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Abstract—Reinforcement learning has proven itself to be a
powerful technique in robotics, however it has not often been
employed to learn a controller in a hardware-in-the-loop en-
vironment due to the fact that spurious training data could
cause a robot to take an unsafe (and potentially catastrophic)
action. One approach to overcoming this limitation is known as
Guaranteed Safe Online Learning via Reachability (GSOLR), in
which the controller being learned is wrapped inside another
controller based on reachability analysis that seeks to guarantee
safety against worst-case disturbances. This paper proposes a
novel improvement to GSOLR which we call Iterated Guaranteed
Safe Online Learning via Reachability (IGSOLR), in which
the worst-case disturbances are modeled in a state-dependent
manner (either parametrically or nonparametrically), this model
is learned online, and the safe sets are periodically recomputed
(in parallel with whatever machine learning is being run online
to learn how to control the system). As a result the safety of
the system automatically becomes neither too liberal nor too
conservative, depending only on the actual system behavior.
This allows the machine learning algorithm running in parallel
the widest possible latitude in performing its task while still
guaranteeing system safety. In addition to explaining IGSOLR,
we show how it was used in a real-world example, namely that of
safely learning an altitude controller for a quadrotor helicopter.
The resulting controller, which was learned via hardware-in-
the-loop reinforcement learning, out-performs our original hand-
tuned controller while still maintaining safety. To our knowledge,
this is the first example in the robotics literature of an algorithm
in which worst-case disturbances are learned online in order to
guarantee system safety.

I. INTRODUCTION

Reinforcement Learning (RL) is a branch of machine learn-
ing in which an agent attempts to learn which actions to
take in order to maximize a reward. RL has proven itself to
be a powerful technique in control applications for robotics,
with successes ranging from flying complex maneuvers on
an autonomous helicopter [2] to teaching a quadruped robot
to jump up steps [8], to helping a robot car navigate at
high speeds in an unstructured environment [9]. Despite this,
RL has not often been employed to learn a controller in
a hardware-in-the-loop environment, especially in situations
where an unstable or poorly tuned controller could cause injury
to humans or damage expensive hardware [13]. In fact, most
applications of RL in robotics have been situations in which
reference trajectories or cost functions were learned offline
(either based on recorded data or a model) and were then used

Fig. 1. The quadrotor helicopter on which IGSOLR was demonstrated.

with standard control techniques to control a robot. One reason
for this, as described by Roberts et al. [13], is that as they
are being learned, natural parameterizations of controllers can
behave poorly on systems near the edge of stability. As a result
spurious training data could cause a robot to take an unsafe (or
even catastrophic) action. Thus despite their successes online
RL algorithms are limited to being used in scenarios where
safety is not critical, or where a large number of trials can be
conducted beforehand in a controlled environment to guarantee
system safety.

One approach to overcoming this limitation is to wrap the
controller being learned inside another controller that seeks to
guarantee safety; this is the approach taken by Gillula and
Tomlin [5], in which we proposed a framework known as
Guaranteed Safe Online Learning via Reachability (GSOLR).
This framework combines machine learning techniques with
Hamilton-Jacobi-Isaacs (HJI) reachability analysis in a way
that prevents the system being controlled from taking an
unsafe action, while avoiding any changes to the machine
learning algorithm being used [5]. In essence, GSOLR is a
least-restrictive safe controller: it allows the machine learning
algorithm to control the system (e.g. via RL) except when the
state is detected as being near a safety threshold, at which time
a safety-guaranteeing control (dictated by HJI reachability
analysis) is used instead.

One of the limitations of GSOLR (as well as most HJI



reachability analysis) is that the computations for guaranteeing
safety are assumed to have been done offline, prior to the
online learning phase. As a result the system is unable to incor-
porate any new information it may learn about the disturbances
while it is running; essentially its notion of safety cannot
change based on what it experiences. Additionally, although
not explicitly stated in [5], it is assumed that the worst-case
disturbance is fixed over the entire state space, preventing the
system from taking advantage of the fact that the range of
disturbance values may be state-dependent and thus potentially
causing the safety guarantees to be too conservative.

This paper overcomes these limitations by proposing an
adapted form of GSOLR known as Iterated Guaranteed Safe
Online Learning via Reachability (IGSOLR). In IGSOLR
the worst-case disturbances are modeled in a state-dependent
manner (either parametrically or nonparametrically) and these
models are learned online, causing the resulting safe sets to
be periodically recomputed (in parallel with whatever machine
learning is being run online to learn how to control the system).
As a result the safety of the system automatically becomes
neither too liberal nor too conservative, depending only on
the actual system behavior. This allows the machine learning
algorithm running in parallel the widest possible latitude in
performing its task while still guaranteeing system safety.
The proposed algorithm is demonstrated on the example of
quadrotor altitude control. The resulting controller, which was
learned via hardware-in-the-loop RL on the quadrotor pictured
in Figure 1, out-performs the initial hand-tuned controller
while still maintaining safety.

Of course many other methods for guaranteeing system
safety while improving performance online exist in the
robotics literature. The work of Aswani et al. [3] makes use
of a Model Predictive Control (MPC) framework in which an
a priori system model is used to verify that the constraints
in the MPC optimization problem are met (safety) while a
learned model is used to evaluate the MPC cost function
(performance). The safety guarantees generated by this method
are limited to systems with linear dynamics, however. Ex-
panding beyond linear systems, Steinhardt and Tedrake [14]
have developed a technique for bounding the probability of
failure over a finite time for stochastic, nonlinear systems using
exponential barrier functions. In a related manner, Perkins and
Barto [12] have successfully used Lyapunov design methods
to guarantee safety for high-level controllers which learn how
to switch between a number of base-level controllers. However
the work that is most related to GSOLR (and thus IGSOLR) is
that of Ng and Kim [11], in which they propose an algorithm
for linear dynamical systems which “monitors” controllers
suggested by a learning algorithm and rejects those that would
lead to instability. Although this is just a brief overview of
related work, to our knowledge IGSOLR is the first example
in the robotics literature of an algorithm in which disturbances
are learned online in order to automatically tune system safety.

The rest of this paper is organized as follows. Section II
briefly reviews GSOLR and then elaborates on the limitations
described above before describing IGSOLR in detail. Sec-

tion III describes how IGSOLR was applied to the problem of
learning an altitude controller for a quadrotor helicopter online.
Section IV describes the experimental platform and illustrates
the results obtained from running IGSOLR on the quadrotor.
Finally Section V concludes the paper and elaborates on open
questions and future work.

II. ITERATED GUARANTEED SAFE ONLINE
LEARNING VIA REACHABILITY

Before explaining IGSOLR, we begin with a review of
GSOLR. Due to space constraints, the review of GSOLR here
(and HJI reachability analysis in particular) is very brief and
omits a great deal of detail. For a more in-depth explanation
of GSOLR, as well as a discussion of its strengths and
weaknesses, we refer the reader to Gillula and Tomlin [6].
For an easily understandable overview of HJI reachability, we
refer the reader to Ding et al. [4].

A. GSOLR

Guaranteed Safe Online Learning via Reachability seeks
to ensure system safety using HJI reachability analysis while
simultaneously improving system performance online using
machine learning.

1) Safety via HJI Reachability Analysis: HJI reachability
analysis [10] assumes a system model of the form ẋ =
f(x, u, d), where x ∈ Rn is the system state, u is the control
input to the system, and d is the disturbance to the system,
with u and d bounded to be in some sets U and D, respectively.
d can be used to represent a wide variety of disturbances, and
typically is used to account for noise in the system (both in
estimation and control), unmodeled system dynamics, and the
potentially stochastic nature of the underlying system, as long
all of these quantities are bounded.

HJI reachability analysis assumes safety can be encoded by
a keep-out set K ⊂ Rn, i.e. the system is safe if x /∈ K. By
solving the modified HJI partial differential equation

∂J(x, t)

∂t
= min{0,max

u∈U
min
d∈D

∂J(x, t)

∂x
f(x, u, d)} (1)

one can calculate the unsafe backwards reachable set Preτ (K)
(given by the zero sub-level set of J(x, τ)), which is the set
of all states x such that for all possible control strategies u(·),
there exists a disturbance strategy d(·) such that x ∈ K at some
point within τ units of time. Thus as long as we guarantee that
x always remains outside Preτ (K), we can guarantee that
there will exist control actions u that will allow the system
to stay safe for the next τ units of time. In particular, the
maximization in Equation 1 provides the optimal control u∗

which the system must take when the state is on the border
of Preτ (K) in order to maintain safety.

2) Combining HJI Reachability with Machine Learning:
Given this unsafe set Preτ (K) and the optimal control inputs
u∗ to take to maintain safety, GSOLR is simply a least
restrictive safe controller [5] of the form:

1) When the state x is on the border of Preτ (K), execute
the optimal control action u∗.



2) Otherwise, perform whatever control action the given
machine learning algorithm dictates.

The resulting controller is guaranteed to be safe and is also
able to accommodate a wide variety of machine learning
algorithms, including online RL algorithms.

B. Limitations of GSOLR

As mentioned in the introduction, GSOLR suffers from two
weaknesses which were not described in Gillula and Tomlin
[5]. The first limitation (which actually applies to most HJI
reachability analysis in the literature) is that GSOLR assumes
the set D describing the disturbance does not vary over the
state space. By not accounting for the fact that the disturbance
might be smaller in some areas of the state space than others,
and instead using a single worst-case range over the entire state
space, the generated unsafe sets can be overly conservative.
There are a variety of applications in which it makes sense to
model the disturbance in a state-dependent manner, including
autonomous aircraft flight, where different wind disturbances
could be expected based on weather; ground vehicle control, in
which different terrain types (e.g. pavement, mud, etc.) could
lead to different types of disturbances; robotic arm control,
where motor noise may be different depending on the load
on the arm or the angle of its joints; and of course quadrotor
altitude control, which will be explained in more detail in
Section III-A.

The second weakness of GSOLR is that it does not learn
new information online to update its models of the system and
disturbances. Instead, GSOLR uses a set of worst-case values
for the disturbances which are chosen a priori by the system
designer. If these values do not match reality, however, then
the resulting safety guarantees could be either too conservative
(if they are too large) in which case the system would never
explore parts of its state space that are in fact safe, or too
liberal (if they are too small) in which case the system may
venture into parts of the state space that are in fact unsafe.
Both cases can have negative consequences, either in terms
of limiting the operating envelope of the system, or in risking
system safety.

Of course these two limitations are intertwined. When doing
HJI reachability analysis it is sometimes improper to try to
model the disturbance as varying with the system state. For
example, in the canonical collision avoidance scenario [10] it
would not make sense to vary the pursuer’s possible range
of inputs based on the state of the system. Fortunately the
sorts of situations in which it does make sense to model the
disturbance as varying over the state space lend themselves to
the idea of learning the disturbance model, which is precisely
what IGSOLR seeks to do in a simple and straightforward
manner.

C. IGSOLR

The first major difference between GSOLR and IGSOLR is
that IGSOLR employs a model of the worst-case disturbances
that varies over the state space. More specifically, we replace
d ∈ D in the Hamiltonian with d ∈ D(x); the rest of the

machinery for calculating the unsafe set Preτ (K) remains
unchanged. We purposely do not specify what form D(x)
should take (or even whether it should be parametric or
nonparametric) in order to allow IGSOLR to apply to as broad
a range of systems as possible.

The second major difference between GSOLR and IGSOLR
is that a model of the system f̂(x, u, d) as well as D(x) is
learned as the system runs. This model is initialized to be
conservative (in order to guarantee safety) and is then updated
based on data measured by the system (once a sufficiently
large number of measurements have been taken to ensure
that the probability of any spurious data points adversely
biasing the model is sufficiently low). Periodically the most
recently learned model is then used to recalculate the unsafe
set Preτ (K), which is then used for future safety checks
as described in Section II-A2. As mentioned in Gillula and
Tomlin [6], one of the weaknesses of GSOLR is that it is
limited to systems with low state dimension due to the curse
of dimensionality present in the HJI reachability calculations.
Unfortunately IGSOLR suffers even more from this limitation
since the HJI reachable set calculations must be done in
a online manner. Thus until faster methods for computing
reachable sets are developed, IGSOLR is limited to systems
of state dimension two or three.

It is important to note that because IGSOLR learns the
disturbances in an online manner the safety guarantees that
are generated will only be as good as the data on which they
are based. As a result IGSOLR cannot be thought of as giving
a “true” worst-case safety guarantee, since there is always
the possibility that a low-probability worst-case event could
occur. However, it is worth noting that even with “true” worst-
case safety guarantees (i.e. those generated by a method like
GSOLR) the guarantee is only as good as the a priori choice
of values for the worst-case disturbances. In particular, even a
“true” worst-case method is susceptible to very low probability
disturbances that the system designer did not take into account
(i.e. an earthquake occurring while your autonomous vehicle is
driving, or a stray cosmic ray flipping a bit in your quadrotor’s
RAM [16], or other various “acts of God”). In this sense,
no safety guarantee can ever truly be worst-case. Instead, the
point of IGSOLR is to generate an approximate worst-case
safety guarantee that is neither too liberal nor too conservative,
based on a best-effort automatic analysis of the data. In this
light the reduction in conservativeness of the safety guarantees
as IGSOLR learns the disturbances should not be viewed as
diminishing the legitimacy of its safety guarantees, but instead
strengthening them by basing them on the data gathered so as
to bring them more in line with the actual system.

III. APPLICATION TO QUADROTOR ALTITUDE CONTROL

A. Why Use IGSOLR?

Because IGSOLR is such a broad framework, it is helpful
to illustrate how it works with an example. To that end we
will show how it was used to learn an altitude controller for a
quadrotor vehicle. Quadrotor altitude control is ideally suited
to IGSOLR for a multitude of reasons, including:



1) As described by Waslander et al. [15] classical linear
control techniques are unable to provide a high degree
of performance for altitude control due to the complex
airflow interactions present in a quadrotor system. Thus
RL is a strong candidate for learning a controller.

2) However, online RL would be unsafe to try since learn-
ing with hardware-in-the-loop could be dangerous given
that the hardware could be damaged by an unstable con-
troller. Thus GSOLR is a strong candidate for ensuring
safety while an online RL algorithm runs.

3) We have good reason to believe that the range of
disturbances experienced by a quadrotor indoors is likely
to be dependent on its state: near the ground the vehicle
experiences ground effect, in which air forced through
the propellers interacts with the ground, and at certain
velocity ranges the vehicle may enter vortex ring state or
windmill braking state [7], causing unmodeled changes
in the dynamics. Since modeling the disturbance as
a function of the state makes sense, we should use
IGSOLR.1

To demonstrate IGSOLR, we implemented the algorithms
described below on board an Ascending Technologies Pel-
ican quadrotor (pictured in Figure 1) [1]. The vehicle was
flown indoors in a lab environment equipped with a VICON
MX motion-capture system, which provided sub-centimeter
accuracy position measurements at a rate of 120 Hz. To
add additional disturbances (since ground effect proved to be
too easy for the IGSOLR algorithm to compensate for) an
industrial-strength fan was positioned to blow upwards at the
quadrotor between approximately 0.2 m and 0.8 m above the
ground, with average wind gust speeds of around 50 kph.

We now describe the implementation details of IGSOLR
for the quadrotor system. Since IGSOLR treats safety and
performance in a parallel manner we will present these two
aspects of the problem setup separately.

B. Safety via Reachability

We model the quadrotor’s altitude dynamics as

ẍ = g + γu+ d (2)

where x is the quadrotor’s altitude and x = [ x ẋ ]> is its
complete state; g is some constant term assumed to be related
to gravity and the vehicle’s mass; u ∈ U is the control input
to the vehicle’s rotors, measured in counts (the abstract unit
used by the low-level interface to our quadrotor); γ is a thrust
multiplier that converts from counts to m/s2; and d ∈ D(x)
is a disturbance, due to any or all of the effects mentioned
in the previous section. In our algorithm, we will attempt to
learn g, γ, and D(x). (We assume that U is known, since the
quadrotor’s low-level interface automatically clips the input
to a certain range of counts.) Because the system executes its
control and measures its state at discrete intervals according to

1Fortunately restricting our focus to altitude control means that the state
space is two-dimensional, so it is reasonable to believe we will be able to
recompute new unsafe sets based on learned data in a semi-online fashion.
Thus it is feasible to use IGSOLR.

a fixed frequency, however, we must first re-write the dynamics
as

(ẋi+1 − ẋi)/∆t = g + γui + d (3)

where ∆t is the discrete time step.
In order to learn the model parameters we begin with an

initial estimate for g based on gravity and the quadrotor’s mea-
sured mass, γ based off of the specifications of the quadrotor,
and D(x) is initialized to a conservative constant value over
the entire state space. Then, as the quadrotor is flown under
the IGSOLR controller described below, traces of state data,
x0, . . . ,xr+1, and input data, uo, . . . , ur are recorded (where
r is the horizon over which we periodically recompute the
unsafe set). We then use linear regression based on this data to
compute estimates ĝ and γ̂ by writing β̂ =

(
X>X

)−1
X>Y ,

where

Y =

 ẋ1 − ẋ0
...

ẋr+1 − ẋr

 , X =

 1 u0
...

...
1 ur

 , β̂ = ∆t

[
ĝ
γ̂

]
.

(4)
To determine D(x) we first compute the residuals

[ ε̂0 . . . ε̂r ]> = Y −Xβ̂. We then divide the state space
into a regularly spaced grid based on x and ẋ. For each grid
cell c(i, j) = [xi, xi+1) × [ẋj , ẋj+1), we calculate the mean
µi,j and standard deviation σi,j of the residuals ε̂i that were
generated by state data from that cell. Then we model

D(x ∈ c(i, j)) = [−3σi,j + µi,j , µi,j + 3σi,j ] (5)

for grid cells for which state data was measured.
In essence this approximation ignores the 0.3% of distur-

bances which will be larger than three standard deviations
from the mean. While such an approximation is unfortunately
necessary (as described in Section II-C), we feel it is a valid
one. In particular, it is important to note that this does not
mean that our safety guarantees are only valid 99.7% of
the time: for the safety guarantee to be invalid it would
be necessary to encounter a continuous series of these low-
probability disturbances for τ straight seconds, or in our
discrete case τ/∆t time steps. Assuming the disturbances are
indeed Gaussian and IID, and given our particular values for
τ and ∆t, our safety guarantees have only a 5.2 × 10−53%
probability of not holding.

Since the quadrotor’s trajectory will not necessarily cover
every grid cell in the state space, we must find a way to
generalize the estimate of the disturbance from areas of the
state space where measurements have been taken to areas
where no measurements have yet been taken. One way to
generalize would be to continue to use the a priori conservative
estimate of the disturbance in grid cells in which no data
has been measured. However since a strong (conservative)
disturbance just outside the initial safe set could keep that set
from growing, this method could prevent the quadrotor from
ever expanding its initial safe set and thus discovering the true
nature of the disturbances in nearby states.

To avoid this problem we make the assumption that the
variation in the range of disturbances over the state space is



smooth. In essence this smoothness assumption means that
we expect disturbances in neighboring cells to be similar
in range. This assumption not only appears to be valid in
practice for this particular application, but makes sense for
many other applications including many of the ones mentioned
in Section II-B. Thus once we have estimates of D(x) for
cells in which measurements were taken, we set estimates for
the cells in which no measurements were taken based on their
distance from cells with measurements, increasing the possible
disturbance range the further a cell is from a cell with data.
More precisely, for a cell c(k, l) in which no measurements
have been taken, we set

D(x ∈ c(k, l)) = δ D(x ∈ c(i, j)) ||c(i, j)− c(k, l)||2 (6)

where ||c(i, j) − c(k, l)||2 is the Euclidean distance in
the state space between cells c(i, j) and c(k, l) (i.e.√

(xi − xk)2 + (ẋj − ẋl)2), c(i, j) is the cell closest to cell
c(k, l) (in the Euclidean sense) in which measurements have
been taken, D(x ∈ c(i, j)) is the disturbance range in that
cell, and δ is a tuning parameter that adjusts how quickly we
expect the disturbances to grow (in essence modeling how
quickly we expect the disturbance estimates to change over
the state space).

Finally given the full model of the disturbance, we can
compute the unsafe set Preτ (K) and the optimal safe control
actions u∗, which can then be used in future iterations of the
IGSOLR controller.

In summary the algorithm for learning the worst-case dis-
turbances online is:

1) Take r+ 1 measurements of the state x and r measure-
ments of the input u.

2) Use linear regression to generate an estimate of the
model of the system dynamics, given by ĝ and γ̂.

3) Use ĝ, γ̂, and the measured data to generate the residuals
ε̂i, and then use the means and standard deviations of
the residuals to estimate the disturbance D(x) in cells
where measurements were taken.

4) Propagate the information about the disturbance
throughout the state space using Equation 6.

5) Use HJI reachability to generate the unsafe set Preτ (K)
and the optimal safe control actions u∗.

Of course an initial conservative safe set must be generated
for use while the first data set is recorded; Figure 2 shows
this initial safe reachable set, based on conservative estimates
of the worst-case disturbances generated by prior experience
with the vehicle. Intuition helps explain the shape of the set: it
is safer to travel at positive velocities than negative velocities
because the quadrotor can always command zero thrust and
count on gravity to slow it down. Additionally, the faster the
vehicle is traveling in the positive direction the closer it can
be to the ground (and the further it must be from the ceiling),
and vice versa.

C. Performance via Reinforcement Learning

To learn a better altitude controller for the quadrotor we
chose to use Policy Gradient with the Signed Derivative
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Fig. 2. The initial safe reachable set generated by a conservative estimate of
the range of possible values for the disturbance. The safe area is the interior
of the region; the unsafe area is the exterior. Note that the safe altitudes
range from 0.2 m (since the quadrotor’s origin is approximately 0.2 m above
its lowest point) and 2.5 m (just below the maximum height at which the
VICON cameras in our lab can accurately detect the vehicle).

(PGSD) [8]. This choice was motivated by several reasons:
the fact that PGSD has been demonstrated on hardware-in-the-
loop systems in the past (albeit ones in which there was very
little danger of severely damaging people or hardware); the
wish to demonstrate the flexibility of IGSOLR with respect to
the choice of learning algorithm (i.e. to show that IGSOLR
works even when the learning algorithm is model-free, as
PGSD is); and because of PGSD’s ease of implementation.2

We will now briefly review PGSD before describing the exper-
imental platform itself. As with the section on HJI reachability,
our review of PGSD is necessarily brief; for a more detailed
description of the algorithm we refer the reader to Kolter and
Ng [8], from which this review is closely derived.

PGSD is a simple method for performing approximate
gradient descent to learn a control law for a Markov Decision
Process (MDP). In PGSD, we begin by assuming that the cost
function of being in state xi and taking action ui is quadratic,

C(xt, ut) = (xt − x∗t )
>Q(xt − x∗t ) + u>i Rut (7)

where x∗t is the desired state of the system at time t (i.e.
a reference trajectory), and Q and R are diagonal positive-
semidefinite matrices that penalize deviation from the refer-
ence trajectory and control input respectively.

PGSD also assumes the control law is linear in the state
features, i.e. u = θ>φ(x), where θ is a vector of parameters
that PGSD will attempt to learn, and φ(x) is a vector of
features that map from the state to scalar values. If we define

2It is undoubtedly true that other more advanced learning algorithms could
have learned an even better altitude controller; we remind the reader that the
purpose of this example was not to advance the state of the art in quadrotor
altitude control, but to demonstrate how the IGSOLR framework functions,
and we believe PGSD was sufficient for that purpose.



the sum of one-step costs of executing the policy θ starting at
x0 over a horizon l as

J(x0, θ) =

l∑
t=1

C(xt, ut), ut = θ>φ(xt) (8)

then the standard approach for performing policy gradient
descent on the parameters θ is to update them according to

θ ← θ − α∇θJ(x0, θ) (9)

where α is the learning rate and ∇θJ(x0, θ) is the gradient
of the cost function with respect to θ. When computing
∇θJ(x0, θ) one encounters Jacobians of the system model
with respect to the control input, i.e. terms of the form
∂(xt)i/∂(ut)j . PGSD approximates these terms with a signed
derivative matrix S, in which each entry, Si,j , is +1 if
increasing the jth control will increase the ith state, or −1
if the opposite is true. Additionally, only one entry in each
row of S is non-zero, corresponding to whichever control has
the most dominant effect on the given state. Given this signed
derivative matrix, PGSD then prescribes a way for computing
the approximate gradient, ∇̃θJ(x, θ).

In summary the algorithm for performing RL via PGSD is:
1) Execute the policy u = θ>φ(x) for l steps and record

the states x0, . . . ,xl and control inputs u0, . . . , ul.
2) Compute the approximate gradient of the cost function

with respect to the controls, ∇̃θJ(x, θ), using the signed
derivative matrix S.

3) Update the parameters θ according to Equation 9.
Of course as with most reinforcement learning algorithms,

design choices must be made before PGSD can be successfully
executed, including what features φ(x) to use, what initial
values θ0 to use, as well as what values to use for the cost
matrices Q and R. For our experiment, we chose to use

φ(xt) =



1
max(xt − x∗t , 0)
min(xt − x∗t , 0)

max(ẋt, 0)
min(ẋt, 0)

∆t(xt − x∗t )
xt


,
Q =

[
10 0
0 1

]
,

R = [0],

(10)

This choice was motivated by the fact that the quadrotor’s
dynamics were likely to depend on the direction of its ve-
locity [7], so it made sense to have different features (and
thus different parameters) for positive and negative velocity
values; similar reasoning motivated splitting the altitude error
into positive and negative portions. Additionally, the last term
in φ(x) was chosen to allow the controller to depend on the
quadrotor’s altitude in order to account for ground effect.
Finally, the first term in φ(x) is intended to represent the
nominal thrust required to keep the quadrotor aloft, and the
second to last term is an approximation for integral error.
Although past work has found the use of an acceleration term
critical [7, 15], we did not find it necessary.
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Fig. 3. Average cost of running the IGSOLR controller over the training
and testing trajectories versus iteration number, along with 95% confidence
intervals, averaged over ten runs. The average cost of running the initial hand-
tuned controller on the testing trajectory is plotted as a horizontal line for
comparison.

IV. EXPERIMENTAL RESULTS

Code for running IGSOLR and PGSD was developed in
MATLAB and controlled the quadrotor at a rate of 20Hz. (One
important note is that it was not necessary for the learning
horizon for the reachability recalculations, r, and the learning
horizon for the RL algorithm, l, to be the same; we chose to
set r = 100 and l = 7 seconds.) The algorithm was run on
a training trajectory (in altitude only) that lasted 60 seconds,
which was designed to cover as wide a range of the vehicle’s
state space as possible. (Whenever the training trajectory
ventured outside the learned safe set, it was clipped to remain
inside.) This training trajectory was repeated ten times for a
total of ten minutes of training. (To account for noise, the
results below show the average of ten runs over this ten minute
training period.) For comparison the controllers that resulted
after each iteration of training were also run on a randomly
generated testing trajectory. Both the learned controllers and
the initial controller (which is currently the default used on our
quadrotors, and was hand-tuned for performance) were run on
the testing trajectory ten times and their results recorded.

A. Results: Performance

Figure 3 shows the performance of the IGSOLR controller
versus iteration number, where each iteration corresponds to
one complete run of the training trajectory. As would be
expected the reinforcement learning quickly converges to a
much better controller than the hand-tuned one, whose cost
(averaged over ten runs) is also plotted for comparison. Note
that even the first iteration of the IGSOLR controller does
better than the hand-tuned controller since the learning horizon
was much shorter than the entire trajectory, enabling the
system to learn within the first few seconds of the run.

Figure 4 shows a sample run of the hand-tuned and IGSOLR
controllers over one run of the testing trajectory. Despite a
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Fig. 5. The initial safe reachable set and the first three safe reachable sets
learned by the IGSOLR algorithm for one of the runs. Note that under GSOLR
the quadrotor would only be allowed to operate in the interior of the initial
safe set.

great deal of hand-tuning, the initial controller shows dramatic
overshoot both when ascending to a higher altitude as well
as to a lesser extent when descending to a lower altitude;
the learned IGSOLR controller does not show such dramatic
errors. Additionally, the tracking performance of the IGSOLR
controller appears to be better than that of the hand-tuned
controller.

B. Results: Safety

Figure 5 shows the initial safe reachable set generated
by a conservative estimate of the maximum possible range
of the disturbances as well as the safe reachable sets that
were learned iteratively by the IGSOLR algorithm as the
quadrotor explored its state space. As would be expected,
the initial safe set is smaller than the first learned safe set
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Fig. 6. Eight successive safe reachable sets learned during a typical run of
the IGSOLR controller; the thinner lines are the traces of the state during the
period in which the given safe set was used, and the asterisks indicate points
along the state trace where IGSOLR used the safety-ensuring control instead
of the controller being learned.

since the conservative disturbances are larger than the learned
disturbances. This trend continues (the first is smaller than the
second, etc.) as the system learns that the disturbances are in
fact smaller than its prior estimate throughout the state space.

It is worth emphasizing that had GSOLR been used instead
of IGSOLR, the vehicle would have been restricted to the
initial safe set pictured in Figure 5. Although additional
experiments showed that PGSD is able to learn a controller
with comparable performance in this restricted state space, the
vehicle itself would not be able to operate safely in as wide
a range of the state space, as shown by the GSOLR reference
trajectory in Figure 4 which has been truncated to always stay
inside the initial safe set. This shows the major improvement
of IGSOLR over GSOLR: that by learning the disturbances
online the system is able to operate in a wider area of the
state space.

Figure 6 shows a set of eight successive safe reachable sets
generated by the IGSOLR algorithm, along with traces of the
state during the period in which each safe set was being used.
As would be expected the state trace remains inside the safe set
at all times, with occasional use of the safety-ensuring control
when the controller being learned takes the system state too
close to the edge of the safe set.

V. CONCLUSION

This paper has proposed a novel extension to GSOLR
known as Iterated Guaranteed Safe Online Learning via Reach-
ability. In IGSOLR the disturbances are modeled in a state-
dependent manner and learned online, and the safe sets are
periodically recomputed (in parallel with whatever machine
learning is being run online to control the system). Addition-
ally IGSOLR was demonstrated in a real-world scenario in
which RL (in particular, PGSD) was used to learn a policy
for quadrotor altitude control, while HJI reachability analysis



guaranteed safety. PGSD was able to quickly converge to
a controller which out-performed the hand-tuned controller
while the safety of the system was tuned automatically to
match the actual performance of the system, resulting in a
high-performance system which avoided putting expensive
vehicle hardware at risk.

In the future we hope to expand on this work in a variety
of ways. One area that we are beginning to investigate is
how to do exploration expressly for the purpose of learning
disturbances. In the example in this paper the machine learning
running in parallel was trying to learn a better controller,
however it would be interesting to use instead a controller that
attempts to explore the state space to learn more about the dis-
turbances. A related idea that we are exploring is the interplay
between learning and safety, in particular how different models
for the disturbance can affect the learned reachable safe sets,
which can then affect where in the state space the system is
able to explore and learn new information. Another facet of
this interplay that we are looking into is the question of how
to generate a controller that better synthesizes the two goals of
safety and learning; instead of simply replacing the learning-
based control when the reachable sets dictate, we would like to
more closely couple the safety and learning so that the machine
learning algorithm automatically weighs safety considerations
when deciding how to control the vehicle.

As the future work described above indicates there is clearly
still a great deal to be done in order to truly integrate safety
and learning. It is our hope that by continuing to develop tools
like IGSOLR online machine learning will soon be able to be
used in safety-critical situations.
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