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Abstract—This paper addresses the problem of enabling robots
to interactively learn visual and spatial models from multi-modal
interactions involving speech, gesture and images. Our approach,
called Logical Semantics with Perception (LSP), provides a
natural and intuitive interface by significantly reducing the
amount of supervision that a human is required to provide.
This paper demonstrates LSP in an interactive setting. Given
speech and gesture input, LSP is able to learn object and
relation classifiers for objects like mugs and relations like left
and right. We extend LSP to generate complex natural language
descriptions of selected objects using adjectives, nouns and
relations, such as “the orange mug to the right of the green
book.” Furthermore, we extend LSP to incorporate determiners
(e.g., “the”) into its training procedure, enabling the model to
generate acceptable relational language 20% more often than the
unaugmented model.

I. INTRODUCTION

As robots move out of the lab and into the real world,
it is critical to develop methods for human users to flexibly
and intuitively interact with them. Multi-modal interaction is
a compelling solution since the operator can flexibly specify
complex requirements with speech, gesture and vision. This
paper addresses the challenge of teaching robots about objects
and relations from natural language and gesture input.

We address this problem by developing a system that is
able to perform grounded language acquisition, learning to
map from natural language expressions to their referents in
the world, called groundings. Two critical capabilities for this
setting are (1) interactive learning, the ability to learn the
real-world referents of words directly from interactions with
people, and (2) language generation, the ability to construct
novel natural language expressions describing real-world ob-
jects. For example, imagine that a person points at an object
and says, “This mug is on the table.” From this interaction,
an autonomous robot should learn (1) which objects in the
environment can be referred to by “mug” and “table” and (2)
the spatial relation referred to by “on.” Furthermore, the robot
should be able to describe objects in new environments using
novel combinations of these words.

The interactive setting is challenging for grounded language
acquisition since only a portion of the correspondence between
language and the environment can be inferred from real-
world interaction. Consider the example of “this mug is on
the table” with an accompanying gesture indicating the real-
world referent of the complete phrase. In this interaction the
robot does not observe the real-world referent of “table,” since
the user only gestured toward the mug, which means that the
robot cannot be certain about which objects participate in the
spatial relation given by “on.” Furthermore, if there is only
a single mug in the environment, this interaction provides

Generated Natural Language:
“the orange mug is to the right of the green book”

Fig. 1: Example natural language output from our model.

no negative information about which objects are not “on the
table.” To enable interactive grounded language acquisition,
the robot must be able to learn from such partially observed
language/environment mappings.

This paper builds off recent work on Logical Semantics with
Perception (LSP) [14], a weakly-supervised yet expressive
approach to grounded language acquisition. LSP is suitable
for the interactive setting because it is trained directly from
language/real-world referent pairs. This supervision require-
ment contrasts with other approaches that use annotated se-
mantic parses or a fully-observed correspondence between
language and the world [12} 27, [21]]. Furthermore, LSP is more
expressive than these approaches, as it learns relations between
sets of objects in addition to categories. These properties make
LSP an ideal starting point for interactive grounded language
acquisition.

The LSP model from [14] learns to map from language to
objects and relations in the environment. This paper extends
LSP to the interactive setting, by considering language genera-
tion and introducing novel constraints on learning that improve
performance. The primary contributions of this paper are:

o Language Generation. An approach for generating lan-
guage referring to objects in the environment with LSP.
Our approach is capable of generating complex, relational
descriptions such as “the orange mug to the right of the
green book.” (Figure [I)

o Determiners. We present novel semantic constraints on
determiners and incorporate them into model training.
These constraints are particularly important for learning
relations: we find that they improve language generation
performance by 20% on relational language.

o Demonstration/Experiments. We provide results with
an interactive system, showing that LSP correctly maps
language to its real-world referent and is able to generate
correct relational object descriptions. Our system enables
users to point at objects and describe them in natural
language (Figure [); these interactions are captured using



an RGB-D camera and gesture recognition and are used
to train LSP.

II. RELATED WORK

Beginning with SHRDLU [29], many systems have modeled
the compositional structure of language to understand a natural
language command [23} 25} [19} [7]. Typically, these systems
model either compositional semantics or perception, instead of
jointly modeling both. There has also been work on embodied
vision to learn objects and their properties, though language
was not a major component [1].

Semantic parsing is the area of compositional semantics
most related to this work. This problem has been studied under
various supervision assumptions, the most typical of which
assumes observed logical forms [30} 31, |10} [17]. More relevant
to this work are weakly-supervised formulations [} [18] [15]],
which observe functions of the output semantic parse. How-
ever, these works all rely on manually constructed knowledge
representations. Similarly, there is work on grounded language
acquisition using a formal representation of the environment
[L1L 3L 24) 200 4]. Similar approaches have been used to
translate natural language into robot commands [[16} [13} [7} 2],
where the components of the meaning representation are
primitive robot behaviors. We note that [2] also models
determiners, but does not consider the interaction between
determiners and perception.

The approach taken in this paper is to jointly learn a model
of perception with a model of language acquisition. Our work
extends Logical Semantics with Perception (LSP) [14], an
expressive and weakly-supervised model that jointly learns
to semantically parse text and ground both categorial and
relational language in an environment. LSP is more flexible
than work on robot direction following [24} 12} 27]], which
does not represent parse structure ambiguity. LSP also extends
work on attribute learning [21]] by learning two-place relations
in addition to one-place categories. Previous work on LSP [14]]
did not consider constraints on determiners or a method for
generating natural language referring expressions.

III. LOGICAL SEMANTICS WITH PERCEPTION

This section reviews Logical Semantics with Perception
(LSP), a model for grounded language acquisition introduced
in [14]. LSP accepts as input a natural language statement
and an image and outputs the objects in the image denoted
by the statement. The LSP model has three components: per-
ception, parsing and evaluation (see Figure [2). The perception
component constructs logical knowledge bases from low-level
feature-based representations of images. The parsing compo-
nent semantically parses natural language into lambda calculus
queries against the constructed knowledge base. Finally, the
evaluation component deterministically executes this query
against the knowledge base to produce LSP’s output. The
output of LSP can be either a denotation or a grounding.
A denotation is the set of image segments referred to by
the complete statement, while a grounding is a set of image
segment tuples representing the referents of each noun phrase
in the statement. Figure 2(c) shows the distinction between

these outputs. The LSP model can be trained using only
language/denotation pairs, which only partially specify the
mapping between language and the environment, yet are a
natural form of supervision in the interactive setting. A training
example for the environment in Figure 2{a) could be, “the red
mug on the table” along with the denotation, which would
consist of image segment 3.

Mathematically, LSP is a linear model f that predicts a
denotation ~ for a natural language statement z in an image
d. The model factorizes according to the structure sketched
above, using several latent variables:

f(%l“,é,t,z,d; 0) = fp7‘s(€at7z;0prs)+ (1)
fgnd(F7d§ egnd) =+ feval(%rag)

The LSP model assumes access to a set of category (c € C)
and relation predicates (r € R), which are automatically
derived from the training data. The f,,q4 function perceives the
world, taking an image d and producing a logical knowledge
base I" using the given vocabulary of predicates and parameters
Ogna. The fp., function represents a semantic parser. This
component produces a logical form ¢ and a syntactic parse tree
t for the natural language statement z, given parameters 0.
Finally, fe,q represents the deterministic evaluation compo-
nent, which evaluates the logical form ¢ on the knowledge
base I' to produce a denotation ~. Each of these components
is sketched in more detail in the following sections. An
illustration can be seen in Figure [2]

A. Perception Function

The perception module takes an image as input and pro-
duces a logical knowledge base representing the agent’s be-
liefs. The perception function runs classifiers on each image
segment to determine category membership (e.g., mug(z)) and
on pairs of image segments to determine relation membership
(e.g., left-rel(w,y)). Let ¢ € T denote the set of
image segments which are elements of a category predicate
c; similarly, let v" € I" denote the pairs of image segments
which are elements of the relation predicate r. Given these
sets, the score of a logical knowledge base I' factors into per-
relation and per-category scores h:

Fona(T,d; Ogna) = > h(y°,d; Ogna) + D WY, d; Ogna)
ceC rER
The per-predicate scores are in turn given by a sum of per-
element classification scores:

h(ﬂycad; agnd) = Z 76(6)(9g71d)T¢cat(e)
ecEy
h(Y",d; 0pna) = > 7" (€1, €2)(Ogna) " brei(en, e2)
(e1,e2)EEq

The input to each category classifier is an image segment e,
described by a feature vector ¢.q:(€), and the output is either
true or false. Similarly, the the input to each relation classifier
is a pair of image segments (e1,es) described by a feature
vector ¢yci(e1,e2), and the output is either true or false. In
the above equations, denotations ~y are treated as indicator



I' = {mug(1l),mug(3), orange(1l), table(2),
on-rel(l,2),on-rel(3,2), left-rel(3,1)}

(a) Perception

¢ = Az.Jy.orange(z) A mug(z)
Aon-rel(z,y) A table(y)

(b) Parsing

v={1}, g={1,2)}

z="orange mug on the table”

{1} {(1,2),(3,2)}
/\ /\
{}} {1"3} {(1,2.3.2} {2}
orange(z) mug(z) on—re‘l(;t,y) tabl‘e(y)

(c) Evaluation

Fig. 2: Tllustration of LSP’s three model components. Perception (a) takes an environment (image) containing a set of image
segments and applies a set of per-predicate perceptual classifiers to produce a logical knowledge base I' representing the
agent’s beliefs. Parsing (b) uses a semantic parser to map the user’s language z to a lambda calculus statement ¢. Evaluation
(c) evaluates this lambda calculus statement ¢ on the knowledge base I' to produce a denotation v and grounding g.

functions for the sets they denote, i.e., v(e) =1 if e is in the
set. Both kinds of perceptual classifiers are linear classifiers,
parametrized by a single feature vector per predicate. The set
of all of these feature vectors is represented by 6,,4. Each
detected predicate becomes a ground predicate instance in the
output knowledge base I" (see Figure [2[a)).

B. Semantic Parsing

LSP uses a Combinatory Categorial Grammar (CCG) to
parse natural language statements into logical forms. Logical
forms are lambda calculus functions that select a subset of
image segments from the environment. A CCG is defined by
a lexicon, which assigns meanings to individual words:

orange := N/N :Af\zx.orange(z)A f(x)
mug := N :Az.mug(x)
on := (N\N)/N:Af\g.\z.

Jy.f(y) A g(x) A on-rel(z,y)

The meaning of a word in CCG is a function with both
syntactic and semantic components. The syntactic component
(e.g., N,N/N) represents how the word can be combined
with adjacent words during parsing. For example, the “orange”
entry has syntax N/N, which means that it takes a noun as
its argument on the right. The semantic component maps each
word to a lambda calculus expression. Parsing uses a set of
rules (e.g., function application) to combine these expressions
and produce a logical form. For example, using the above lex-
icon, the function for “orange” can be applied to the function
for “mug,” producing the parse Az.mug(z) A orange(z) for
z =“orange mug.” A complete parse of “orange mug on the
table” is shown in Figure 2|b).

In CCQG, a single sentence has many parses. To disambiguate
between these options, LSP uses features ¢,,,; to train a linear
model over semantic parses /, t:

pr‘s (£7 t,z; eprs) = egrsﬁbprs (Ea t, Z)
For additional details on f,,s, the reader should consult [14].

C. Evaluation

The evaluation module combines a logical form ¢ and a
logical knowledge base I' to produce a denotation 7 and
a grounding g. For example, consider the logical form in
Figure 2[b). Evaluation first looks up the individual predicate

instances using I" (leaves in Figure [2Jc)). The results are then
combined using the following recurrences:
o If ¥ = )\1‘81(1‘) A 62(1‘), then
~v(e) = 1iff y1(e) =1 Avya(e) = 1.
o If £ = Mx.3y.l1(x,y), then
~v(e1) = 1 iff Jeg.y1(e1,ea) = 1.
This evaluation of ¢ on I' returns a denotation, which is the
set of image segments for which the logical form is true.

D. Parameter Estimation

LSP can be trained either using full or weak supervi-
sion. Full supervision involves annotating correct semantic
parses and logical knowledge bases for a collection of natural
language statements and images. Fully supervised training
is laborious, unnatural, and inappropriate for an interactive
setting. Instead, we use a weakly supervised training procedure
that estimates parameters directly from language/denotation
pairs, which provide only a partial mapping between natural
language and the environment. In Figure[2] the language would
be “orange mug on the table” and the denotation would be
~ = {1}. Such training is more appropriate for our interactive
setting, as we can obtain language via speech recognition,
and can obtain a denotation from the user’s pointing gesture.
Training jointly optimizes the parameters of the semantic
parser (6,,s) and of the perceptual classifiers (64,,q) to predict
correct denotations for the training instances. The model is
trained as a max-margin Markov network (M3N) [26] using
stochastic subgradient descent; we refer the reader to [14] for
details.

IV. LANGUAGE GENERATION

In an interactive setting, it is desirable for a robot to generate
natural language descriptions of its visual scene. Ideally, given
a denotation 7* and an image d, a language model p(z)
would be incorporated into a generative model (with the same
factorization as LSP) as follows:

argmaxp(z) x p(v*, T, ¢,t|z,d,0)
z,I' 0t
Unfortunately, learning such a generative model is in-
tractable because it requires marginalizing over logical knowl-
edge bases subject to constraints given by the training data.



Similarly, LSP’s scores are not probabilities, so they cannot
be directly combined with a language model. As a result, we
propose to generate language by maximizing the likelihood
of the generated text according to a language model, while
using LSP to ensure that the text refers to the appropriate set
of objects. Given a denotation +* and an image d, language
generation aims to calculate:

arg max p(z) )

z

s.t.  argmax (max f(y, T, 4,t, 2, d; 9)) ="
5 T,6,¢

f represents a trained LSP model with parameters 6. The
model p(z) is bigram language model that defines a probability
distribution p(z) over word sequences z as follows:

p(z) = p(z1|START) (HP(ZJZH)) p(END|zy)
=2

The per-word distributions above are multinomial distributions
over words, estimated from the training corpus.

We propose a search algorithm that approximately maxi-
mizes this objective. The aim of inference is, given a de-
notation (set of image segments) y*, to produce a natural
language expression describing those segments. The first step
of inference is to generate all adjective/noun pairs that could be
referring expressions to v* (e.g., “orange mug.”). This is done
by running LSP on each candidate adjective/noun pair. If the
highest-scoring denotation produced by LSP does not contain
~*, then the adjective/noun pair is discarded. The second step
of inference is to generate, for each image segment, the most
likely adjective/noun phrase that uniquely refers to that image
segment. This is done by running all phrases through LSP,
maintaining the highest-scoring expression (according to the
language model) that describes each image segment. In both
steps, an article (“a” or “the”) is optionally prepended to each
phrase to improve the fluency of the text.

Next, the procedure generates all relation expressions such
as “right” and “left” using the lexicon. All of the prepositions
that can apply to these expressions are then prepended and
appended to produce relation expressions such as “to the right
of.” These relation expressions are then combined with the
highest-scoring expressions for each image segment (Step 2),
producing phrases such as “to the right of the cup.” LSP is
then run on each of these phrases to identify whether ~v* is
included in the first argument of their denotations.

Given the resulting natural language expressions for v* and
expressions that can describe the relationship between +* and
all of the other image segments, the search then scores all
combinations of these expressions using the language model
p(z), identifying the single most probable way to describe
~v*. The final result of generation is a noun phrase, such as
“the orange mug to the right of the green book.” To generate
more complicated natural language statements, the relation
generation step can be performed recursively.

V. DETERMINERS

Determiners, like “a” and “the,” provide important cues that
can help guide the interpretation of language. For example, if
a user utters “the mug,” we can infer that (1) the denotation
of “the mug” contains exactly one image segment, and (2)
there is a unique image segment which can be called “mug.”
The second inference is especially valuable in the interactive
setting, as it allows the model to generate negative examples
of mugs, which are often unavailable from user interactions.
This section describes an extension to LSP that enables it
to incorporate the effects of determiners into both parameter
estimation and inference.

In previous work, determiners like “a” and “the” were
assigned the lexicon entry N/N : Af.f [14]. This lexicon
entry states that both words have no meaning: a semantic
parser using this entry for “the” produces the same logical
form (Az.mug(z)) for both “the mug” and “mug.” Here, we
add presupposition [9]] constraints to these words, which allow
them to influence perception:

the := N/N : Af.Ax.f(z) Presuppose: Jly.f(y)
a := N/N:\fg
resuppose: 3g.(Vz.g(z) = f(z)) A (Tly.g(y))

The presupposition clauses behave like constraints on the
result of perception: intuitively, if a human utters “the mug,”
but the robot believes there are two mugs in the scene, then the
robot is incorrect and should revise its perception of the scene
to agree with the human’s utterance. The logical form for “the”
captures this intuition, stating that the denotation of “the mug”
is the same as the denotation of “mug,” while its presupposi-
tion states the robot should believe the world contains exactly
one mug (3! denotes a unique existential quantifier). Similarly,
we expect “a mug” to denote a single mug, although there may
be multiple mugs in the image. The above formula for “a”
therefore asserts that (1) the denotation for “a mug” contains
at most one image segment (i.e., 3y.g(y)), but (2) that image
segment can be any single image segment from the denotation
of “mug” (i.e., (g(x) = f(x))). Note that there exist multiple
possible functions g that satisfy this constraint, capturing our
intuition that the word “a” represents an arbitrary choice of a
referent from a set possible referents.

During parameter estimation, we use the presupposition
clauses from the determiners as an additional source of su-
pervision. If a phrase contains a determiner, LSP’s perceptual
classifiers are trained to satisfy the phrase’s presupposition
constraints. As an example, consider the phrase “mug on the
table.” Without determiner constraints, LSP training allows
“table” to refer to an arbitrary set of objects in the image.
With determiner constraints, LSP training encourages “table”
toward an interpretation that refers to a single object. If our
determiner constraints are true in the data set, then such
training should improve our category and relation classifiers
by creating negative examples of both “table” and “on.” To
use determiners as a source of supervision, the presupposition
clause constraints are enforced during the subgradient com-
putation when finding the best semantic parse and knowledge



base that explain a labeled denotation.

The presupposition constraints also increase the difficulty
of inference since, during the evaluation step (Figure c)),
the robot must produce a logical knowledge base I' that
agrees with the constraints. In the unaugmented LSP, the
denotation of a natural language statement can be computed
efficiently due to the deterministic structure of the evaluation
module f.,.;. However, the determiner constraints allow the
logical form to influence the logical knowledge base during
the evaluation step. For example, if the knowledge base states
that there are two mugs in the scene, but the natural language
statement is “the mug,” inference must revise the predicted
knowledge base such that it contains only one mug. To address
these issues, the presupposition constraints are incorporated
into the integer linear program (ILP) inference algorithm
given in [14]. This ILP explicitly encodes uncertainty over
the logical knowledge base along with the sets of image
segments produced by each stage of evaluation (as shown in
Figure [2Jc)). The presupposition constraints are encoded using
hard constraints on these sets of image segments.

VI. INTERACTIVE TRAINING

This section describes the interactive scene understanding
system that we constructed for our experiments. Our system
enables humans to interactively train LSP to recognize objects
on a table using pointing gestures and speech. The system
consists of an RGB-D camera and an Android tablet. The
RGB-D camera is used to track people and segment the scene;
the tablet is used for both its speech to text and text to speech
capabilities. Low-level communication is handled by LCM [§]]
and ROS [22].

There are two modes for the system. The training mode
enables a user to generate training examples for LSP, while
the generation mode allows a user to obtain natural language
descriptions of objects. In training mode, the user points at an
object in the scene. The system detects the pointing gesture,
then initiates the following dialog:

o Robot: Please describe what you are pointing at.

o Person: There is a mug on the table.

o Robot: Training my model on the text, “There is a mug
on the table.”

From this interaction, the system collects (1) an image and
an accompanying set of segments, (2) the pointed-at segment,
and (3) a natural language statement produced from automatic
speech recognition. This data can be immediately fed into a
continuously-training LSP model, or saved for offline analysis.
In generation mode, a user can ask the system to describe an
object by pointing. The pointed-at object is sent to LSP, which
automatically generates a natural language description of the
object in the context of the surrounding scene. The natural
language generation mode of the system is shown in Figure

A. Segmentation

We have implemented an approach which automatically
segments objects from a scene; the stages of this approach are
shown in Figure [3] A region growing segmentation algorithm

uses the RGB-D image to compute neighbors (in depth) of
a region, then adjacent regions are merged based on their
color-averages to produce a segmentation. To train LSP, we
retained only the image component of each resulting RGB-D
segment by transforming it into an axis-aligned bounding box
on the RGB component. The bounding boxes surrounding each
object are displayed on a screen visible to the user. To reduce
the number of false positives produced by segmentation, we
filter out segments behind the user as well as bounding boxes
that have an aspect ratio greater than 1:10 (e.g., a bounding
box with aspect ratio 1:100 would be filtered). The basic
segmentation algorithm is a part of the Point Cloud Library
(PCL).

B. Pose Tracking

Our system recognizes gestures by tracking the user using
the OpenNI human tracker. The user initiates tracking by
standing in front of the tracker in a pose with their arms
up. Once tracking has started, the user can point at objects
with their right hand. These pointing gestures are recognized
by extending the vector from the right elbow to the right
hand outward. We compute bounding box intersections with
this vector by performing ray tracing in three dimensions to
determine where the person is pointing. If the elbow-hand
ray intersects a segmentation bounding box for more than 15
frames, the system signals that the object is being pointed at.

VII. RESULTS

We performed two experiments in our interactive setting to
understand the performance impact of determiner constraints,
and to evaluate language generation. The first experiment
evaluates LSP+det’s ability to identify objects from natural
language descriptions, and the second experiment evaluates
LSP+det’s ability to describe objects in natural language.

We created a data set for our evaluation using our interactive
system. Three users interacted with the system, gesturing at
objects and describing them in spoken language. The positions
of objects in the scene were varied several times during
each user interaction. The images, segmentations, denotations,
and speech recognition output were captured and stored for
offline analysis. In order to perform a fair evaluation, we
manually examined the data set and removed instances where
the indicated object did not match the user’s description. In
all, we discarded 43% of the examples. 66% of the discarded
examples were due to segmentation errors (e.g., the described
object is not in the segmentation) and the remaining 34% due
to transcription errors (e.g., “Green Book we need bread coffee
cup” should be “green book beneath the red coffee cup”).
Many of the segmentation errors were identified by users
during the interaction, in which case users were instructed
to say “nothing.” The resulting data set contains 94 training
examples, with 71 distinct natural language descriptions, split
across three users. For both sets of experiments, we performed
three-fold cross-validation, training on the examples generated
by two users and testing on the held-out user.

We noticed that, during interactive training, users were
overwhelmingly likely to generate language which uniquely



(b) Initial Segmentations

(a) RGB-D Image
Fig. 3: The segmentation takes an (a) RGB-D image (b) performs segmentation (c) extracts axis-aligned bounding boxes and
(d) filters the bounding boxes by depth and aspect ratio. In (d) the user is pointing at the red bounding boxes.

identified an object without requiring the system to interpret
a relation. For example, the correct denotation for the phrase
“the green book on the table” can be identified solely from “the
green book,” if the image only contains one green book. 50
of the examples contain relational language, of which only 7
require the relation to be interpreted. Users were not instructed
to provide such interactions — they appear to be a natural
property of the way people describe objects.

This property of the data set has two consequences. First,
learning relations is more challenging because the examples do
not provide negative relation instances. In the above example,
we cannot determine what objects are not “on the table.”
The determiner constraints help LSP learn relations from
these difficult training instances by further constraining the
denotations of the relation’s two arguments. Second, denota-
tions are easy to predict without understanding relations. This
property hides differences in relational understanding in the
first evaluation (Section [VII-B), since most denotations can
be predicted using only the first noun phrase in a statement.
However, regardless of whether or not relations are required
to predict which object is being described, we would still like
our model to learn relations (e.g., for language generation).
Our language generation experiments (Section [VII-C) reveal
the improvements in relational understanding produced by
incorporating determiner constraints.

A. Preprocessing and Features

This section describes the initialization of LSP with a set of
category and relation predicates, the construction of the CCG
lexicon, and the features used by the perceptual classifiers to
detect concepts in the image.

The predicates and CCG lexicon are automatically generated
from the training data, with no manual intervention. We
apply the same lexicon induction heuristics as in [14]]. This
procedure allows the formal representation used by the robot
to grow based on the language uttered by users. First, we
part-of-speech tag and lemmatize the input language with the
Stanford CoreNLP pipeline [28]]. Next, we create a category
predicate for each word that is tagged as a noun (“mug”) or
adjective (“orange”), and we create a relation predicate for
words that are tagged as nouns (“right”), prepositions (“on”),
or verbs (“is”). Predicates are named after a word’s lemma,
and relations are suffixed with —rel. Each time a predicate
is created in this fashion, we also create a lexicon entry for
the CCG parser that maps the word to the corresponding

(c) Axis-aligned Bounding Boxes

(d) Filtered using user’s depth

predicate, with an appropriate syntactic type for the POS tag.
The lexicon also includes a few special entries for forms of
“to be.” To create the LSP+det model, we replace the lexicon
entries for “the” and “a” as described in Section[V] In total, the
lexicon contains 293 entries, with 31 category and 13 relation
predicates. On manual inspection, we found that 19 of the
generated categories and 10 of the generated relations actually
occurred in scenes; the other predicates were generated by
minor speech recognition errors and ambiguity about whether
a word should invoke a category or relation.

There are two feature sets for the perceptual classifiers: one
for categories and one for relations. The category features
include a Histogram of Oriented Gradients (HOG) [6], and
an RGB color histogram. These features allow the model to
represent both shape-based and color-based properties. The
relation classifiers use a set of spatial features computed from
pairs of bounding boxes. Examples of these features include
bounding box overlap area, and directional features capturing
the relative positions of two bounding boxes.

B. Denotation Evaluation

The first evaluation measures our model’s ability to correctly
predict an object being described by a user. In this evaluation,
we give our system each of the held-out user’s utterances,
then calculate the most likely denotation for the utterance. We
measure performance using accuracy, which is the fraction of
examples for which the system predicts the same denotation
indicated by the user. The goals of this evaluation are to
determine (1) the impact on performance of incorporating
determiner constraints, and (2) whether LSP’s performance is
competitive with other approaches. As noted above, the nature
of users’ utterances means that this evaluation is mostly a test
of a model’s ability to represent categorial language. Relational
language is tested in the following evaluation.

Our first evaluation trains and tests on the complete nat-
ural language statements generated by each user. For this
evaluation, we considered two baseline models. The first
is a random baseline, which selects a random segment of
the image as the described object; this baseline represents
chance performance on this task. The second model is the
original LSP model, without special processing of determiners.
When making predictions with LSP and LSP+det, we selected
the highest-scoring denotation containing exactly one object.
Without this constraint, these models predict sets of objects
(i.e., possibly more than one object), which is more expressive



User 1  User2  User 3
LSP+det 0.5 0.375 0.40
LSP 0.55 0.375 0.38
Random 0.17 0.15 0.15

TABLE I: Denotation prediction accuracy of LSP+det and the
baselines. Predictions are computed using the entire natural
language statement generated by each user.

User 1  User 2  User 3 Qverall
(micro avg.)
LSP+det 0.60 0.38 0.5 0.48
LSP 0.55 0.38 0.40 0.42
SVM 0.45 0.41 0.48 0.45
Random 0.17 0.15 0.15 0.16

TABLE II: Denotation prediction accuracy of LSP+det and the
baselines for categorial language. Predictions are computed
using only the first noun phrase of each statement.

than necessary for our data set. The results of this evaluation
are shown in Table [l Both LSP and LSP+det perform signifi-
cantly better on this task than the random baseline. However,
due to the categorial nature of this task, both LSP and LSP+det
perform quite comparably.

To demonstrate that LSP is competitive with other ap-
proaches, we ran a categorial language experiment. We con-
structed a categorial language data set by extracting the first
noun phrase from each example, discarding all following lan-
guage. For constructions like “this is X,” we extracted the first
noun phrase of “X.” The resulting data set contains the same
number of language/denotation pairs as our original data. We
then trained a Support Vector Machine (SVM) baseline using
this data set. This baseline does not model the compositional
structure of language, instead training a single SVM classifier
per noun phrase to predict its denotation (e.g., there is an SVM
for “green book™ and an independent SVM for “book”™), using
the same features as the LSP models.

We compared the SVM baseline to LSP and LSP+det on
the categorial language data set. The results of this evaluation
are shown in Table In this experiment, the SVM model
is trained using the categorial language examples, while LSP
and LSP+det are trained on the complete natural language
statements. Overall, we can see that all three models per-
form comparably, though LSP+det may have slightly better
performance than LSP and the SVM baseline. These results
suggest that LSP and LSP+det, when trained on complete
natural language statements, learn categorial language as well
as a fully supervised learner, even though they are solving a
harder learning problem.

C. Language Generation

We additionally performed an experiment to measure the
quality of the natural language object descriptions generated
by LSP and LSP+det. For each example in each held-out
fold of our data, we used LSP and LSP+det to generate a
description of the indicated object in the scene. The generated
descriptions have the form noun-relation-noun, with optional
adjectives associated with each noun. For each resulting de-
scription, we manually evaluated whether each adjective, noun

Adjectives  Nouns  Relations  Nouns+Relations
LSP+det 0.68 0.77 0.59 0.39
LSP 0.58 0.77 0.39 0.25

TABLE III: Language generation accuracy of both LSP and
LSP+det, measured using cross-validation across all three
folds of our data set.

and relation phrase in the generated text accurately described
the indicated object. Since adjectives were optional, we also
counted the number of phrases where both nouns and the rela-
tion phrase were correct. Every generated description contains
a relation phrase, so this experiment thoroughly evaluates each
model’s understanding of relations.

Table [[1I] shows the results of the language generation eval-
uation, and Figure [ shows some example language generated
by the two models. While both LSP and LSP+det perform
comparably on nouns, LSP+det dramatically outperforms LSP
on relations. This result indicates that LSP+det has learned a
more accurate model of relations due to its use of determiner
constraints. Furthermore, many of the mistakes made by
LSP+det are quite reasonable, given its limited feature rep-
resentation. For example, our visual features make it difficult
to distinguish “beneath” from “behind”; such a mistake is
manifested in Figure fc).

VIII. CONCLUSION

This paper presents LSP+det, a multi-modal model that is
able to learn how to interpret and generate natural language
expressions involving categories and relations from images and
gestures. LSP+det extends existing work on LSP by incor-
porating determiners into its training procedure. We further
introduce a procedure for generating complex natural language
descriptions of objects using adjectives nouns, and relations,
and show that LSP+det generates better natural language than
the unaugmented LSP. These results indicate that better models
of relations can be learned by taking advantage of subtle
aspects of natural language like determiners. Furthermore, we
present an interactive system that can be used to teach robots
about objects and relations with no prior knowledge of the
language or scene.
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