
Robust Navigation Execution by Planning in Belief
Space

Bhaskara Marthi
Willow Garage, Inc.

Menlo Park, CA 94025
Email: bhaskara@willowgarage.com

Abstract—We consider robot navigation in environments given
a known static map, but where dynamic obstacles of varying and
unknown lifespans appear and disappear over time. We describe
a roadmap-based formulation of the problem that takes the
sensing and transition uncertainty into account, and an efficient
online planner for this problem. The planner displays behaviors
such as persistence and obstacle timeouts that would normally
be hardcoded into an executive. It is also able to make inferences
about obstacle types even with impoverished sensors. We present
empirical results on simulated domains and on a PR2 robot.

I. INTRODUCTION

Navigation given a known map is a fundamental capability
for mobile robots, and there exist practical and efficient meth-
ods for subproblems such as localization and path-planning.
Less well-understood is how to put these pieces together such
that the overall system acts robustly in the world. Define a
navigation system to be a program that takes in a known
static map, localization information, sensor data, and naviga-
tion goals (represented as positions in space), and controls
lower level systems (say via velocity commands of the form
(ẋ, ẏ, θ̇)). Given a correct map of a static indoor environment
(i.e., with no new obstacles besides the ones in the map), a
navigation system is easy to write. For example, we could
take localization input from the AMCL algorithm [24], call a
planner such as A* [21] on a discretized grid to produce a path,
then use a trajectory following algorithm such as DWA [1]
to generate velocity commands that will follow that path. An
autonomous robot in an unconstrained real-world environment
such as an office must, however, also deal with various sorts
of changes to the map. A person might be standing in a
doorway, a couch may have temporarily been moved into
a corridor, rendering it impassable, and so on. Navigation
systems should behave efficiently and sensibly given that such
dynamic obstacles appear (and disappear) over time.

A standard approach is to maintain a map that is updated in
some manner given obstacles. Getting this to work robustly is
surprisingly tricky. Consider the prototypical example shown
in Figure 1. Here the shortest way to the goal is to go down
the narrow hallway. The next best alternative is to go around
the building, which takes ten times as long. Now suppose a set
of obstacle points appear in the hallway at position A, making
it impossible to traverse. Certainly, the robot should not stand
and wait forever. The map must therefore be updated with this
obstacle, causing the robot to eventually choose the long path.

S G
AA

B

Fig. 1. An example navigation problem. The goal is to get to G from S.

Also, the robot must not suddenly change its mind when it is,
say, at position B, and turn back around. This requires either
making obstacles fairly long-lived, or hardcoding “persistence”
of some sort into the system. In the first case, there needs to
be some scheme for eventually timing out obstacles, to avoid
the possibility, e.g., of a corridor being considered permanently
out of bounds due to seeing a person blocking it once. Finally,
the algorithm should deal intelligently with different types
of obstacles. It might, for example, make sense to wait for
a person to move, but not for a couch. Ideally, perception
would give us this information. But even if, as is currently
the norm, perception is fairly impoverished/noisy, there is still
the possibility of a kind of implicit sensing of the obstacle
type: in the example, it might make sense to just wait for a
few seconds. If the obstacle disappears, the robot can take the
short path after all. If it stays where it is, it is likely to be
static and the robot should take the long route.

The usual way to achieve robust and efficient behavior in
such cases is to have an program known as an executive
sitting above the planners [16]. The executive maintains its
own local state and contains various hand-coded procedures,
which are intended to avoid infinite loops and dead-ends and
to appear intelligent and goal-directed. As a typical example,
we consider the executive from the ROS navigation stack [11],
a popular open source navigation system. Table I shows the
set of local state variables maintained by this executive. The

State variable Meaning
mode Overall mode: planning, controlling, or clearing
time The current time
last-valid-plan Timestamp when planning last succeeded
last-valid-control Timestamp when a valid velocity last found
oscillation-pose Reference pose used to detect oscillations
oscillation-timestamp Timestamp for oscillation pose
recovery-index Which recovery behavior was last tried
recovery-cause Cause of last failure. One of no-valid-plan,

no-valid-control, or oscillation

TABLE I
STATE VARIABLES OF THE EXECUTIVE IN THE ROS NAVIGATION STATCK

idea is that the overall system can be in one of three modes.
In “planning” mode, the robot is stationary and waiting for a
plan. In “controlling” mode, the robot has a plan and is sending
velocity commands at some rate. Finally, in “clearing” mode,
something has gone wrong, and one of a user-specified set
of recovery behaviors is being executed. These may include
removing obstacles from the map beyond some distance, or
rotating in place. Several other variables govern the transitions
between these modes, as shown in Table I.

The ROS navigation system has achieved impressive perfor-
mance in real-world demonstrations, such as navigating with
no human intervention for eleven days in an office environ-
ment. But there are a few disadvantages to using a complicated
and stateful executive. First, there is significant programmer
effort involved in coming up with the execution strategy,
which is usually done in a trial-and-error fashion. Second,
understanding the system’s behavior requires knowing all the
state variables in Table I and their interactions with each other
and with the recovery behaviors. This makes it hard to debug
or modify. It also means the planning algorithms have an
inaccurate model of how their plans will be executed. Finally,
the executive is not capable of certain types of behavior, such
as information-seeking actions.

We propose an alternative way of structuring navigation
systems. The idea is to explicitly model and plan for the
uncertainty in the world, then use a simple stateless exec-
utive that just follows the resulting plan. There are many
ways to formulate the planning problem, some of which
we discuss in Section III. One possibility is to model the
transition uncertainty with costs or probabilities, while still
pretending that the state is fully observable. These approaches
are systematically suboptimal, though, as they will not take
information-gathering actions. Alternatively, we can explicitly
model the sensing uncertainty, using a partially observable
Markov decision process (POMDP). POMDPs are notoriously
difficult to solve, however, and the POMDP in our case has
size exponential in the number of possible obstacle locations.

In Section III, we present a particular formulation of
the problem as a POMDP, and an algorithm for solving
it efficiently enough to run online on a mobile robot. The
formulation is based on a roadmap over the static map, where
nodes represent particular locations and edges are local paths
that can become blocked and unblocked over time. Obstacles
may belong to different classes, with varying lifetimes. As

we will show, the optimal policy for this POMDP automati-
cally exhibits the various behaviors discussed above, such as
persistence, patience, and implicit sensing, without having to
hardcode them into an executive.

The scientific contributions include efficient algorithms for
state-updates (Section IV) and planning (Section V) in this
POMDP. At the systems level, the main contribution is show-
ing by example that it is possible to build a robust navigation
system with failure recovery using a principled decision-
theoretic planning approach, rather than scripted behaviors.
Section VI describes the implemented system and empirical
results on both simulated and real-world domains.

II. BACKGROUND

A. MDPs

An undiscounted Markov decision process [17], or MDP,
consists of a state space S, action set A, transition model
P (s′|s, a), reward function R(s, a, s′), and terminal states
T ⊂ S. A stationary policy is a function π : S → A. A
policy induces a distribution over state-action trajectories that
continue until reaching a terminal state. The value function of
a policy V π(s) is the expected total reward for following π
starting at s, and the Q-function Qπ(s, a) is the expected total
reward for doing a in s, then following π. The optimal policy
π∗ maximizes the value at all states, and we write V and Q for
its value and Q-functions. In our examples, the set of actions
varies depending on the state, but this can be represented by
making nonapplicable actions have reward −∞.

B. POMDPs

A partially observable Markov decision process [6], or
POMDP, is like an MDP except that states are not di-
rectly observed. Instead, there is an observation distribution
Z(o|s, a, s′) over the observation that’s received when making
the transition from s to s′ via a.

In the context of POMDPs, we call a distribution over the
state space a belief state. Given a belief state b about the
current state s, if we do an action a, the marginal distribution
over the next state is the result of the projection operator
b′ = P(b, a) where:

b′(s′) =
∑
s∈S

b(s)P (s′|s, a)

Also, given an observation o, the conditional distribution is
b′′ = C(b′, s, a, o) where:

b′′(s′) =
b′(s′)Z(o|s, a, s′)∑
s′∈S b

′(s′)Z(o|s, a, s′)

The filtering operator F consists of projection followed
by conditioning, and is used to update the distribution over
the current state. A key fact about POMDPs is that the
sequence of beliefs itself forms an MDP (with the same
action space). To sample from the transition model of this
MDP given belief b and action a, first sample s from b,
then sample s′ from P (·|s, a) and o from Z(·|s, a, s′), and
set b′ = F(b, a, o) (s′ is discarded). The reward function

is R(b, a, b′) =
∑
s,s′ b(s)P (s

′|s, a)R(s, a, s′). The belief
state summarizes the relevant information about the action–
observation history; in particular, any optimal policy for the
belief state MDP is also optimal for the POMDP, assuming
the belief state is maintained exactly.

C. Solution algorithms

The literature has tended to focus on the offline planning
problem of finding a full policy π over the belief space. Due to
the constraints of running on a robot in real-time, we consider
instead the online planning problem [20] where the agent is
repeatedly given an observation and just returns an action for
the current belief state. Most online algorithms are based on
forward search. A forward search tree for (belief state) MDPs
consists of alternating layers of action nodes and chance nodes.
The root of the tree is an action node labelled with the initial
(belief) state. An action node has children corresponding to the
possible actions. The chance node corresponding to a state-
action has children corresponding to the possible successor
states, labelled with the probability of that particular state. A
search tree can be used to estimate the value of taking each
action at the root by repeated backups. The leaf action nodes
are given values according to some heuristic estimate of the
value function at their state. The value of a chance node is the
average of the child values weighted by the probabilities. The
value of an action node is the maximum of the child values.

There are various choices in how to generate search trees.
First, the children of a chance node can be generated either
exhaustively, based on an explicitly given transition model of
the MDP, or indirectly, by sampling repeatedly from it, which
only requires a simulator. Second, there is the choice of which
nodes to expand, given finite total computation time. Apart
from simple fixed-depth strategies [7], there are various more
sophisticated methods [20, 9]. Finally, the choice of evaluation
function at the leaves is of key importance, especially when the
tree depth is much lower than the expected time to termination.

III. MODELING THE PROBLEM

Our goal is to build a robotic system that navigates between
locations in an indoor environment efficiently. We now con-
sider several ways to model this as a planning problem, in
order to motivate our chosen formulation in Section III-E. All
models will be defined with respect to a roadmap over the
static map. This is generated as follows from a known static
map: first, waypoints are sampled from the free space. This
can be done using simple uniform tiling sampling, or more
intelligently, e.g., based on the Voronoi graph of free space [3].
The main constraint is that from every point in free space, there
is a path of length l < R leading to a waypoint, where R is
a fixed radius threshold. Next, given the waypoints, standard
path planning is run offline on pairs of nearby waypoints to
generate edges. If obstacles are not considered, this graph can
be used for planning by adding the start and goal positions
to the graph, then searching for a path between them. When
the robot is at a waypoint, it does a quick local reachability
check to the neighbors in the graph. This process acts as a

Gs
A

B

Fig. 2. Problem in which two paths are possible, but edge A was more
recently observed blocked than edge B.

G

s

Fig. 3. Problem in which the top path is better because there is more scope
to move around obstacles.

deterministic virtual sensor [10] that allows us to know the
state of all edges incident to the node of the graph the robot
is currently at.

A. Deterministic

A simple scheme for updating the roadmap is to maintain a
list of blocked edges. An edge is added to this list whenever
it is observed blocked and removed when it is observed free.
An immediate problem is that the robot can eventually get
into a situation where no path exists. To avoid getting stuck,
whenever a path cannot be found, all edges that are not
currently observed blocked are unblocked. If a path still cannot
be found, a wait action is chosen.

This scheme does not take any account of the likelihood of
an edge being blocked, or of the relative cost of alternative
paths. It therefore makes various kinds of systematic errors.

Example 1: (Block probabilities) In Figure 2, there are two
paths, both blocked, but edge A has been observed blocked
much more recently than edge B. It therefore makes sense to
take the top path.

Example 2: (Prediction) In Figure 3, no edges have been
observed blocked. It nevertheless makes sense to take the
top path, because a single blocked edge on that path can be
circumvented, while a single blocked edge on the bottom path
requires going back to the start.

Example 3: (Patience) In Figure 4, if an obstacle is ob-
served on the edge between S and G, it might make sense
(assuming a dynamic model of obstacles) to wait rather than
taking the longer path, since the obstacle could disappear.

In each of these cases, the deterministic algorithm will
choose the wrong action either always or often.

B. Deterministic with blocked-edge costs

Rather than viewing blocked edges as completely impass-
able, we could give them an extra cost proportional to their
probability of being blocked. In other words, given an edge
such that it was last observed T seconds ago, and it was

Gs

Fig. 4. Problem in which shortest path is currently blocked, but it might
make sense to wait and see if it disappears.

G

s R

Fig. 5. Problem in which it may make sense to resense the obstacle before
committing to the longer path.

blocked at that time, its cost is c(e) + e−aTB. It therefore
deals correctly with Example 1. It still fails on Examples 2
and 3. While this algorithm takes more account of uncertainty,
it still neglects the fact that actions can add information.

Example 4: (Value of information) In Figure 5, suppose
the robot is at S, and the short path to G has been recently
observed blocked. Given the length of the long path, it might
still make sense to check again if the path has become free
before deciding on the long path. It is not possible to achieve
this in general by adjusting the a and B parameter, for that
would prevent the robot from ever considering the long path.

Having time-varying costs can also lead to another problem.
Example 5: (Persistence) In Figure 5, suppose now that

the robot is at R, proceeding down the long path which was
chosen because the short path to G from S had a high initial
probability of being blocked. The probability of being blocked
will decrease exponentially though, so it is possible that the
edge’s blocked cost decreases enough that the robot will stop
in the middle of the path and go back down the other way,
which leads to behavior that is suboptimal (and looks strange).

C. Most likely state

A related method is to maintain a probability distribution
over the true state of the world and plan assuming the most
likely graph. As above, this method fails to take sensing
actions in Example 4.

D. MDP

Rather than using costs, we can model the uncertainty using
an MDP. A straightforward way to do this would be to have
each edge’s status be sampled afresh each time the robot is
adjacent to it. The problem this runs into is that, since the
edges have no hidden state, a behavior such as “wait for 10
seconds, then choose another path if this edge is still blocked”
would never be followed in cases like Example 4 — the robot
would either leave immediately or wait forever.

E. POMDP

POMDPs model both the transition and sensing uncertainty
in the domain. We use the following POMDP model:
• There is one state variable for the current position in the

roadmap and, for each edge a status, which can either be
free or blocked. In the latter case it belongs to one of a
predefined set of classes. In our examples, the obstacle
classes are temporary, person, and static.

• The actions at a state are to take one of the outgoing
edges from that node, or to wait for 3 seconds at the
current position. 1

• The transition model is that a move succeeds iff the edge
is not blocked (at the start of the move). If so, it has a
duration depending on the edge length, and the robot ends
up at the other node incident to the edge. Additionally,
each edge status evolves according to an independent
continuous time Markov chain. The parameters are:

– the block rate (expected time till an obstacle appears)
– the prior distribution over obstacle classes;
– for each obstacle class, the unblock rate, or expected

time till it disappears.
• The observation model is that the current position is

known with certainty and, for each adjacent edge, the
robot observes whether it is free or blocked (but not
which class the obstacle belongs to).

• The cost of an action is the time it takes.
Optimal solutions to (instances of) this POMDP avoid the

problems listed above. For example, in Figure 5, the belief
will include a distribution on whether the obstacle is static,
temporary, or a person. If the prior probability of being
temporary or a person is high enough, the optimal plan will be
to move to the blocked edge and wait for some amount of time.
If the path clears, take it. If not, then over time the probability
of being a static obstacle will increase. This falls out of the
Bayesian updating formula: P (E|h) ∝ P (E)P (h|E) where h
is the observation history and E is the event that the obstacle
is static. Even if the prior probability P (E) is low, the longer
the robot waits without the obstacle moving, the higher the
likelihood term P (h|E) becomes, until it eventually becomes
optimal to take an alternate path.

IV. STATE ESTIMATION

A belief update given belief b, action a, and observation o,
consists of a projection through a followed by conditioning
on o. In our case, the transition model is:

P (s′|a, s) = I{s′p=fp(s,a)}
∏

(u,v)∈E

P (s′uv|suv, t(s, a))

where:
• fp(s, a) is the deterministic transition function of position

that results in moving to the other incident node of a if
the move is legal, and staying at the current position for

1A 3 second interval was chosen as the minimum reasonable wait time in
our environment; longer waits can be obtained by repeating the action.

G

s

2 2

Fig. 6. Original problem. Dashed edges have length 2 and have block
probability above the threshold. All other edges have length 1, and have block
probability below the threshold.

1 second otherwise. Wait actions also result in staying at
the current position.

• t(s, a) is the duration of the action, which is just the edge
length.

• P (s′uv|suv, t) is given by the continuous time Markov
chain transition distribution

We represent our belief states in factored form, as consisting
of a known position bp, and a distribution buv over each edge’s
status. Given such a belief, since the transition model above
factors over terms, each of which depend on one of the belief
variables above, the projected distribution P(b, a) will also
have this factored form. Similarly, the observation model is
deterministic, and can be written:

Z(o|s, a, s′) =
∏

(u,v)∈E

I{ouv=g(s′u,v,sp)}

where the function g returns free or blocked if sp equals
u or v, and unobserved otherwise. Since the position is
known, the update can once again be done in factored form: for
edges adjacent to the current position, if the edge is observed
free the conditional distribution is free with probability 1,
and if it is observed blocked, we make the probability of it
being free 0 and reweight the remaining statuses to sum to 1.

V. EFFICIENT PLANNING

The state space of the POMDP model is exponential in the
number of edges, which is beyond the capabilities of current
general-purpose offline planners. Online planners based on
forward search do not directly depend on the state space size,
but do have exponential dependence (for a fixed bound on
error) on the search horizon, which can be large in our case,
since plan sizes can be on the order of the graph diameter.

A. The Abstract Graph

We can take advantage of structure in the problem. Fig-
ure 6 shows an example instance. The dashed edges are two

G

s

2 2

3

3 4

4

Fig. 7. Abstracted version of problem in Figure 6. In the initial belief state,
dashed edges are possibly blocked, and all others are definitely free.

locations where the robot has recently observed obstacles. In-
tuitively, (the nodes incident to) these edges are the important
ones to reason about during planning. The remaining nodes
(apart from the start and goal) are just intermediate locations
we pass through — assuming the block rate is not high, the
optimal conditional plan will look something like 1) visit the
left dashed edge; 2) if is free, take it; 3) otherwise wait for
some number of seconds; 4) if the edge still is blocked, move
to the right dashed edge; and so on. Figure 7 shows the an
abstracted version of the problem based on this intuition. The
edge lengths have been computed using Dijkstra’s algorithm
in the original graph, implicitly assuming no new obstacles
will appear. Note that Figure 7 is still nontrivial to solve
optimally because it is partially observable, and obstacles may
still appear and disappear on the dashed edges. Nevertheless,
it has a shorter effective horizon.

More precisely, define the abstract graph Ga given a
problem and belief state. First, let B be the set of edges whose
probability of being blocked exceeds some threshold (we use
1+pβ

2 where pβ is the stationary probability of an unobserved
edge being blocked). Let the cut graph be the original graph
with edges in B removed. Given current position vs and goal
vg , the abstract graph has vertices Ṽ = VB ∪ {vs, vg} where
VB are the incident vertices to edges in B. For each edge in
B, there is a corresponding edge in Ga with the same length.
Also, for every pair of vertices u, v ∈ Ṽ , if the distance duv
between them in the cut graph is finite, add an edge in Ga
between u and v with length duv .

We can then construct the reduced POMDP based on this
abstract graph. The initial belief b0 of the reduced problem is
the same as b except that edges not in B are not present,
and the newly added abstract edges are included, and are
considered free with probability 1. The unblocking rates are
the same as the original problem, but the block rate is 0. The
proposed solution algorithm is to plan in the reduced POMDP
and follow the first concrete edge of the first action in that plan

(this is also computed as part of the Dijkstra search to find
the edge costs). The assumption made in the reduced POMDP,
that new obstacles do not appear on abstract edges, may not
hold. Therefore, we replan after traversing each edge of the
original graph, using a new abstract graph constructed based
on the latest observations.

B. Analysis

We can analyze the quality of this approximation as a
function of the domain parameters. Specifically, let p =
(p1, . . . , pK) be the stationary probability distribution for the
edge obstacle Markov chains, where p1 corresponds to no
obstacle, and let e = (e1, . . . , eK) be the expected unblocking
time for each obstacle type (and e1 = 0).

Theorem 1: Let s and g be nodes such that the optimal
expected travel time between them is T . Suppose the robot
follows an optimal policy with respect to the abstract graph.
Then, the expected time T ′ to travel from s to g satisfies
T ′ ≤ (1 + pT e)T .

Intuitively, the approximation quality depends on how fre-
quent obstacles, especially long-lived ones, are. The bound is
loose because in fact, unforeseen obstacles mainly matter in
cases like Example 2 where there are bottlenecks and narrow
hallways. In practice, the approximation is unlikely to be
substantial unless most of the domain consists of narrow paths.

C. Planning with the Abstract Graph

The reduced POMDP still has a large state space, but a
shorter horizon, making it a good candidate for forward search.
We use simple fixed-depth search with fixed-width sampling,
as described in Section II-C. More intelligent strategies [9]
would likely improve performance.

Leaves of the search tree are evaluated using the following
heuristic function. Given a belief state b, sample some number
of graphs; in each graph, compute the minimum of the shortest
path distance to the goal and the graph diameter (caching
within and across leaf nodes is used to make this efficient),
and average the results. Intuitively, this corresponds to taking
full account of partial observability until the search horizon,
then making a full-observability approximation.

At state nodes of the lookahead tree, since the current
position in the graph and neighboring edge statuses are known
with certainty, the number of children is bounded by the out-
degree of the roadmap. For action nodes, suppose we are at
a node corresponding to doing action a after belief state b. A
naive way to generate a child would be:

1) Sample a state s from the distribution b
2) Sample a next-state and observation from P (s′, o|s, a)
3) Set b′ ← F(b, a, o)
4) If there is already a child node corresponding to b′,

increase its count; otherwise create a new node
This procedure results in a large number of belief state

updates in the inner loop. Instead, we use a trick that we have
not previously seen in the literature, based on the fact that F is
deterministic given b, a, o: label each outgoing edge with an
observation, and only compute F when the observation has

not been seen before. This helps in our setting because the
observation space is much smaller than the state space.

VI. EXPERIMENTS

We evaluated the various formulations and the ROS navi-
gation stack on simulated graph instances as well as on a PR2
robot. The parameters for the models (e.g., block rates) were
chosen based on the known domain model in the simulated
case, and set by hand for the physical robot experiments.

A. Simulated experiments

We first compared several of the approaches described in
Section III on a set of simulated instances. There are two
metrics of interest: planning time and plan quality, which
we model as total execution time 2. In our evaluations, we
bounded planning time and compared the total execution
time across algorithms. The scale of our roadmaps is such
that traversing each edge typically takes several seconds; we
therefore placed a conservative limit of one second of planning
time per action, and compared the following approaches:
• DA is the deterministic agent from Section III-A.
• BA1 and BA2 are the block-cost agents from Sec-

tion III-B, using block costs of 10 and 1000.
• ALA1 through ALA3 are abstract POMDP agents from

Section III-E, using search depths 1 to 3, and a sampling
width of 100.

We used a set of instances with graph sizes ranging from
20 to 1000. The results are shown in Table II. The POMDP-
based algorithms were the best by a significant margin on
each domain. Interestingly, ALA2 occasionally did better than
ALA3. This phenomenon is known in the search literature as
a lookahead pathology [2]. A more intelligent search strategy
than uniform-depth search should mitigate this problem [9].

B. Experiments on robotic platform

We also evaluated our algorithm on a Willow Garage
PR2 robot. A roadmap was generated offline from a static
map of our environment by starting with uniformly spaced
nodes, which were then perturbed locally to move away from
obstacles. The environment is about 40 by 40 meters, and the
roadmap had about 200 nodes. We implemented a bridge ROS
node to connect our graph-based system to the continuous state
of the robot, as shown in Figure 8. Pose messages from the
AMCL localization system are mapped to the nearest node
on the roadmap, while actions (edges of the roadmap) are
mapped to goal commands for a trajectory planner based
on the elastic band algorithm [19]. A local occupancy grid
is maintained in the odometric frame, based on laser range
readings; when reaching a new node, a shortest path com-
putation is done in this grid (with obstacles inflated by the
robot radius) to determine the neighboring edge statuses. An
action is run either until the trajectory follower reports success
or failure, or the current nearest node changes. The planner
runs asynchronously, using increasing tree depths, while the

2The framework can be straightforwardly extended to more complex cost
functions including, e.g., proximity to obstacles.

Instance DA ALA1 ALA2 ALA3 BA1 BA2
1 161± 23 186± 36 132± 7 142± 12 272± 57 285± 94
2 758± 207 225± 59 228± 65 149± 38 522± 207 380± 123
3 1203± 64 936± 58 907± 54 1025± 48 1064± 73 1134± 63
4 353± 14 361± 33 191± 22 178± 12 259± 33 286± 40
5 897± 97 853± 122 639± 43 625± 37 914± 103 1321± 91
6 1115± 80 1026± 56 915± 54 924± 51 1079± 88 1226± 76
7 441± 39 493± 58 410± 44 378± 36 408± 37 461± 36
8 732± 101 857± 122 684± 55 621± 51 817± 62 808± 53

TABLE II
RESULTS ON EVALUATING DIFFERENT AGENTS ON A SET OF BENCHMARK ENVIRONMENTS. EACH CELL ENTRY REPORTS COST TILL REACHING THE

GOAL AND SAMPLE STANDARD DEVIATION, GIVEN 30 INDEPENDENT TRIALS. PLANNING TIME WAS BOUNDED AT ONE SECOND.

Fig. 8. Screenshot from visualization during execution on PR2 (on subset of
overall environment used in experiments). The roadmap graph is overlaid on
a static occupancy grid. The laser readings are also shown in white. The red
polygon shows the robot’s current position, which is mapped to a particular
node of the roadmap. An obstacle is visible in the hallway, resulting in the
red edge being blocked. Thus the only available action is to follow the green
edge. This figure is best viewed in color.

robot is navigating, assuming the action succeeds, i.e., that
we end up at the node on the other side of the given edge. If
this does happen, the next action can be selected immediately
without pausing. If the action terminates at an unexpected node
(usually because a person was in the robot’s way), the robot
pauses and the planner is rerun for one second. This only
happens occasionally, as the elastic band planner has some
degree of reactivity to unforeseen obstacles.

We compared the performance of our navigation system
against the ROS navigation stack [11] by measuring the time
taken to navigate to a sequence of waypoints. Five trials were
run for each system. The trials were conducted during the
day, when there is a reasonably high density of people. Our
environment is fairly typical of academic or office buildings,

with a mixture of open spaces, rooms, and hallways of varying
width. The people in the building are familiar with navigating
robots; they do not try to interact with or move out of the way
for them.

Table III shows navigation times. In the best case, the two
systems performed similarly. This corresponds to situations
where no unforeseen obstacles were encountered in hallways
or doorways. However, the worst case cost of the ROS naviga-
tion stack was much higher. This seems to mainly be because
it does not model the probability of different observation types
or take the length of the second-best path into account when
deciding how long to wait given an unforeseen obstacle; it
therefore often gives up prematurely in favour of a significantly
longer path.

VII. RELATED WORK

Navigation using roadmaps has been well studied. Most
existing work has assumed the graph is known. [13] is an
exception, in which a PRM planner is modified to accept or
reject sampled points based on the probability of collision,
and then looks for an unconditional plan with a high chance
of success. In contrast, since our approach has an observation
model, it will return conditional plans that base future actions
on the results of observations.

Ong et al [15] studied mixed observability Markov decision
processes (MOMDPs), in which part of the state is perfectly
observed, and showed how to speed up offline dynamic pro-
gramming algorithms in this case. Our problem is a MOMDP,
since the robot position in the roadmap is perfectly observed.
Unfortunately, the unobserved portion of the state space is still
exponentially large.

Closely related to this research is that of Kneebone and
Dearden [8]. Like us, they consider navigation in a partially
observed graph, and represent the uncertainty using a POMDP.
A difference is that in their framework, obstacles do not
appear and disappear over time. This makes a qualitative
difference in the kinds of policies that are found: there is no
longer any utility in taking wait actions, nor are there useful
inferences to be made about obstacle classes (effectively, all
obstacles belong to a single class whose unblocking rate is
0). Also related is the literature on the Canadian Traveller’s
Problem [14]. Again, the obstacles here are either static or
Markovian, so that a bounded wait will never be optimal.

Trial ROS Navigation Stack ALA
1 436 460
2 844 605
3 1118 549
4 491 534
5 520 502

TABLE III
EXECUTION TIME (SECONDS) FOR PR2 USING THE ROS NAVIGATION STACK AND OUR SYSTEM ON A FIXED SET OF WAYPOINTS IN OUR ENVIRONMENT.

The idea of using an abstract graph to solve the planning
problem is reminiscent of approaches based on subgoals and
macroactions [4]. Subgoal choice tends to be a challenging
question for these approaches [22]. We make use of the
structure of the problem to choose subgoals as places where
obstacles are likely to be.

Theocharous and Kaelbling [23] also describe a macro-
action-based POMDP planning algorithm for robot navigation,
but they were concerned with uncertainty about the robots po-
sition rather than the obstacles. Another complementary line of
research is on motion planning among movable obstacles [5].
Unlike our work, which considers an unknown and changing
set of static obstacles, this work considers a known, fixed set
of moving obstacles.

Execution systems for robotics have been widely stud-
ied [16] but many implemented systems still use finite state
machines or scripts in a general-purpose programming lan-
guage. TREX [18] is a sophisticated executive based on
temporal planning, that was recently used in a navigation task
involving failure recovery [12]. The executive in that case still
required significant procedural knowledge to be prespecified
in the form of temporal constraints, and planning was mainly
used to ensure that the constraints were met.

VIII. CONCLUSION

We view the main contribution of this work as showing
by example that it is possible to build robotic systems that
reason about and react to execution failures using planning.
Our formulation deals with uncertainty in a principled way,
and optimal solutions to it exhibit various behaviors that are
normally hardcoded into an executive, such as persistence
and inference about obstacles. From a software engineering
point of view, the resulting systems are less stateful, hence
easier to understand and modify. We also described an efficient
approximate solution algorithm that can feasibly be run online
on a robot, and showed improved performance compared with
traditional deterministic planners.

REFERENCES

[1] Oliver Brock and Oussama Khatib. High-speed navigation using
the global dynamic window approach. In ICRA, 1999.

[2] Vadim Bulitko and Mitja Lustrek. Lookahead pathology in real-
time path-finding. In AAAI. AAAI Press, 2006.

[3] Howie Choset and Joel W. Burdick. Sensor-based exploration:
The hierarchical generalized Voronoi graph. IJRR, 19(2), 2000.

[4] Thomas G. Dietterich. Hierarchical reinforcement learning with
the MAXQ value function decomposition. J. Artif. Intell. Res.
(JAIR), 13, 2000.

[5] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen
Rock. Randomized kinodynamic motion planning with moving
obstacles. IJRR, 21(3), 2002.

[6] Leslie Kaelbling, Michael Littman, and Anthony Cassandra.
Planning and acting in partially observable stochastic domains.
Artif. Intell., 101, 1998.

[7] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A
sparse sampling algorithm for near-optimal planning in large
markov decision processes. In IJCAI, 1999.

[8] Michael Kneebone and Richard Dearden. Navigation planning
in probabilistic roadmaps with uncertainty. In Alfonso Gerevini,
Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis, editors,
ICAPS. AAAI, 2009.

[9] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-
Carlo planning. In ECML, 2006.

[10] Steve Lavalle. Filtering and planning in information spaces.
IROS tutorial notes, 2009.

[11] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey,
and Kurt Konolige. The office marathon: Robust navigation in
an indoor office environment. In ICRA, 2010.

[12] Wim Meeussen, Melonee Wise, Stuart Glaser, Sachin Chitta,
Conor McGann, Patrick Mihelich, Eitan Marder-Eppstein, Mar-
ius Muja, Victor Eruhimov, Tully Foote, John Hsu, Radu Rusu,
Bhaskara Marthi, Gary Bradski, Kurt Konolige, Brian Gerkey,
and Eric Berger. Autonomous door opening and plugging in
with a personal robot. In ICRA, 2010.

[13] Patrycja Missiuro and Nicholas Roy. Adapting probabilistic
roadmaps to handle uncertain maps. In ICRA, 2006.

[14] Evdokia Nikolova and David R. Karger. Route planning under
uncertainty: The Canadian traveller problem. In AAAI, 2008.

[15] S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. POMDPs
for robotic tasks with mixed observability. In Proc. Robotics:
Science and Systems, 2009.

[16] Ola Pettersson. Execution monitoring in robotics: A survey.
Robotics and Autonomous Systems, 53(2), 2005.

[17] M.L. Puterman. Markov decision processes. Wiley-Interscience,
2005.

[18] Frederic Py, Kanna Rajan, and Conor McGann. A systematic
agent framework for situated autonomous systems. In AAMAS,
2010.

[19] Sean Quinlan and Oussama Khatib. Elastic bands: Connecting
path planning and control. In ICRA, 1993.

[20] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim
Chaib-draa. Online planning algorithms for POMDPs. J. Artif.
Intell. Res. (JAIR), 32, 2008.

[21] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A
Modern Approach. Pearson, 2010.

[22] Özgür Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identi-
fying useful subgoals in reinforcement learning by local graph
partitioning. In ICML, 2005.

[23] Georgios Theocharous and Leslie Kaelbling. Approximate
planning in POMDPs with macro-actions. In NIPS, 2003.

[24] Sebastian Thrun. Probabilistic robotics. Commun. ACM, 45(3),
2002.

	Introduction
	Background
	MDPs
	POMDPs
	Solution algorithms

	Modeling the problem
	Deterministic
	Deterministic with blocked-edge costs
	Most likely state
	MDP
	POMDP

	State Estimation
	Efficient Planning
	The Abstract Graph
	Analysis
	Planning with the Abstract Graph

	Experiments
	Simulated experiments
	Experiments on robotic platform

	Related Work
	Conclusion

