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Abstract—In recent years, complementarity techniques have redundant coordinates lead to large LCP problem size, and
been developed for modeling non-smooth contact and collision require the use of differential-algebraic equation (DAKE|

dynamics problems for multi-link robotic systems. In this ap-  echniques for managing error drift in the bilateral coaistis
prqach, a Iinear .complementarlty problem (LCP).IS set up when intearatina the equations of motion
using 6n non-minimal coordinates for a system with n links g g a :

together with all the unilateral constraints and inter-link bilateral ) o ) .
constraints on the system. In this paper, we use operational spa An alternative approach uses minimal hinge coordinates

dynamics to develop a complementarity formulation for contact that automatically eliminate the bilateral constraints fioe
and collision dynamics that usesminimal coordinates. The use jhiar-link hinges\[l4]. While the underlying physics remsin
of such non-redundant coordinates results in much smaller size . . )
LCP problems and the automatic enforcement of the inter-link unchanged, th_'s formulation reduces the Slze of the LCP-pr_ob
bilateral constraints. Furthermore, we exploit operational spa@ lems, and avoids the need for DAE techniques for controlling
low-order algorithms to overcome some of the computational bilateral constraint violation errors for the inter-linknges.
bottlenecks in using minimal coordinates. However, the use of minimal coordinate leads to a dense
and configuration dependent mass matrix. This consequent
complexity and computational setup expense for the LCP
For more than a decade, researchers [3, 11, 13] have beevblem has been a significant hurdle in the use of such a
developing complementarity based approaches for formulatinimal coordinate approach.
ing and solving the equations of motion of systems with
contact and collision dynamics. Examples of such dynamicsin this paper, we focus on the analytical and computa-
for robotic systems include manipulation and graspingdaskional aspects of the minimal coordinate formulation of the
and legged locomotion. This approach models bodies as riggdgmplementarity approach to contact and collision dynamic
and uses impulsive dynamics to handle non-smooth collisidor multi-link systems. We adopt the complementarity based
contact interactions and state transitions. By essepfialbul- physics models from [3, 13], but reformulate the system
sively “stepping” over non-smooth events, complementaritlynamics and the associated LCP problem using minimal
methods avoid the the small step size and stiff dynamicsordinates. While| [14] uses a similar minimal coordinate
problems encountered with penalty based methods whi@drmulation, it is limited to just contact dynamics, and sise
model surface deformation dynamics during contact [9].  the non-optimal divide-and-conquer (DCA) techniq‘ie [4] as
The complementarity approach involves setting up of @art of its solution technique. This paper goes beyond cbnta
linear complementarity problem (LCRhat depends on the dynamics to also develop the LCP variants for handling ielast
link mass and inertia properties, contact friction pararet and inelastic collision dynamics. Moreover, for close@ich
inter-link bilateral constraints and contact and collisioni- topology systems, we describe a uniform way to incorporate
lateral constraints[[ﬂ]EliB]. The LCP solution identifiethe bilateral constraints naturally into the LCP problerheT
the unilateral constraints that are active, and solves Her tsize of the resulting LCP problem is independent of the
impulsive forces and velocity changes that are consistéht wnumber of links and generalized coordinates, and only digpen
the constraints on the system. Variants of the complemigntaron the number of contact nodes. Our minimal coordinates
approach to handle elastic and inelastic collisions hase abhpproach adopts amperational spaceﬁ] perspective, which
been develope(ﬂ[S]. While the standard LCP formulation usis turn allows us to take advantage of low-order spatial
a discretized approximation for the friction cones, other roperator algorithm{[{@ 8] for computing tluperational
searcheréIlZ] have explored non-linear cone complenigntaspace complementarity matrix (OSCMpeeded for setting
approaches that avoid such approximations. up the LCP problem. Taken together the methods described
For a multi-link system withn links, the conventional LCP here provide a comprehensive, and computationally trégtab
problem setup usesi6non-minimal Coordinateﬂ13] togethersolution to using minimal coordinates for contact and sl
with the bilateral constraints associated with the iniek-I dynamics problems. We conclude with an illustrative multi-
hinges and the unilateral contact constraints. This agprodink pendulum numerical problem to benchmark the perfor-
has a mass matrix that is block diagonal and constant. Sunhnce improvements from the minimal coordinates approach.

I. INTRODUCTION



Il. EQUATIONS OFMOTION The constraint nodes spatial acceleration € R is the

A. Minimal coordinate dynamics time derivative ofV. which, from Eq/ 3 is given by

. . . . dv n . -
The minimal coordinate equations of motion for a tree- X = = J0 +aps with ags 2 9 @4

topology multi-link robotic system witt links andN degrees ) dt ) )
of freedom has the form Denoting the node accelerations for the free system (i.e.

) without the f. nodal forces) byw, the following analog of
T=M0+C— 7% (1) Eq.[4 definesxs in terms of theO generalized accelerations:

where® € RN denotes the generalized coordinatgss R o 2 96 + aos (5)

the generalized force$yl € RN*N the system mass matrix, o , .

¢ e%%” the vector of Coriolis, gyrosco);;ic and gravitationa‘are-mUItIpIyIng Eql2 by and using Eq. 4 yields:

forces,f. € R®"c the stacked vector of nodal forces fag *e 452 Afe + os where A 2 IM1g* g REmexbne

nodes on the system, agds R®™<*™ the Jacobian matrix for o o (6)

these nodes. In a minimal coordinates formulation, bitdterA is referred to as theperational space compliance matrix

constraints associated with inter-link hinges are elindda (OSCM) The invertibility of A does not depend off being

by using hinge coordinates that directly parameterize thavertible — only thayJ have full row-rank. When it exists, the

permissible hinge motion. Thus minimal coordinate modeiaverse ofA is referred to as theperational space inertia

of tree-topology systems have no bilateral constraints.
Bilateral constraints on the other hand are unavoidabla ev%'

when using minimal coordinates for closed-chain topology The differential form of the equations of motion in Eq. 2

systems. Such systems are decomposed into a tree-topo]%@ be discretized using an Euler step to obtain a form that

system (formed by a spanning tree) together with a minintal $8aps ap impulse stacked vector at the nodes (ovek.aime

of bilateral closure constraints. While the closure corstsa interval) into the resulting change in generalized velesit

define the bilateral constraints, contact constraints keae : 2 . o . A

set of unilateral constraints on the system. 0T —0" = M Fp+8rAwithp = feAr (7)
While the values of th¢. nodal force components that ariseMultiplying both sides withg leads to the following expression

from control actuators may be known, the ones associatéd wibr the change in nodal spatial velocities

system constraints are not explicitly available. In thipgra

we will assume thaf. only contains such implicit constraint VE-Vo Ap + Ay (8)

forces, since the effect of the explicit ones is easily heddlly cqjjision events are impulsive and lead to instantaneous

absorbing them int@. In view of this, all nodes in this Paperchanges in the system velocities, and in this cAse= 0
will refer to constraint nodes. With. denoting the implicit ; the above equation.

constraint forces, EqJ 1 extends to also be the smooth emqsati

Impulsive dynamics

of motion for non-tree systems, I1l. UNILATERAL CONTACT CONSTRAINTS
The 6 accelerations solution of EQ. 1 can be expressed as Unilateral constraints are defined by inequality relatiops
. . N of the form
0 =M 19" + 0 whered; = MY (T—-€) (2 2(0,1) >0 )

¢ represents théree generalized accelerations, i.e. the gemAs an example, the non-penetration condition for rigid kedi
eralized accelerations in the absence of the nodal forcean be stated as an inequality relationship requiring that t
Eq./2 expresses the overdligeneralized acceleration for thedistance between the surfaces of rigid bodies be non-wegati
system as the sum of thé; free generalized acceleration®(6,t) is generally referred to as thiistanceor gap function
and the M—1J*f. correction acceleration contribution fromfor unilateral constraints.

the implicit non-zero nodal forces. The next section déssi  Contact occurs at the constraint boundary, i.e., when
the operational spacdorm of the equations of motion thatd(6,t) = 0. For bodies in contact, the surface normals at the
describe the mapping between the nodal forces and the notlahtact point are parallel. The existence of contact iscglpi

spatial accelerations. determined using geometric or collision detection techeg
_ _ For a pair of bodies\ andB in contact, we use a convention
B. Operational space dynamics where theit™ contact normafi(i) is defined as pointing from

The operational space for the multi-link system is defined 3Pdy B towards bodyA, so that motion ofA in the direction
the configuration of the set of constraint nodes on the syste®h the normal leads to a separation of the bodies.
Let V. € R denote the stacked vector of spatial velocities A unilateral constraint is said to be in active state when
E] of the e n(_)des. The relationship betwe&h and the® 2(0,1) =0(0,t) =3(0,t) =0 (10)
joint velocities is given by

. 1The — and + superscripts denote the respective value of a quantity just
V. =736 (3) before and after the application of an impulse.



Thus, a unilateral constraint is active when there is cangacd Combining Eq. 12 and E@. 14 we have
the contact persists. Only active constraints generatsti@nt

forces on the system. . s oA |[Fa(i)
i ; Ca e ani . F =D where = nitl
A constraint that is not active is said to bective Contact u(i) =DUBY B [ B(1) < (15)
separation occurs when the relative linear velocity of the A ) 3 (11 41)
contact points along the normals becomes positive and the and D(i) = [f(i), DH)] eR

contact points drift apart. A separating constraint is ie
process of losing contact and transitioning to an inactigtes
and at the start of a separation event, we have

ﬂ‘buring sliding, thef;(i) component is non-zero and equal to

w(i)F. (i) for just the singlej that corresponds to the closest
direction opposing the (tangential) relative linear vélpdn

: : th ds, witho(i) d ting th itude of th tact

0(0,t) =0(6,t) =0 and 0(6,t) >0 (11) (r)elaetirv\:av?i;;arm\l/lelogit)y enoting the magnitude of the contac

0 if o(i)=0

A. Contact impulse for an active contact constraint
Pr(i) = { (16)

We now describe contact force modeling using the approach
in references [3, 13]. Denote the number of unilateral azinta
nodes byn,. The 6-dimensional spatial impulse at tbé In the abovel|_ ,nq4~) denotes the indicator function whose
active contact constraint node has a zero angular moment cofalue is 1 if the condition is true, and O otherwise.
ponent. Its non-zero linear impulse compongpti) € R2 can

be decomposed into normal and tangential (friction impulsB. Complementarity relationship for a unilateral contact

components . . . .
P The sliding/rolling contact relationships can be statediveq

Fu(i) = Fa(DA() + F (DER) (12) alently as the following standard complementarity condif
t(1) denotes a tangent plane vector for & contact pair. (v (D) L Fa() (separation)
Assuming that the friction coefficient ig(i), the magnitude o(i)E(1) + D*(1)v{. (1) L B(i) (friction force direction) (17)
of the tangential Coulomb frictional impulse is bounded by |,(i)F, (i) — E*(1)B(i) L o(i) (riction force magnitude)
the magnitude of the normal component as follows:
IFe)] < mFa () (13) where E(i) = col{1}iZ; € R™ (18)

o . + (3 3 i i i -
When the relative linear velocity between the contact nod¥s (1) € R° denotes the linear relative velocity of the first
is non-zero, the tangential frictional impulse is in a difee PCdy A with respect to the second bod@ly The component of

. . . . . - i I 1 i Nt (4
opposing the linear velocity vector (which necessarilg lie this refative velocity along the contact normal #s,(i)v.; (1),
the contact tangent plane) and Eg] 13 holds with an equal@d when positive, indicates increasing separation betwee
When the bodies have non-zero relative linear velocities € Podies, while a negative value indicates that the bodies
the contact point, the contact is said to bsliging contact. '€ @pproaching each other. The complementarity condition
Otherwise, when the relative linear velocity is zero, thateot 1N Ed-/17 enforce the no inter-penetration constraint at the
is said to be aolling contact. Thus, the tangential frictionVelocity instead of at the gap level. Hence they are valig onl

impulse is on the boundary of the cone defined by [Eq. Y¢'en the gap is zero, i.e., when contact exists [3]. Using
when sliding, and in the interior of the cone when rolling. Ed- 15, Eqi 17 can be alternatively expressed as

For the purpose of numerical computation, the friction cone By (s (3 \ay [ .
- ) ) o E(i)o(i)+D*(1)v (1) L i
at theit™ contact is approximated by a friction polyhedron Wet)+D (_)' ”(') E(_) (19)
consisting of a finite numbem, of unit direction vectors EWBH) L ofi)
d; (i) in the tangent plane. It is assumed that for each direction
vector, its opposite direction vector is also in the set. For A A 0 el
notational simplicity, we assume that is the same across all where E(i) = E() ER (20)
contact points. Thét"™ contact tangential frictional impulse is N
expressed as the linear combination of these directioroxect and E(i) = [u(i), —E*(i)] e R¥*mitl
as follows:
ny 2A complementarity conditiorf (x) L x, holds for a functiorf (x) € R™
N e T R PR of a vectorx € R™, whosex; elements have lower and upper bourids
Fe(Ut(i) = Z 6i(1)di(l) = D(l)ﬁ(l) and u; respectively, when the following properties apply: @)(x) > 0
j=0 whenx; = 1;; (b) fi(x) < 0 whenx; = uy; and (c)fi(x) = 0 when
. A ~ . 3xn (14) li < xi < uy. For thestandard complementarity condition; = 0 and
whereD(i) = [dl(l), c o dng (1)] € RN u; = oo. It is alinear complementarity conditiowhen f(x) has the form
A m M (x)x 4+ q(x), and amixed complementarity conditiomhenl; = —oo
andB(i) = col{p; (1)}j:fl e R™ andu; = oo for one or more of the elements.



C. Aggregated complementarity relationships The structure of the standard LCP problem |@ 28 is
513

For now we assume that there are no bilateral constraints@§fferent from that normally found in literature. 14]
the system, and thus. = n,, The stacked vector of relative | NiS difference arises from the way we have defirf&d)
linear velocities at the contacts is denoted € R3™«. It is 1" EQ.[15 and used it to arrange the coordinates in the
related to the stacked vector of node spatial velocitiese LCP problem. The combln_ed organization of the coorc_ilnates
RO via the following on a per contact constraint allows us to handle unilateral

and bilateral constraints in a uniform manner. The diffeeen
vu = Q. Ve (21) is only structural and not in the underlying physics of the
problem. The solution to this., (n¢ + 2) dimensional LCP

3n, X6n. i i - .
where thed,, € R " ) e matrix contams one bquk row pe,rylelds [ ando, and these can be used to propagate the system
contact node-pair, with each row mapping the spatial ve&xci state as follows:

of the node pair into the relative linear velocity across the

contact. Defining and using the,, matrix will later allow p=0"D B

us to include unilateral constraints in a manner similar to -

bilateral constraints in the operational space formufati®, fﬁ - P/ Ay (30)
has the same structure as thg constraint mapping matrix for 0 =0f+M 13

bilateral constraints described later in Eq] 32 for thregrele

of freedom spherical hinges. The second equation can be numerically integrated untiethe

The Q, matrix also relates thd, € R equal and is a new collision event during thA, propagation interval.
opposite impulses at contact node-pairs with the corredipgn Observe that the contact impulse is averaged over the
spatial impulses at the nodgsc R, via time interval to get thg. spatial forces at the contact nodes.

An Euler step integration based discretization of [Eq. 30 is:

Define the stacked vectors 0" =07 + M 1g"p + Ay (31)
AN S\ M ny(ne+1)
B = col{p(i)} ;€ R™ M (23) An LCP solution withF(i) positive indicates that thet"
and o 2 col{o(i)}", € R™ contact isactive Furthermore, a zero(i) implies that the
' ith contact is aolling contactwhile a non-zero value implies
From Eq/ 15, we have that it is asliding contact.
Fu 2 col{F, (i)™ = Dp € R o
where D 2 diag{D (1)}, € R XN (1) (24) D. Including bilateral constraints
Thus, As discussed earlier, in the minimal coordinate formulatio
P Q*DB (25) bilateral constraints arise from loop closure constraiints
u=r

closed-chain topology systems. We now describe extensions
Now we examine the effect of the contact node impulses @ the complementarity formulation when the system has such
the node spatial velocities. bilateral constraints, and thus naw. > n,,.
Assuming thatn, denotes the dimension of the bilateral
(26) constraints on the system, a bilateral constraint madgixe
R™x6ne can be used to characterize the loop constraints as

vi-v: B Aptae B OAQDB+A

Pre-multiplying Eql 26 byD*Q,, we obtain

follows:
* * * * K, —

D VI = (DO, A ng)ﬁ +A{D"Qu ¢ +Dvy, @7 QuV. =0 (32)
Combining equations 19 and 27, the overall complementarit . )
conditions can be rephrased as: g. 22 and Ed. 25 for the node impulses generalize to

DO, AQD E \ (B D™ (QuAcas +vy) p=0QiF, +0Qin 2 Q: DB + QpA (33)
E 0 o 0
B whereA € R™* denotes the Lagrange multipliers associated
N with the bilateral constraintsp now contains contributions
¢ (28) from the unilateral as well as the bilateral constraints.
To handle the bilateral constraints, in Eq.[27 expands
A A AT to be the OSCM for the combined set of unilateral and
h F_ o E Ny (Me+1) Xny ” ) : )
where _ diag{E(i)}, % € R (29) bilateral constraint nodes. Using Eq. 33 in place of [Eq. 25,
E = d|ag{E } € RMwXMu(netl) the generalization of the complementarity condition in 2§



to include bilateral constraints is as follows: linear velocity at the end of the decompression step remains

w=Mz+q L z non-negative. The recoveréddecompression impulse as
* E A Ak ey AT o
1B AeiD, 0| B 9 2 col{(e(A" Wpe@)RANNY, R (38)
with 9 = b 0
E 0 ‘ 0 (34) The decompression phase LCP has the form:
A B Dq s + D'vy w=Mz+qqa L z
z = A ,yq = Qb 0 D*vz— D*Q
= = THAQRD 39
o 0 with da é 0 b L=y ( )
HereMt is a(ny(ns+2)+ny) size square matrix with and 0

q being (ny(ns + 2) + ny) size vectors. The middla row

corresponds to the bilateral constraints, and its left heidd The decompression LCP problem is the mixed LCP in[Eq. 34
is required to be exactly zero to satisfy the algebraic @ikt With Ay = 0, the contact linear velocity;, replaced with
constraints. Thus this represents a mixed LCP, with the lowe, )

. D*Q. .
bounds on the\ variables being—co. Analogous to Eq. 31, Ve, and an additiona o AQ,D term for the recovered

the solution to this LCP can be used to propagate the systgfpulse in theq LCP vector term. The LCP solution is used

state as follows: to instantaneously propagate the state for the decompressi
p=05D B+ QA 35) phase as follows:
. ) .
07 =0 +M J"p + AO¢ p=9,D B+ QA+Q;d (40)
IV. COLLISION DYNAMICS 0t =0° + M 1g*p

During inelastic collisions some of the impact energy is ] ] ) o
lost. Thecoefficient of restitutione (i) defines the fraction of Whene(i) =0, there is no decompression phase. For collision
the energy that remains after a collision. The complemigptardynamics, the numerical state propagation process cerfist
approach to modeling collisions breaks up the collisiomevethe following steps:
into instantaneousompressiomnddecompressiophaseﬂB]. 1) Use Eq! 35 to obtain neWd(t + Ay),6(t + Ay)] from
During the compression phase, collision energy is stored, a the [0(t), O(t)] state.
during decompression, a fraction of the collision impulse i 2) If the new[0(t + A¢), 0(t + A¢)] state involves a new
recovered. collision, then estimate th&, time for collision, and
redo Step (1) with this new time interval. This should
bring the system into contact for the new collision. Now

At the it contact undergoing collision, the compression use the compression and decompression LCPs inh Eq. 37
phase is instantaneous and impulsively changes the eelativ  and Eg. 40 to propagate the system through the collision.
linear contact velocity fronv, (i) to a newv{ (1) value with
a non-negative normal component. The compression impu%
is denoted.(1). The mixed LCP problem for the compressioqh
phase is obtained by settin, = 0 in Eqg.[34 to obtain

A. Compression

n alternative to this discrete event state propagatiomaggh
€a time-stepping one, where the LCPs are solved only at
e end of fixed time steps. This approach is faster, but at the

cost of allowing some inter-penetration errors among @iolj

D*v— bodies.
= Vu
w=Mz+qe L z with qc 2 0 (36)
0 V. SPATIAL OPERATOR COMPUTATIONAL ALGORITHM

The LCP solution is used to instantaneously (i.e. impulglve  The key implementation and computational challenge with
propagate the state for the compression phase as follows: using minimal coordinates is the need for computingeeded
for setting up and solving the LCP problems in Eq. 28,

Pe = _QZQE_F QA Eq.[34, Eq/ 36 and Eq. 39. As seen in Ed./6,involves
0° =0 +M I, (37) the configuration dependent matrix products of the Jacobian
vl = J0¢ matrix and the mass matrix inverse. A direct evaluation of th

) expression require® (N®) computations. However references
B. Decompression [5, 6, 8] have used spatial operators to develop simpler and
The decompression phase applies a impulse of magnitudeursive computational algorithms fgk that are of only
e(i)i*(1)p (i) for theith contact along the normal using theO(N) complexity. We briefly sketch out below the underlying
impulse stored during the compression phase. An extra contanalysis and structure of this algorithm, and refer the eead
impulse term ensures that the normal component of thevelatto [5, 6, 8] for notation and derivation details.



A. Spatial operator factorization df{—! the parent links of the nodes. From its definition, it is clear

We begin with the following key spatial operator basetat(2 is a symmetric and positive semi-definite siribe" is
analytical results that provide explicit, closed-form egsions @ Symmetric positive-definite matrix.

for the factorization and inversion of a tree mass matriafg;  While the explicit computation of"* or 7 is not needed
to obtain A, the direct evaluation of Ed. 46 still remains
M = HoMp*H*

of O(N®) complexity due to the need for carrying out the
M = I+ HoK] D [T + HHK]" multiple matrix/matrix products. The next section showat th
1+ HpX] ™ = [I — HYK] (41) " these matrix/matrix products can be avoided by exploiting a

ML = [I — HYK]* DL I — HYpK] decomposition of th&) matrix.

The first expression defines the Newton-Euler operator fa%l Decomposition of)

torization of the mass matri®{ in terms of theH hinge  The following lemma describes a decomposition(dfinto
articulation, the¢ rigid body propagation and thd1 link simpler component terms and an expression for its block
spatial inertia operators. While this factorization has -noglements. The€l, andp() terms used below are defined in
square factors, the second expression describes an siterndeferences [5, 6]. Furthermorg(k) denotes the parent link
factorization involving only square factors with block gemal  for the k'™ link, andi < j notation implies that thg'™ link

D and block lower-triangulall + H¢X] matrices. This factor- iS an ancestor of thé!™ link in the tree.

ization involves new spatial operators that are associatdd

the articulated body (ABYorward dynamics algorithm [4, 5] Lémma 1 Decomposition of Q

for the system. The next expression describes an analyti€aican be decomposed into the following disjoint sum:
expression for the inverse of tHé+ H¢X] operator. Using Q=Y4+UP*Y+YP+R

this leads to the final analytical expression for the inverke A

the mass matrix. These operator expressions hold genéally where R = Z e (k, YY(kJw(k,je  (47)

tree-topology systems irrespective of the number of bodes V}igz i(yﬁ?‘)i
types of hinges, the specific topological structure, anh ége o
non-rigid links [%]. Y € R®"ex6ne is a block-diagonal operator, referred to as the

) . . operational space compliance kernel, satisfying the Vaithg
B. TheQ extended operational space compliance matrix backward Lyapunov equation:

With V € R®™ denoting the stacked vector of link spatial

velocities, its spatial operator expression is [6] H'D'H =7 — diagOf{Sj‘l,Y&;,} (48)
V=¢"H"0 (42) diagOf 8*)Y8¢} represents just the block-diagonal part of

Bundling together the rigid body transformations for altiee the (generally non block-diagonad);, Y€y, matrix. The6 x 6

we define theB € R« %61 pick-off matrix such that dimensional, symmetric, positive semi-defiffte) diagonal

) matrices satisfy the following parent/child recursiveatgn-
V=BV 2 Bo*HO = 4 BO*H*  (43)  ship:

This is the spatial operator expre§ion for theJacobian Y (k) = *(p(k), k)Y (k)b (p(k), k) + H* (k)DL (k)H(k)
matrix. Using this expression and Eq. 41 for the mass matrix (49)

inverse within Eq. 6 leads to the following expression far  Thjs relationship forms the basis for the followiGgN) base-
to-tips scatter recursion for computing thé(k) diagonal

@ —1qx
A é Mg (44) elements:
= B*¢"H*(I—HYX)* D HI - HPK)HB for all nodesk (base-to-tips scatter)
Using the following spatial operator identity from [a 10] Y(k) =" (p(k), k)Y (ok)w(ok), k) (50)
(I— HYK)H = H (45) + H* (k)D (k) H(k)

in Eq.[44 leads to the following simpler expression for end loop

i} . N o 6 While Y defines the block-diagonal elements (f the fol-
A=B"QB with Q = p"H*D "Hp € R*™<">"¢ (46) |owing recursive expressions describe its off-diagonainte

We have arrived at an expression f&r that unlike Eq! 6,
involves neither the mass matrix inverse nor the node's Ja-
cobian matrix! We refer taQ) as theextended operational (i j)

Y1) fori=j
Qi kKw(k,j) fori=k>=j, k=p(G)

space compliance mattiThis terminology is based on Eq.]46 Q*(j,1) for i <j
which shows that the OSCM\ can be obtained by a reducing QA kW(k,j) foriyi, j#1i, k=g{j)
transformation of the full, all body2 matrix by theB pick-off (51)

operator involving just the matrix sub-blocks associatéth w Proof: See %,76]. [ ]



Time: 0.701

Eq. 47 shows thatf) can be decomposed into the sum o
simpler terms consisting of the block diagongl the upper-
triangular y*Y, the lower triangularyy, and the spars®
matrices. Furthermore, EQ. 51 reveals that all of the bloc
elements of()(1,j) can be obtained from th&(i) elements
of the Y block-diagonal operational space compliance kerng
Since only a small subset of the elements(dfare needed
for computing A, the next section exploits this to avoid the
expensive computation of the fuld matrix. Time: 1.401 Time: 2.099

D. ComputingA

From the A = B*QB expression, and the sparse structu
of B, it is clear that only a subset of the elements(dfare
needed to comput&. TheB pick-off operator has one column
for each of the nodes, with each such column having only
single non-zero & 6 matrix entry at théc*" parent link slot.
Only as many elements @@ as there are elements ik are
needed. Thus, just. x n. number of 6< 6 sub-block matrices
of QO are required. In view of the symmetry of the matriceq
we actually need just. (n. + 1)/2 such sub-block matrices.
The overall cost of this algorithm is linearly proportiortal
the number of degrees of freedom, and a quadratic functi
of the number of nodes. This is much lower than MEN®)
cost implied by Eq. b.

Time: 3.499

E. Simulation example : Time: 4.901

We use a simulation of a multi-link pendulum colliding with
itself and the environment to measure the performance of ¢
minimal coordinate formulation. The environment consts
a floor and a wall located 4m away. The multi-link pendulu
consists ofn identical 1kg mass spherical bodies connectd
with pin hinges. The radius of the sphere is scaled bas
on the number of links to maintain a 12m overall lengt
of the pendulum. The pendulum base is Iocate(_j at a helgll—:]& 1. Time series capture of swinging pendulum simulatioth W2 links
of 10m. The open source Bullet software [1] is used for
collision detection, and the PATH software [2] for solving

mixed complementarity problems. the solutions from these two methods, Figlre 2 shows the

The simulation lasts for 5 seconds with a time step of 0.1M§milar time history of the height and normal velocity of the
A coefficient of restitution of 0.5 is used to simulate ind¢ias

collisions. The pendulum starts at an angleroR2 radians
with an initial angular velocity of 1radian/s and a gravitatl ’ /\/\
|
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acceleration of 9.8mfs ‘
As the pendulum swings from left to right, it collides with

w
-

Height (m)
Velocity (m/s)

N

the ground, bounces off of the ground, and eventually cedlid \
with the wall on the right. In the course of the sequenct | | ' N\
multiple links are at times in collision with the ground, the \/ \W(
wall and with each other as seen in Figure 1 for a 12-lin  ¢—— 5
pendulum.

We simulate the contact and collision dynamics using tweg. 2. Comparisons of the height and normal velocity of the liak using
different techniques. In the firstinimal coordinate (MCjech- the MC and RC methods for a 12-body pendulum
nique, the serial-chain pendulum is modeled using minimal
coordinates and only unilateral contact constraints. Tée slast link of a 12-body pendulum from the two methods.
ond redundant coordinate (RCechnique uses non-minimal Table | compares the computational cost of the MC and RC
coordinates where each link is treated as an independegt badethods for pendulums containing 3 to 30 links. We observe
and the hinges are handled as bilateral constraints betiheenthat the MC method is 3 to 50 times computationally faster
neighboring links. We have verified good agreement betwethran the RC method. Moreover the performance gap widens

2 3 2 3
Time (s) Time (s)



Computation Time (S)
Number of Bodies| Minimal Coords | Redundant Coords
3 13.3258 47.7948
6 10.5026 68.7122
12 19.0632 305.2764
15 21.7605 558.0966
24 38.1993 1899.8575
30 73.7386 4100.5061
TABLE |

A comparison of the computational time for the minimal cawate (MC)
and the redundant coordinate (RC) techniques for the ntinkipendulum
example with different number of links.

substantially as the number of links in the system is in@das

VI. CONCLUSIONS

In this article we have described the formulation of the
contact and collision dynamics for multi-link systems gsin

[1]
(2]
[3]

[4]
[5]

[6]
[7]

minimal coordinates. With minimal coordinates, the size of

the LCP problem in Eq. 34 i$n,(ns + 2) + ny) which

[8]

is independent of the number of links and the number of
degrees of freedom in the system. In contrast, the size of
the corresponding LCP problem using redundant coordinatgg]

has dimension larger byn6— N or more depending on the

specific formulation. For a 6-link manipulator with 6 degsee[10]
of freedom, this amounts to dimensional difference of 30.
The use of minimal coordinates also results in the automatic
enforcement of the bilateral constraints such as from -nter
link hinges and avoids the need for DAE type error contrgii]

schemes for inter-link hinge bilateral constraints.

We have described the variants of the LCP problem needed

to handle effects such as bilateral constraints associaittd
closed-chain topologies as well as elastic and inelastic co

sion dynamics. Our treatment of unilateral constrainteves!

us to handle them in the same was as bilateral constraifttg]

in the operational space based formulation. Finally, weehav
shown that existing low order computational algorithms for

computing the OSCM can be used to make the computation
of the LCP matrices tractable. We have used a multi-link pen-
dulum contact and collision dynamics simulation example {a3]

illustrate the computational speedup achieved by the nahim

coordinate approach.
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