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Abstract—This paper presents an automated approach to
correcting for colour inconsistency in underwater images col-
lected from multiple perspectives during the construction of 3D
structure-from-motion models. When capturing images under-
water, the water column imposes several effects on images that
are negligible in air such as colour-dependant attenuation and
lighting patterns. These effects cause problems for human inter-
pretation of images and also confound computer-based techniques
for clustering and classification. Our approach exploits the 3D
structure of the scene generated using structure-from-motion
and photogrammetry techniques accounting for distance-based
attenuation, vignetting and lighting pattern, and improves the
consistency of photo-textured 3D models. Results are presented
using imagery collected in two different underwater environments
using an Autonomous Underwater Vehicle (AUV).

I. INTRODUCTION

In recent years, marine biologists and ecologists have in-
creasingly relied on remote video and imagery from Au-
tonomous Underwater Vehicles (AUVs) for monitoring marine
benthic habitats such as coral reefs, boulder fields and kelp
forests. Imagery from underwater habitats can be used to
classify and count the abundance of various species in an area.
Data collected over multiple sampling times can be used to
infer changes to the environment and population, for example
due to pollution, bio-invasion or climate change. To provide
a spatial context to collected imagery, techniques in structure-
from-motion, photogrammetry and Simultaneous Localisation
And Mapping (SLAM) have been applied to provide three-
dimensional (3D) reconstructions of the underwater terrain
using collected images from either monocular or stereo camera
setups and other navigational sensor information (for example
see [2, 3, 6, 9]).

When capturing images underwater, the water column im-
poses several effects on images that are not typically seen
when imaging in air. Water causes significant attenuation of
light passing through it, reducing its intensity exponentially
with the distance travelled. For this reason, sunlight, com-
monly used as a lighting source in terrestrial photogrammetry,
is typically not strong enough to illuminate scenes below
depths of approximately 20m, necessitating the use of artificial
lighting on-board an imaging platform.

The attenuation of light underwater is frequency-dependant;
red light is attenuated over much shorter distances than blue
light, resulting in a change in the observed colour of an object
at different distances from the camera and light source. In the

Fig. 1: Example Images and a 3D Structure-from-Motion Model of
an Underwater Environment: Top, example underwater images taken
from an AUV. Bottom, a 3D terrain model derived from stereo image
pairs in a structure-from-motion processing pipeline. The textures on
the left half correspond to terrain height, whereas the textures on
the right half are created from the collected imagery. Vehicle-fixed
lighting patterns and water-based light attenuation cause foreground
objects to appear bright and red with respect to background objects
that appear dark and blue/green. The final 3D model exhibits texture
inconsistencies due to water-based effects.

context of structure-from-motion, the colour and reflectivity
of objects is significantly different when imaged from differ-
ent camera perspectives and distances (see Figure 1). This
can cause problems for human interpretation of images and
computer-based techniques for clustering and classification of
image data based on colour intensities.

The aim of this paper is develop a method for correcting



images so that they appear as if imaged in air, where effects
such as attenuation are negligible, and where observed image
intensities and colour are much less dependant on the per-
spective and distance from which the image was captured.
The context of this work is imaging in large-scale biological
habitats, which makes the use of colour-calibration tools such
as colour-boards undesirable due to logistical complexity and
the sensitivities of marine habitats to man-made disturbances
to the seafloor. Instead, our approach to colour correction
focuses on colour consistency by utilising the assumption of
a ‘grey-world’ colour distribution. We assume that, just as is
the case in air, that surface reflectances have a distribution
that on average is grey and is independent of scene geometry.
In air, given the benign imaging process, this assumption
approximately holds at the image pixel intensities which
is why grey-world image correction is remarkably effective
[1]. When underwater, range and wave-length dependent at-
tenuation bias the distribution of image intensities and the
grey-world correction cannot be applied naively. Our method
exploits known structure of the 3D landscape and the relative
position of the camera, derived using structure-from-motion
and photogrammetry, to apply an image formation model
including attenuation into the grey-world correction. Results
of the method are illustrated in two different underwater
environments using images collected from an AUV.

Section II provides an overview on past work in modelling
underwater image formation and underwater image correction.
Section III details our approach to underwater structure-from-
motion and image correction. Section IV provides an overview
of the context in which underwater images are acquired and the
experimental setup used to demonstrate our image correction
method. Section V provides results of our image correction
method. Conclusions and future work are presented in Section
VI.

II. BACKGROUND LITERATURE

The predominant effects of the water column on images
taken underwater are scattering and attenuation [5]. Scattering
occurs when light is reflected from microscopic particles in
the water, causing a ‘blurring’ in images that increases with
distance. The authors in [11] present an approach to reducing
the effects of light scattering by taking images through a
polarising filter at various angles.

Attenuation occurs when light is absorbed or diffracted by
water molecules or other particles in the water [5] and can be
affected by water temperature, salinity, water quality (i.e. from
pollution, sediment suspension) and suspended microscopic
life (plankton). Attenuation is the dominant cause of the colour
imbalance often visible in underwater images. Several authors
have proposed approaches to compensating for this effect.
In [14], the authors present an active imaging strategy that
adaptively illuminates a scene during imaging based on the
average depth from the camera. The approach alters the colour
balance of the strobe lighting source (for example to increase
red-light for scenes further from the camera) but uses only one
depth value (derived from the camera focal length) per scene,

Fig. 2: Left, example of a colour image of an underwater scene and
right, the corresponding range image derived from the 3D structure-
from-motion. The range image is a map of the distance between the
front of the camera lens and objects in the scene for each pixel in
the image.

neglecting the case where different objects in a single scene
are observed at different ranges to the camera. In [15], the
authors propose a method for correcting underwater images for
colour-attenuation by estimating attenuation coefficients using
either a single image captured both underwater and in air or
two underwater images captured at different depth values. The
method relies on a controlled setup for capturing images and
is only demonstrated on three images. Similarly, the authors
of [12] present a method for colour correcting underwater
images for attenuation using known terrain structure under
the assumption that a sufficient number of ‘white’ points can
be identified in the data, either from known properties of the
scene or by using calibration targets. While these approaches
are insightful, they are typically impractical in large-scale,
unstructured underwater environments.

In [13], the authors present a learning-based approach to
colour correction that learns the average relationship between
colours underwater and in air using training points of images
of the same objects both in and out of water. The approach
ignores the effect of distance-based attenuation, instead learn-
ing a single transformation that corresponds to an object at a
fixed imaging distance.

Past approaches to underwater colour correction in the liter-
ature either ignore the explicit causes of attenuation or require
complicated and limiting calibration setups for attenuation-
compensation. The contribution of our work is thus a method
of underwater image correction that explicitly accounts for
distance-based attenuation and does not require an in-situ
colour calibration setup, thus enabling large-scale surveying
in unstructured underwater environments.

III. METHODOLOGY

This section of the paper provides a background in image
transformation algorithms, underwater structure-from-motion
and an underwater image formation model, and describes our
approach to underwater image correction.

A. Underwater Structure from Motion

The colour correction strategy discussed throughout the
rest of the paper exploits knowledge about precise distances
between the camera and each point in an observed scene.



Fig. 3: Underwater Image Formation Model: Light is reflected from
the surface of an object (R) from an artificial lighting source attached
to the underwater platform. This light is attenuated as it passes
through the water column and reaches the camera lens with a radiance
(L). Irradiance (E) reaching the image sensor is affected by vignetting
through the camera lens and transformed to an image brightness
intensity (I) via the sensor response function of the camera.

This information is generated using an existing structure-from-
motion processing pipeline; more details on the approach can
be found in [6, 9].

Overlapping stereo-image pairs are collected over an under-
water scene using an AUV. Scale Invariant Feature Transform
(SIFT) feature points [8] are extracted from each pair and
used to compute pose-relative 3D point features. Features are
also matched and tracked across overlapping poses and used
with additional navigation sensor information (a depth sensor,
doppler-velocity sensor and attitude sensors) to compute the
trajectory of the platform using a pose-based Simultaneous Lo-
calisation and Mapping (SLAM) algorithm [9]. The estimated
trajectory and pose-relative 3D point features are then used
to construct a global feature map of the terrain from which a
photo-textured surface model is created by projecting colour
camera images onto the estimated terrain structure [6]. The
points in the estimated surface model are then back-projected
into each stereo-image pair and interpolated to produce a
range-image, i.e. an image whose intensity values correspond
to the range from the camera lens to the observed scene points.
Figure 2 illustrates an example underwater colour image of a
boulder field with scene objects of varying distances from the
camera and the corresponding range image derived from a 3D
structure-from-motion model of the area.

B. Underwater Image Formation Model

The measured image intensity recorded by a camera at a
point in an underwater scene is not directly proportionate to
the intensity of light reflected from the point; instead, several
factors act on the light path that make this relationship camera
perspective-dependent. The light reflected from an object per
unit area (reflectance, R) is attenuated through the water
column, resulting in a exponential decrease in the magnitude of
the light per unit area arriving at the front of the lens (radiance,
L) as the distance between the object and the camera lens
increases [5]. Equation 1 describes the relationship between

object reflectance and radiance at the camera lens as a function
of the object distance, d, and the attenuation coefficient, b(λ),
which is a function of the wavelength of light λ (i.e. colour):

L = Re−b(λ)d (1)

Light travelling through the lens of the camera undergoes a
fade-out in intensity towards the corners of the image via the
effect of vignetting [7]. Vignetting is caused primarily by the
geometry of light passing through the lens and aperture of the
camera; light passing in from greater angles to the principle
axis of the camera is partially shaded by the aperture and
sometimes by the lens housing. Vignetting can be summarised
by:

E = C(u, v)L (2)

where E is the light per unit area arriving at the camera
image sensor (irradiance) and C(u, v) is constant for a given
horizontal and vertical position in the image [u, v]. C(u, v)
may be parameterised in various ways under different camera
setups; a typical model [7] for a simple lens has C(u, v)
proportionate to θ, the angle of the image position from the
principle axis of the camera:

C =
πr2 cos4 θ

4l2
(3)

where r is the radius of the lens and l is the distance between
the lens and the image plane. The term C(u, v) can also ac-
count for the effects of a camera-fixed lighting pattern, which
is typical of underwater imaging, where artificial lighting is
carried by the underwater platform and imposes an object
illumination that is dependant on the position of the object in
the image. The last step in image formation occurs when light
arriving at the image sensor of the camera is converted into
an image intensity value I , via the sensor response function
of the camera f(.):

I = f(kE) (4)

where k is the exposure constant, typically proportionate to
the shutter speed of the camera. The sensor response function
f(.) can take a variety of forms, for example a gamma curve,
and is typically controlled by camera firmware. A detailed
discussion of sensor response functions can be found in [4].
The overall image formation process is illustrated in Figure 3.

Under the assumption that the sensor response function is
linear with the form:

I = AkE + c (5)

where the parameters A and c are constant, Equations 1, 2 and
5 can be combined into a single equation:

I = AkC(u, v)Re−b(λ)d + c (6)
= a(u, v)Re−b(λ)d + c (7)

where the parameter a(u, v) is a function of image position,
b(λ) is a function of light wavelength (i.e. image colour
channel) and c is a constant.

Our underwater image formation model assumes that am-
bient light (i.e. from the sun) is negligible compared to the



Fig. 4: Image before and after grey-world correction: top left
subfigures shows the original, uncorrected image, top right subfigure
shows the colour-balanced image. Bottom subfigures illustrate the
image colour intensity histograms.

vehicle-carried artificial light source, which typically holds
for the operating depths considered in this study. The effect
of ambient light could be added as an additional parameter
to the model in Equation 7; this is beyond the scope of this
paper and will be considered in future work.

C. Image Transformation Algorithms

As a result of the effect of artificial lighting patterns
and attenuation, underwater images typically exhibit a colour
balance that is different from what would be observed from
air, with much stronger blue and green responses. Image trans-
formations such as contrast and brightness enhancements can
be applied to each colour channel of the image to compensate;
consider the effect of applying a linear transform to each pixel
in the image:

Iy(u, v, λ) = m(λ)Ix(u, v, λ) + n(λ) (8)

where Ix(u, v, λ) is the original intensity of a given pixel
[u, v] for channel λ in image x, Iy(u, v, λ) is the image pixel
intensity in image y, and m(λ) and n(λ) are scaling and offset
constants applied across all pixels in a given colour channel
λ (i.e. separate values for each of the red, green and blue
channels). The mean µy(λ) and variance σ2

y(λ) of the resulting
pixel histogram after transformation for a given channel can
be calculated as a function of the original image channel

histogram statistics and the transformation parameters:

µy(λ) = E[Iy(λ)] = m(λ)µx(λ) + n(λ) (9)
σ2
y(λ) = E[(Iy(λ)− E[Iy(λ)])

2] (10)

= m(λ)2E[(Ix(λ)− E[Ix(λ)])
2] (11)

= m(λ)2σ2
x(λ) (12)

where µx(λ) and σ2
x(λ) are the mean and variance of a given

channel of the original image x and E[.] is the expectation
operator. These relationships can then be used to derive a linear
transform that results in an image channel with any desired
mean and variance:

m(λ) =

√
σ2
y

σ2
x(λ)

(13)

n(λ) = µy −m(λ)µx(λ) (14)

where µy and σ2
y are the desired mean and variance. This

method can be used to balance colour channels by setting
the desired mean and variance equal for each channel and
computing separate scale and offset parameters for each image
channel. Figure 4 provides an example of this process. An
uncompensated underwater image with corresponding his-
togram is shown along with the final, compensated image
and image histogram after providing a linear transformation
with parameters derived for each red-green-blue channel using
Equations 13 and 14 with a desired mean of µy = 0.5 and
desired image variance of σ2

y = 0.162 for each channel.
This process is commonly referred to as a ‘grey-world’

transformation [1] and can also be applied across a collection
of images taken in a given environment by computing µx(λ)
and σ2

x(λ) for each red, green and blue image channel using
the concatenation of data from several images (i.e. µx(λ)
and σ2

x(λ) are computed using all pixels from all images
in a given channel). The assumption behind the grey-world
transformation is that the real colours in the environment are
evenly distributed (i.e. grey on average).

D. Image Transformation Accounting for Image Spatial Ef-
fects

Camera-fixed lighting pattern and vignetting are two ex-
amples of effects on images that result in pixels in different
regions of an image having different statistical distributions
across multiple images in an environment. On average, pixels
images towards the centre of an image will appear brighter
than those towards the periphery. To account for this, the
greyworld image transformation can be computed separately
for each spatial region of an image. Thus for each pixel
location [u, v], the image correction is applied:

Iy(u, v, λ) = m(u, v, λ)Ix(u, v, λ) + n(u, v, λ) (15)

where a separate set of scale and offset parameters is used for
each pixel location and channel:

m(u, v, λ) =

√
σ2
y

σ2
x(u, v, λ)

(16)

n(u, v, λ) = µy −m(u, v, λ)µx(u, v, λ) (17)



Fig. 5: Scatter plot of measured pixel intensity vs. distance to camera
from the center pixel (i.e. u = 680, v = 512) in a set of 2180, 1360-
by-1024 pixel images. The scatter data exhibits an exponential falloff
in intensity with distance from the camera due to attenuation, and a
dependancy to colour.

where µy and σ2
y are the desired mean and variance and

µx(u, v, λ) and σ2
x(u, v, λ) are the mean and variance of all

intensities in a given set of N images at the pixel location
[u, v] for a given channel λ. This process benefits from a
large collection of N images within a given environment
from different perspectives in order to provide a statistically
significant measurement of µx(u, v, λ) and σ2

x(u, v, λ) over
objects of various colours and intensities.

E. Image Transformation Accounting for Attenuation

In addition to image spatial effects, such as lighting pattern
and vignetting, attenuation also serves to skew the distribution
of intensities measured at a given pixel location over an image
set based on the range to different objects measured in each
image. For example, Figure 5 illustrates a scatter plot of the
red, green and blue image intensities measured from the center
pixel (i.e. u = 680, v = 512) in a set of 2180, 1360-
by-1024 pixel images vs. the computed range in the scene
of this image pixel taken from various perspectives over an
underwater environment. The distributions in pixel intensities
exhibit considerable correlation to the range to objects with a
exponentially decaying relationship to range, indicative of the
image formation model described in Equation 7.

As in the case for lighting pattern and vignetting, range-
dependent attenuation can be accounted for by applying an
image transformation that is a function of image channel,
image pixel coordinate and range to the object. The complete
image transformation is thus computed as:

Iy(u, v, λ) = m(u, v, λ, d)Ix(u, v, λ) + n(u, v, λ, d) (18)

m(u, v, λ, d) =

√
σ2
y

σ2
x(u, v, λ, d)

(19)

n(u, v, λ, d) = µy −m(u, v, λ, d)µx(u, v, λ, d) (20)

where µx(u, v, λ, d) and σ2
x(u, v, λ, d) are the mean and

variance of all intensities in a given set of N images at
the pixel location [u, v] for a given depth d and for a given

channel λ. One potential method for computing µx(u, v, λ, d)
and σ2

x(u, v, λ, d) is to ‘bin’ measured pixel intensities into
specified values of d (distance from the camera) and compute
the mean and variance of each bin, requiring a large number
of samples at each bin, resulting in certain ranges and pixels
locations being under-sampled.

Since the expected distribution of intensities across different
depths is expected to follow the relationship of image forma-
tion derived in Equation 7, an alternative approach is taken.
For each pixel location, a scatter plot of image intensity vs.
range is created, one point for each of the N image in the
underwater dataset. If µR is the expected mean reflectance
of the surface, then the mean image intensity measured from
pixel [u, v], channel λ and range d is:

µx(u, v, λ, d) = a(u, v, λ)µRe
−b(u,v,λ)d + c(u, v, λ) (21)

where a(u, v, λ), b(u, v, λ) and c(u, v, λ) correspond to pa-
rameters for the considered pixel location and image channel.
Let a∗(u, v, λ) = a(u, v, λ)µR and the parameters a∗(u, v, λ),
b(u, v, λ) and c(u, v, λ) in Equation 21 can now be estimated
by taking a non-linear least-squares fit of this function with the
scatter data using a Levenberg-Marquardt optimisation [10].
An initial state estimate x = [a, b, c] = [1, 0, 0] was used
and was found to provide stable convergence in all of the
datasets examined. The mean intensity is then computed from
the function µx(u, v, λ, d) = a∗(u, v, λ)e−b(u,v,λ)d+c(u, v, λ)
as a function of distance d.

To compute σ2
x(u, v, λ, d), the variance corresponding to

pixel [u, v] and channel λ as a function of distance d, a similar
approach is taken. If σ2

R is the expected variance of reflectance
of the surface, then σ2

x(u, v, λ, d) is:

σ2
x(u, v, λ, d) = E[(Iy(u, v, λ, d)− E[Iy(u, v, λ, d)])

2]

= [a(u, v, λ)e−b(u,v,λ)d]2σ2
R (22)

The expected variance of surface reflection σ2
R can be com-

puted using the parameters estimated in Equation 21; for each
sample of the scatter data, the expected reflectance can be
computed by taking the inverse of Equation 21 and from the
resulting values of reflectance, the variance σ2

R is calculated.

IV. EXPERIMENTAL SETUP

Data collected from an AUV deployed in two different types
of underwater environments was used to test the image correc-
tion techniques described above. The first dataset was collected
over an underwater boulder field populated by various species
of sponge, algae and sea urchins. The data was collected by
taking overlapping transects of a rectangular region approxi-
mately 25-by-20m and contained images collected at various
altitudes as the vehicle moved over the rocky terrain. The
second dataset was collected from a single line transect over
an area with various types of benthic coverage including rocky
reef platforms with various species of coral, kelp and sandy
bottom. In both datasets, the underwater terrain is rugous and
results in images being collected from a range of different
perspectives and ranges from objects in the environment.



The underwater images were collected using a stereo camera
setup with two 1360-by-1024 pixel cameras; the left camera
was a colour-bayer camera and the right camera monochrome
(only images from the left camera were used in the image
correction process). The cameras are mounted below the AUV
platform looking downwards so as as to capture images of the
terrain as the vehicle passed over. Images were captured in a
raw 12-bit format and later converted to three colour channels.
The camera firmware used a linear sensor response function.
The aperture and shutter exposure times were fixed for each
data collection. Artificial lighting was provided by two strobes
attached to the AUV that provide white light to the scene.
Both datasets were processed using a structure-from-motion
pipeline [6, 9], and the derived 3D structure used to create
range images for each left camera image collected.

Two sets of corrected images were obtained from the raw
data for both datasets for comparison. The correction was
applied firstly using Equation 15 which only accounted for
image space effects such as vignetting/lighting pattern and
colour balance (i.e. not accounting for distance-based atten-
uation compensation). A second set of corrected images was
obtained using Equation 18 which accounted for the full image
formation model described in Equation 7 including image
space effects and distance-based attenuation. Raw images were
typically too dark to view with the naked eye (see Figure 4 for
an example) and thus were not displayed in the comparisons
shown.

The corrected images were assessed both qualitatively (by
examining consistency in appearance) and quantitatively by
measuring the inconsistency in overlapping images of common
objects. For each planar region of the surface model, a list of
images that covered this region was compiled. The structure-
from-motion estimated image poses were used via back-
projection to compute the patch of each image corresponding
to the given spatial region. As a measure of inconsistency,
the variance in these image texture intensities at this planar
region was computed and displayed spatially over the map
for each region. When images were affected by depth-based
attenuation, regions that were viewed from multiple perspec-
tives (and thus multiple ranges) displayed widely different
texture intensities (and thus high variance and inconsistency)
whereas when attenuation was compensated for, images of
a common region displayed lower variance in intensity. The
spatial patterns seen in the variance (i.e. faint banding patterns)
correspond to changes in the number of overlapping views of
each point. Some of the sharp peaks in variance correspond to
small registration errors in the structure-from-motion process.

V. RESULTS

Figure 6 illustrates examples of the mean and variance curve
fitting using image intensity samples taken from the center
pixel (i.e. u = 680, v = 512) from the 2180 images in data set
1 (boulder field). For a given value of distance d, the mean and
variance values provide an approximation of the distribution of
image intensities captured from various objects at this distance
from the camera and are used to derive image correction

Fig. 6: Scatter plot of measured pixel intensity vs. distance to camera
and estimated mean and standard deviation curves for each red green
and blue channel for the center pixel, taken from 2180 images in
dataset 1 (boulder field). The mean and variance (shown at three
standard deviations from the mean) curves provide an approximation
of the distribution of pixel intensities at a given distance from the
camera.

parameters. The use of a fitting approach to compute statistics
allowed for a robust estimate at ranges where only a small
amount of data is present (i.e. very close or far away from the
camera).

Figure 7 illustrates a comparison between corrected images
using the correction methods described in Sections III-D and
III-E. The left subfigure illustrates an image that has been
corrected using Equation 15 where only the spatial effects
and colour channel are considered in the correction (i.e. no
distance-based attenuation model). Although the image now
has colours that are balanced and does not exhibit spatial
effects such as vignetting or lighting pattern, there is still
significant distance-based attenuation where regions of the
image far from the camera (i.e. bottom right of the image)
appear darker and more blue/green than regions close to the
camera (i.e. top left of the image). The image in the right
subfigure has been corrected using Equation 18 where all the
effects of the image position, colour channel and distance-
based attenuation are considered in the correction. Both the
colour intensity and contrast in the more distant regions of the



Fig. 7: Left, colour compensated image using standard (non depth-based) correction and right, colour compensated image with full water
attenuation correction. Both the intensity and contrast in the more distant regions of the image have been increased to match the overall
scene in the right subfigure, while objects less distant have been darkened.

Fig. 8: Left, 3D photo-textured scene using standard colour corrected textures and right, 3D photo-textured scene using full water attenuation
colour corrected textures.

Fig. 9: First and second subfigures from the top: comparison of 3D photo-textured scenes using standard and full water attenuation colour
corrected textures. Third and fourth subfigures: comparison of image texture standard deviation for the same corrected textures (colourbar
units are normalised intensity). The attenuation-corrected textures display significantly reduced variance in the intensity of images at each
part of the map, in particular areas corresponding to large perspective changes by the vehicle.



image have been increased to match the overall scene, while
the less distant regions have been darkened, largely removing
the effects of attenuation.

Once images were corrected across an entire dataset, they
were applied as photo-textures for the structure-from-motion
derived 3D surface model. Figure 8 shows a comparison
of the photo-textured terrain model of dataset 1 (boulder
field) when using image textures that have been corrected
via the methods described in Sections III-D and III-E. The
left subfigure illustrates the model using textures taken from
images corrected using Equation 15 (i.e. no distance-based
attenuation model) and the right subfigure illustrates the model
using textures corrected using Equation 18 (i.e. full model with
attenuation correction). The left model exhibits considerable
correlation between the intensity/colour of image textures and
the average distance from which each part of the surface was
imaged from, in particular a horizontal banding pattern that
corresponds to overlapping swaths during image collection
that occur at slightly different heights above the terrain. The
distance and general spatial correlation has been essentially
removed in the corrected-texture model to the right.

Figure 9 illustrates a similar comparison between photo-
textured models from dataset 2 (reef) with the non-attenuation
corrected model shown in the first subfigure (from the top) and
the attenuation-corrected model shown in the second subfigure.
Inconsistencies are visible in the first model during passage
of sections of rocky reef that sit above the sandy bottom and
appear bright and red in the images as the AUV changes its
height above the terrain in order to clear the obstacle. The
bottom two subfigures illustrate maps of the variance in over-
lapping images textures across the map for the two different
correction schemes. The attenuation-corrected textures display
significantly reduced variance in the intensity of images at
each part of the map, in particular areas corresponding to large
perspective changes by the vehicle.

VI. CONCLUSIONS AND FUTURE WORK

This paper has developed an automated approach for cor-
recting colour inconsistency in underwater images collected
from multiple perspectives during the construction of 3D
structure-from-motion models. Our technique exploits the 3D
structure of the scene generated using structure-from-motion
and photogrammetry techniques accounting for distance-based
attenuation, and improves the consistency of photo-textured
3D models. Results are presented using imagery collected in
two different underwater environments and demonstrated both
the qualitative and quantitative improvement of the imagery.
Our approach relies on the assumption of a ‘grey-world’ (i.e.
one in which colours in the environment are grey on average
and not biased in hue) and further more that this distribution
is spatially consistent (in particular, depth). Future work will
consider extensions to our approach to account for environ-
ments where this assumption could potentially be violated
such as when objects of a particularly strong colour are only
present at a biased depth in the dataset. One potential approach
to this issue is to consider robustified fitting approaches or

outlier rejection methods that allow for a select, ‘well-behaved’
subset of the data to be used during model fitting. Future
work will also consider approaches for building consistency
in image datasets collected over multiple collection times, for
monitoring long-term changes to the environment.
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