon
and Chernoff fusion rules provide nice information theoretical
reasons for choosing ω, but each rule has potential limitations
in the context of general multi-robot DDF, as explained in
Section II.

C. WEP Fusion Algorithms

General WEP fusion can present challenging implementa-
tion issues when dealing with arbitrary non-Gaussian pdfs. For
instance, both Shannon and Chernoff fusion require minimiza-
tion of integral costs that are in general analytically intractable,
making WEP fusion potentially unsuitable for online robotic
DDF problems. Furthermore, (3) is generally not available in
closed-form. Heuristic WEP fusion approximations have been
proposed to address these issues [6, 10], but these have no
formal guarantees of either correctly minimizing the desired
WEP cost or accurately approximating (3). Such heuristic
approximations can thus lose information that should be
preserved between robots or introduce spurious information.

II. NEW INFORMATION-BASED WEP METRICS

A. Limitations of Existing Metrics

Shannon fusion is not always justified from a general
Bayesian estimation perspective, since acquisition of new
information can, in many cases, increase the entropy of the
exact/centralized Bayesian posterior for non-Gaussian pdfs [1].
Chernoff fusion ignores the possibility that an imbalance in
information gain may exist between robots i and j prior to
fusion. To address such scenarios, ref. [9] suggests introducing
weighting factors into Chernoff fusion that are equal to the
number of measurements taken by each robot in order to bias ω
towards the better informed pdf. However, the number of mea-
surements is not a complete reflection of information gain for
each robot, as local differences in sensor quality/characteristics
and information obtained from other neighbors in the robot
network must also be taken into account.

B. Generalized Information Weighted Chernoff Fusion

The first new fusion rule modifies the measurement
weighted Chernoff fusion [9] to apply weighting factors
ci, cj ≥ 0 that reflect actual information gain by each robot i
and j, instead of the number of measurements. This biases ω
towards the constituent pdf with greater information content
without explicitly counting measurements, so that ω satisfies

ci ·DKL

[
pWEP(x

k)||pi(xk|Zk
i )
]

= cj ·DKL

[
pWEP(x

k)||pj(xk|Zk
j )
]
, (4)

where DKL [·||·] is the KLD. For problems yki are always
guaranteed to reduce uncertainty (e.g. static linear Gaussian
estimation), ci and cj can be conveniently estimated as the
reciprocal of the entropy of the constituent distributions,

ci =
1

H[pi(x
k|Zk

i )]
, cj =

1

H[pi(x
k|Zk

i )]
, (5)

where H[p(x)] is the Shannon entropy of p(x). This leads
to an Entropy Weighted Chernoff Fusion solution that uses
a weight ω∗ ∈ [0, 1] to equate the entropy weighted KLDs
between the WEP and original distributions. This results in
a bias towards the distribution with the lower entropy along
the chord that connects the two distributions according to the
KLDs.



However, as discussed in Section II-A, the Shannon entropy
is not always a suitable indicator of information gain. It is also
unsuitable for fusing distributions over continuous states xk,
since the differential Shannon entropy of probability density
functions can be negative (whereas ci, cj should be non-
negative). One possible alternative is to select ci and cj to
be the information gained in the KLD sense with respect to a
common reference distribution pr(xk) for robots i and j. If a
common prior pdf p(x0) is available to all agents at k = 0 for
initializing Bayesian estimation, then this forms a convenient
choice for pr(xk), so that

ci = DKL

[
pi(x

k|Zk
i )||p(x0)

]
, (6)

and similarly for cj . These weights reflect the total information
gain of each agent over time with respect to p(x0) via the
combined effects of local Bayesian fusion and DDF. Note that
a fixed reference distribution must be used with the KLD, since
it is not a true distance metric and does not obey the triangle
inequality. The KLD could be replaced by another divergence
that is a true metric (e.g. the Hellinger divergence [2] or the
symmetric KLD), which removes the need for a common prior
and permits ci, cj to be computed incrementally, but that is not
demonstrated here.

C. Minimum Information Loss Weight Fusion

A second cost is now developed to minimize an approxi-
mation on the information lost as a result of WEP fusion. Eq.
(3) discounts exclusive information at i and j to ensure that
the unknown common information between the two is counted
only once. Therefore, there is an information loss between the
optimal fusion pdf (2) and the WEP fusion pdf (3), which is
defined

ILOSS
∆
=DKL

[
pOPTIMAL(x|ZK

i

⋃
ZK
j )||pWEP(x|ZK

i

⋃
ZK
j )
]
(7)

which cannot be computed without knowing the optimally
fused distribution. However, note that if i and j are known
to have no information in common, then the optimal fusion
rule simplifies to the Naive Bayes (NB) fusion,

pNB(x|ZK
i

⋃
ZK
j ) =

1

c
p(x|ZK

i )p(x|ZK
j ). (8)

In the case of an unknown dependence between the i and j
pdfs, the discounting of exclusive information resultant from
WEP fusion leads to information loss if the true dependence
between the distribution is zero. Therefore, an approximation
to the information loss is the KLD between the NB and WEP
fusion pdfs,

ILOSS ≈ ĪLOSS(ω)
∆
=DKL

[
pNB(x|Zi

⋃
Zj)||pWEP(x|Zi

⋃
Zj)
]

(9)

It is now possible to compute the fusion weight ω∗ ∈ [0, 1] to
minimize the approximate information loss,

ω∗ = arg min
ω∈[0,1]

ĪLOSS(ω). (10)

The advantage of this Minimum Information Loss Fusion
(10) scheme is that ω is selected to minimize the possible
information loss (7) should the two distributions be truly
uncorrelated. In practice, Minimum Information Loss Fusion
drives the solution towards Naive Bayes fusion in the case
when the distributions to fuse are significantly different (in a
Kullback-Leibler sense), which could indicate the two do not
share a significant amount of common information. The Min-
imum Information Loss Fusion scheme provides an automatic
method for trading between the Naive Bayes and conservative
fusion rules, without resorting to a heuristic decision.

III. WEP FUSION FOR MULTI-ROBOT OCCUPANCY GRIDS
AND GAUSSIAN MIXTURE BELIEFS

The proofs have been omitted due to limited space, but it
can be shown that the newly proposed metrics Section II are
all convex in ω for arbitrary pdfs pi(x

k|Zk
i ) and pj(x

k|Zk
j ).

In this section, the problem of implementing WEP fusion
using the (un)weighted Chernoff and Minimum Information
Loss cost metrics is addressed. The focus is on cases where
both pi(x

k|Zk
i ) and pj(x

k|Zk
j ) are described by either discrete

Bernoulli distributions or continuous finite Gaussian mixtures,
which are commonly used in robotics, e.g. for occupancy grid
mapping and object tracking/localization, respectively. With
some minor modifications, the methods described here can
be readily applied in other contexts and to other arbitrary
discrete/continuous pdfs.

A. Fast WEP Fusion for Bernoulli Distributions

Applying the general WEP fusion rule (3) to two Bernoulli
distributions with unknown correlation results in a fused
distribution that is also Bernoulli,

pi(x
k|Zk

i ) = pi, pj(x
k|Zk

j ) = pj (11)

pWEP(x
k) =

pωi p
1−ω
j

pωi p
1−ω
j + (1− pi)ω(1− pj)1−ω

. (12)

In the case of Chernoff fusion, the optimal weight ω∗ is
given in closed form,

ω∗CF =
log

[log(1−pi)−log(1−pj)]
[log(pi)−log(pj)] − log pj + log(1− pj)

[log pi − log pj − log(1− pi) + log(1− pj)]
(13)

For Entropy Weighted Chernoff Fusion, ω∗ cannot be found
in closed form, and the following equation must be solved
numerically,

1

H[pi]

[
pω log

pω
pi

+ (1− pω) log
(1− pω)

(1− pi)

]
− . . .

1

H[pj ]

[
pω log

pω
pj

+ (1− pω) log
(1− pω)

(1− pj)

]
= 0 (14)

where pω is given by (12) and the entropy of a Bernoulli
distribution is H[p] = −p log p− (1−p) log(1−p). When the
entropy of the two distributions is equal, Entropy Weighted
Chernoff Fusion collapses to regular (i.e. unweighted) Cher-
noff fusion.



In the case of the Minimum Information Loss fusion, ω∗ is
given in closed form,

ω∗M-L =
log pj − log(1− pj)− log

[
pipj

(pi−1)(pj−1)

]
log pj − log(1− pj)− log pi + log(1− pi)

. (15)

B. Fast WEP Fusion for Finite Gaussian Mixtures

Assume each robot’s pdf is a finite Gaussian mixture (GM),

pi(x
k|Zk

i ) = pi(x
k) =

Mi∑
m=1

wi
mN (µi

m,Σ
i
m) (16)

where (for agent i and similarly for j) M i is the number
of mixands, µi and Σi are the mean and covariance matrix
of component m, and wm is the mth mixing weight such
that wm ∈ [0, 1] and

∑M
m=1 w

m = 1. The WEP cost metric
integrals and the resulting fusion pdf (3) are not closed form
for GMs. A new fast and consistent two-phase Monte Carlo-
based optimization and learning procedure is presented to
overcome these issues.

1) Particle-based optimization: The Information Weighted
Chernoff fusion cost can be written as

fkWEP(ω) =

∫
hij(x

k) · pWEP(x
k)dxk, (17)

where hij(xk) =
ci log pi(x

k)− cj log pj(x
k)

log pi(xk)− log pj(xk)
,

(where unweighted Chernoff fusion uses ci = cj = 1); the
Minimum Information Loss cost (4) can be written as

fkWEP(ω) = ω · κ+ log

∫
hij(x

k) · pWEP(x
k)dxk, (18)

hij(x
k) = 1, κ =

∫
pi(x

k)pj(x
k) log

(
pj(x

k)

pi(xk)

)
dxk

The integral terms with respect to pWEP(x
k) in each of these

analytically intractable costs are approximated via importance
sampling,∫

hij(x
k) · pWEP(x

k)dxk ≈ 1

Ns

Ns∑
s=1

θs(ω) · hij(xs), (19)

θs(ω) =
pωi (xs)p

1−ω
j (xs)

g(xs;ω)
(20)

where hij(xs) are sample values of hij(xk) and θs(ω) are
unnormalized non-negative weights for Ns i.i.d. samples
{xs}Ns

s=1 drawn from a fixed importance pdf g(xk;ω). The
constants ci and cj in (6) and κ in (18) are generally not avail-
able in closed form for GMs, but can be well-approximated
estimated with fast deterministic methods [7].

To ensure that (19) is well-behaved and easy to compute,
the importance pdf g(xk;ω) should be easy to sample from
and evaluate, have non-zero support over the entire domain
of integration and resemble (3) closely enough to control the
variance of (19). Many choices are possible for g(xk;ω), but

Algorithm 1 GM WEP Fusion via Importance Sampling
Inputs: robot GM pdfs pi(xk) and pj(xk); number of samples Ns; initial
guess ω0; importance pdf exponent ω̄; update function [ωold, ωcurr] ←
R1D[f̃(ωcurr), ωcurr, ωold] for desired 1D minimization rule; effective sample
size threshold, Nt

Output: ω̃∗ ∈ [0, 1]; samples {xs}Ns
s=1 with normalized weights {θs}Ns

s=1

1. Initialize ωcurr ← ω0 and ωold according to R1D

2. construct GM importance sampling pdf g(x; ω̄) via (21)
3. draw Ns samples {xs}Ns

s=1 ∼ g(x;ωcurr)

4. store pdf values pi(xk), pj(xk), g(x;ωcurr) for {xs}Ns
s=1

while ωcurr not converged do
5. compute unnormalized importance weights {θs}Ns

s=1 via (20)
6. using (19), compute f̃(ωcurr) via (17) or (18)
7. update [ωold, ωcurr]← R1D[f̃(ωcurr), ωcurr, ωold]

end while
8. if effective sample size < Nt, set ω̄ = ωcurr and go to step 1.
9. normalize {θs}Ns

s=1 s.t.
∑Ns

s=1 θs = 1 and return ω̃∗ = ωcurr.

the following ‘first-order’ GM approximation to (3) proposed
by [10] is particularly effective,

g(x;ω) =

M F∑
m=1

wF
mN (µF

m,Σ
F
m) (21)

ΣF
m =

(
ω(Σi

q)−1 + (1− ω)(Σj
r)−1

)−1
(22)

µF
m = ΣF

m

(
ω(Σi

q)−1µi
q + (1− ω)(Σj

r)−1µj
r

)
(23)

wF
m =

(wi
q)ω(wj

r)1−ω∑
q′,r′ (wi

q′)
ω(wj

r′)
1−ω

, (24)

which is a component-wise covariance intersection operation
on the constituent GMs (with M F resulting mixands).

Eq. (19) is unbiased and converges to the true value of the
integral as Ns → ∞. Hence, a numerical 1D optimization
routine can obtain an unbiased estimate ω̃∗ of ω using (19) to
evaluate (17) or (18). The 1D search is accelerated by using
a fixed importance pdf g(x;ω) = g(x; ω̄), where ω̄ is the
same in all optimization steps. As such, the samples {xs}Ns

s=1

are drawn once and the pdf values {pi(xs), pj(xs), g(xs; ω̄)}
are stored as constants for recalculating (20) at new ω values.
The resulting optimization procedure is shown in Algorithm
1, where R1D[f̃(ωcurr), ωcurr, ωold] denotes an ω-update rule for
any desired 1D optimization algorithm (e.g. bisection search
or golden section search) and ω̄ = 0.5 is typically used in
our applications as an initial estimate. Algorithm 1 typically
converges quite quickly and therefore may be run again if
it terminates with an effective sample size less than some
prescribed threshold Nt. In this case, ω̄ is reset to the current
best estimate for ω to restart the optimization.

2) WEM Learning: Immediately following optimization,
density estimation procedures are applied to the importance
samples to recover an accurate GM to approximate (3) at
ω̃∗. The Weighted EM (WEM) algorithm is used for GMs
to exploit the normalized importance weights as part of the
learning problem. Details for implementing WEM learning of
GMs from weighted samples are given in [7]. The initial GM
parameters for WEM are found via compressing (21) to a
desired maximum number of GM terms, MMAX, using [13].



(a) (b)

Fig. 1. (a) Mobile robot set up with Hokuyo lidar and on-board computer
for distributed occupancy grid map fusion experiment. (b) Laboratory envi-
ronment for the occupancy grid mapping experiment is 15 × 8 meters and
contains boxes of different sizes.

IV. EXPERIMENTAL RESULTS

A. Multi-Robot Occupancy Grid Map Fusion

The generalized fusion of the Bernoulli distribution (Section
III-A) is directly applicable to fusion of multi-robot occupancy
grid maps. The probability of a voxel of space being occupied
is represented as a Bernoulli probability and each voxel is
assumed independent. As a result, the fusion of occupancy grid
maps from multiple robots is accomplished by sequentially
performing fusion across each of the grid cells in the map.
A laboratory experiment demonstrates the fusion of 3D occu-
pancy grid maps based on the different fusion rules derived,
including Chernoff Fusion, Entropy Weighted Chernoff Fusion
and Minimum Information Loss fusion and compares the
resulting approximate information loss as a function of map
location for the different techniques.

Data was collected using the Pioneer P3-DX differential
drive mobile robot from Mobile Robots Inc. shown in Fig.
1(a). The primary sensor for the occupancy grid mapping is
the Hokuyo URG-04X laser scanner which features a 240o

field-of-view and angular resolution of 0.36o and maximum
range of ≈ 5 m. The laser is pitched downward 45o and scans
along the ground as the robot moves forward.

The test environment is 15× 8 meters and is instrumented
with a Vicon MX+ precision tracking system for robot lo-
calization and 3D object position/attitude determination. The
features in the environment consist of boxes between 10
and 25 cm tall that are meant to simulate traffic cones or
other similarly sized obstacles for a full-size traffic vehicle.
Eight robots are run in different paths around the environment
for a 120 second data collection (Fig. 2). The robots are
run sequentially to avoid sensing each other during map
construction.

The robots each construct a 3D occupancy grid map using
the Octomap [14] implementation. The occupancy grid reso-
lution is 0.05 m. To establish a baseline occupancy grid map,
the data from all the mobile robots is processed to make the
centralized solution that is equivalent to all agents sending
each laser scan and position report to a central server for
processing. The resulting centralized map is shown in Fig.
3(a). The map is rendered displaying only the voxels that are
occupied or have a pOCC > 0.8, the empty and unknown voxels
are not shown and the voxels are falsely colored according to

Fig. 2. The overhead paths of the eight mobile robots exploring the
environment for distributed occupancy grid mapping experiment. The data
collection interval is 120 seconds and different robots explore different regions
of the environment with some overlap to demonstrate the benefit of the
generalized fusion rules to distributed mapping. The distributed mapping
optimal network topology is shown as an inset.

(a)

(b)

(c)

Fig. 3. (a) 3D centralized occupancy grid map displaying the occupied voxels
with false coloring based on height. (b) 3D Occupancy grid map from Agent
1 using only local updates. The occupied and empty cells (ghost gray) are
shown along with the final pose of the robot (red box). (c) 3D Occupancy
grid map from Agent 1 after Minimum Information Loss Fusion; this map is
qualitatively similar to the centralized solution.

height according to the scale in Fig. 3(b); a 0.25 m grid is
shown in gray for reference. The line of small skinny boxes
to the left of the environment are clearly visible along with the
larger boxes towards the right of the environment and the outer
walls. There are gaps in the center of the map where no robot
explored. The centralized solution establishes a baseline map
for use in the distributed occupancy grid mapping approaches.



Distributed Occupancy Grid Fusion on Optimally Con-
nected Network: To evaluate the application of the distributed
generalized fusion rules to occupancy grid mapping, the
mobile robots are connected in a network. The network is
connected according to the topology with maximum robustness
[5]. The topology is symmetric, has equal node and link
connectivity equal to the minimum degree, and each node is a
central vertex of the graph. The topology is shown as an inset
to Fig. 2. This makes it difficult to track common information
during fusion without data tagging and generalized data fusion
for unknown correlations is used.

The individual sensor nodes collect and process local scans
to build a local occupancy grid map that will be updated
with map data passed along the network from other agents.
An example of map constructed via local updates only is in
Fig. 3(b), which shows the map from Agent 1 (Fig. 2 Red
Path). The map is rendered showing the occupied cells falsely
colored according to height and the empty cells are shown in
a ghost gray; the unknown cells are not shown. The final pose
of the robot is shown using a solid red box. The map shows
Agent 1 explores only a portion of the map. To enable a full
representation of the environment, the distributed data fusion
techniques are used over the maximally robust sensor network.

The robots share map information across the bi-directional
links connecting the robots. The agents are required to share
the following information for each voxel: the center coordi-
nate and the log-odds probability. This implies each voxel
requires 32 bytes of data (if all numbers are in double
precision) transmitted for each communication. The nodes
communicate aperiodically as they collect information. The
final occupancy grid map after Minimum Information Loss
Fusion is shown in Fig. 3(c). The distributed data fusion via
Minimum Information Loss fusion does not have access to the
centralized solution nor the optimal fusion distribution, but is
successfully utilized to build a map that is qualitatively similar
to the centralized solution (Fig. 3(a)). The maps for Chernoff
Fusion and Entropy Weighted Chernoff Fusion are similar (not
shown).

Approximate Information Loss Maps: The approximate
information loss ĪLOSS (9) is computed after fusion for each of
the different fusion rules. The resulting information loss maps
can be used for planning purposes to balance exploration vs
verification of cells that may have contained substantial infor-
mation loss as a result of fusion. The information loss map
resulting from Chernoff Fusion is shown in Fig. 4(a). The map
is falsely colored according to the approximate information
loss metric ĪLOSS and the scale is shown in Fig. 4(b). This
color range reflects the maximum range of values according
to the empirical CDF computed over all possible combinations
of two Bernoulli distributions for the different fusion rules (not
shown). The areas where the largest information loss occurs
when information coming from remote nodes clashes with
the content estimated locally at Agent 1 and are in the left
hand portion of the map. The areas of information loss to the
right hand portion of the map are resulting from the sequential
application of the fusion rule as information is received on the

(a)

(b)

(c)

Fig. 4. (a) Approximate information loss ĪLOSS on the occupancy grid after
Chernoff Fusion for Agent 1. (b) Approximate information loss ĪLOSS on
the occupancy grid after Entropy Weighted Chernoff Fusion for Agent 1. (c)
Approximate information loss ĪLOSS on the occupancy grid after Minimum
Information Loss Fusion for Agent 1.

three links connected to Agent 1.
The resulting information loss map for Entropy Weighted

Chernoff Fusion at Agent 1 is shown in Fig. 4(b). The
results shows an increase in some areas and a decrease in
the approximate information loss in other areas as a result of
Entropy Weighted Chernoff Fusion. The resulting fused map
(not shown) is similar to Fig. 3(b). The Minimum Information
Loss Fusion rule is significantly better than either approach
in terms of reducing the need for verification due to potential
information loss, especially along the ground.

The resulting information loss map for Minimum Informa-
tion Loss Fusion at Agent 1 is shown in Fig. 4(c). The results
show a dramatic improvement in the potential information
loss, because the fusion rule has zero loss for 50% of the
possible combinations of Bernoulli distributions. The Mini-
mum Information Loss Fusion rule generates consistent and
quality occupancy grid maps and has the lowest information
loss. Therefore, this fusion rule is the best for distributed data
fusion of occupancy grid maps.

B. GM Fusion for Multi-robot Target Search

In another experiment, three Pioneer 3D-X robots are tasked
to search for a static target with location xtarg in an en-
vironment similar to the one shown in Fig. 1. Each robot
equipped with single forward facing Unibrain Fire-I camera



(a) (b) (c)

Fig. 5. (a) Example GM prior over xTARG (red indicates higher density);
(b) model for camera-based binary ‘Detection’/‘No Detection’ likelihood
(P (‘No Detection’|xTARG) shown zoomed in; blue indicates probability near
0); (c) posterior GM after fusing GM prior in (a) with ‘No Detection’ report
in (b) via eq.(1) using Gaussian sum filter approximation.

with a 42.5 deg field of view, which feeds onboard visual
object detection software that produces binary ‘detection’/‘no
detection’ outputs at 1 Hz with 1 m maximum detection range.
The likelihood model for the visual object detectors is shown
in Fig. 5(b) and the common GM prior pdf for xTARG at
k = 0 is shown in Fig. 6(a). The sensor likelihood model for
each robot is highly non-Gaussian and induces non-Gaussian
posterior via (1). As shown in Fig. 5(c), this local Bayesian
posterior is well-approximated at each time step k by a finite
GM using a variant of the Gaussian sum particle filter with
1000 particles per mixand [12] and a standard GM reduction
algorithm to keep MMAX = 15 for each robot [13].

The robots move along different pre-defined search trajecto-
ries for 65 secs, during which they fuse their own camera ob-
servations to modify their local copy of the GM pdf for xTARG

(none of the agents finds the target). The robots communicate
5 times (once every 13 secs) using the cyclic communication
pattern 1→ 2→ 3→ 1 for time steps k = 26 and k = 39, and
1→ 3→ 2→ 1 for the remaining instances. The unweighted
Chernoff, KLD-gain Information Weighted Chernoff, and Min-
imum Information Loss rules were all evaluated for DDF via
Algorithm 1 with Ns = 1000. Non-DDF benchmark runs
using no sharing and centralized fusion were also evaluated,
alongside alternative DDF benchmark runs obtained via Naive
Bayes and conservative Bhattacharyya fusion. Bhattacharyya
fusion is another WEP fusion rule that always assigns ω = 0.5
[3]. This fusion rule requires no optimization but does require
approximation of the WEP fusion pdf, which is accomplished
by applying WEM to weighted importance samples, as done
for the other WEP rules used here. Fig. 6(b)-(h) show the
resulting fusion posterior GM pdfs at k = 65 for robot 1
(bottom left of map). Fig. 7 shows the KLD information gains
(6) for each robot over time under each fusion scheme.

Fig. 6(b) and Fig. 7(a) show that robot 1 contributes the
least amount of new information, as it remains completely
still at the bottom left of the map throughout the search .
When using DDF to update its local copy of the xTARG GM,
robot 1 exchanges GMs with robots 2 and 3 without any of the
robots being aware of the common information in the network.
The Naive Bayes DDF results in Fig. 6(d) and Fig. 7(c) show
that repeated double-counting of common information drives
the final DDF posterior pdfs for all robots very far from the
centralized fusion posterior in Fig. 6(c) and thus leads to
severely inconsistent results.

In contrast, the final WEP DDF posterior GMs in Fig. 6(e)-
(h) and information gains in Fig. 7(d)-(f) all bear much closer
resemblance to the centralized fusion result (with KLDs to the
centralized result roughly the same between 0.4-0.55 nats).
The posterior GM plots for Information Weighted Chernoff
and Minimum Information Loss fusion show that these rules
are better at retaining some of the subtler features of the
centralized robot fusion GM pdf, such as the distinctness of the
modes around the outskirts of the map and the ‘plowed lanes’
created by robots 2 and 3. On the other hand, the posterior
GMs for unweighted Chernoff and Bhattacharyya fusion are
smeared out, indicating that less novel information is retained
by WEP fusion at the expense of robot 1’s older outdated com-
mon prior information (note the frequent information ‘dips’ for
unweighted Chernoff). Interestingly, Fig. 7(f) shows that each
robot is more likely to gain (and less likely to lose) information
via Information Weighted Chernoff fusion, as the gains for
each robot rarely drop from their previous values, as they
do near the end of the unweighted Chernoff and Minumum
Information Loss results. Further analysis shows that this
behavior for Information Weighted Chernoff fusion stems from
an aggressive ‘winner takes all’ strategy for selecting ω in
the initial stages of the search, so that values of ω close
to 0 or 1 are observed frequently. As the robot information
gains become similar after k = 30, the ω values selected
by Information Weighted Chernoff become less extreme. This
suggests different approaches are more appropriate at different
times during the search process.

V. CONCLUSION

The WEP approach for robust fusing two arbitrary prob-
ability distributions with unknown common information was
addressed for general multi-robot applications. The nominal
Chernoff fusion rule does not account for differences in con-
tent or quality of information sources used to construct con-
stituent robot distributions; the Information Weighted Chernoff
Fusion rule was developed to account for such potential dispar-
ities without explicitly counting the number of measurements.
To approximately minimize losses incurred by WEP fusion
relative to the exact fusion posterior, a second novel Minimum
Information Loss Fusion rule was also developed using the
KLD between the Naive Bayes and WEP-fused distributions
as the cost metric. Novel fast convex implementations of
the proposed WEP fusion rules were presented for fusion of
Bernoulli and arbitrary Gaussian mixture pdfs. These methods
were experimentally demonstrated in loopy multi-robot com-
munication topologies for fusion of 3D occupancy grids and
2D target location beliefs. Future work will investigate the
theoretical properties and online performance of the proposed
WEP methods across a variety of dynamic ad hoc fusion
scenarios, spanning scales from dozens to thousands of robots.
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(note larger vertical scale) (d) Minimum Information Loss, (e) unweighted
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(not shown) are similar to unweighted Chernoff results. Dashed vertical lines
denote interagent DDF time steps.
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