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Abstract—This paper formulates a new minimum constraint
displacement (MCD) motion planning problem in which the goal
is to minimize the amount by which constraints must be displaced
in order to yield a feasible path. It presents a sampling-based
planner that asymptotically approaches the globally optimal
solution as more time is spent planning. Key developments are
efficient data structures that allow the planner to select small
subsets of obstacles and their displacements that are candidates
for improving the current best solution, and local optimization
methods to improve convergence rate. The resulting planner is
demonstrated to successfully solve MCD problems with dozens
of degrees of freedom and up to one hundred obstacles.

I. INTRODUCTION

The classical motion planning problem asks to find a path
that satisfies obstacle avoidance and other constraints. If no
feasible path exists, most planners either run forever or take a
very long time to terminate. In several applications it would be
advantageous for a motion planner to reason about constraints
that must be violated in order to yield a feasible path:

e Mobile manipulators might need to move obstacles aside
in order to complete a task.

o Crowd-navigating robots might plan paths through other
agents, knowing that they might clear a path to let the
robot through.

e Prioritized task specifications may allow a robot to occa-
sionally violate low-priority rules (e.g., courtesy) to obey
high-priority ones (e.g., safety).

e Task-based robot design could recommend to an engineer
how to choose design parameters to minimize cost while
maintaining the capability of fulfilling some task (e.g.,
configuring a robot on an assembly line or designing a
medical procedure in the human body). A similar problem
is faced in design for assembly, with the human assembler
taking the place of the robot.

Such problems require reasoning both about the robot’s motion
as well as changes to motion constraints.

This paper asks the question, “how can a robot clear the
way for a feasible path while minimizing displacement magni-
tudes?”’ 1 formulate a new minimum constraint displacement
(MCD) planning problem in which the robot minimizes a
weighted sum of displacement costs and path length over the
space of paths and displacements.

I present a configuration-space MCD planner that builds
a probabilistic roadmap [10] of configurations and randomly-
sampled displacements, and then solves the discrete version of
the MCD problem on the graph. The discretization is grown
in an incremental manner such that the discrete MCD solution
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Fig. 1. Top: a translating and rotating L-shaped robot is asked to move from
left to right among movable circular obstacles. Middle: after 3,000 iterations,
a candidate 14-obstacle solution is found. Bottom: the planner continues, and
after 10,000 iterations finds a 10-obstacle solution with small displacements.

asymptotically approaches the true optimum as more samples
are drawn (Fig. [T). This paper also studies the discrete MCD
problem; it is proven to be NP-hard, but I present search
methods that tend to work well in practice.

I also present enhancements that improve scalability, pri-
marily by drastically reducing the number of constraint checks
in problems with many obstacles. These enhancements are
based on the principle that infeasibility is usually caused by
only a few obstacles and the planner should focus its effort
on identifying and circumventing them. Local optimization
methods also dramatically speed up the rate of convergence to
minima for high-dimensional configuration spaces and in the
presence of many obstacles.

The resulting planner is demonstrated to be practical for
hundreds of obstacles and configuration spaces with dozens
of degrees of freedom. Examples are shown on navigation
among movable obstacles problems and a real-world robot
design problem for a ladder-climbing humanoid.

II. MINIMUM CONSTRAINT DISPLACEMENT PROBLEMS
A (continuous) MCD problem is specified as follows:

Input. connected d-dimensional configuration space C C R4,
terminal configurations ¢,, ¢, € C, and n obstacle regions



Fig. 2. (a) Converting a continuous MCD problem into a discrete one. The
original problem contains obstacles O; and O2, with d; a translation and da
a shrinking operation. (b) A roadmap is built in the configuration space, and
4 displacements of O; and 2 displacements of Oz are sampled. (c) This is
converted to a discrete MCD problem on a graph, and an optimal solution that
shrinks O3 is found (path and displacements highlighted). (d) The solution
to the original continuous problem.

O1(d1),...,0,(dy) C C which are open sets that depend on
displacement parameters d; € Dy, ...,d, € D,.

The displacement spaces D1, ..., D, are sets of arbitrary
dimension and are assumed to contain a zero element. Static
obstacles O; are encoded by setting D; = {0}. Otherwise, the
mapping O;(d;) determines how C-space obstacle regions are
displaced, with O;(0) giving the original obstacle. The planner
makes no restriction on how displacements change C-obstacle
shape, and they may encode, for example, translation, rotation,
shrinking, or deformation (Fig. [2)).

Definition. A feasible solution consists of a path
y(u):[0,1] = C together with displacements dy,...,d,
such that y satisfies endpoint constraints y(0) = g¢s; and
y(1) = g, and does not overlap the displaced obstacles:
y(u) ¢ Ui, O;(d;) for all u € [0,1].

Output. A minimum constraint displacement (MCD) is a
feasible solution (y, dy,...,d,) that minimizes the cost

J(y,di, ... dn) =wiL(y) + > Ci(ds) (1)
i=1

where L gives the length of the path, and C; are nonnegative
displacement costs. This paper uses

Ci(di) = ||di|| + wolld; # 0], (2)

in which I is an indicator function. The first term penalizes
displacement magnitude and the latter term penalizes any non-
zero displacement, which is useful to encode the extra effort
involved in manipulating obstacles. The wy, term specifies the
relative penalty for taking longer paths vs. larger displacements
(see Fig. 3). The examples in this paper use w; = 0.1 and
wo = 0.1 unless otherwise noted.

N

Fig. 3. Changing the path length weight from 0.1 (left) to 1 (right) causes
the robot to choose a more direct path at the expense of a larger displacement.

MCD generalizes several existing motion planning prob-
lems. An instance of the classical Piano Mover’s problem [12]]
has a feasible solution iff there exists a solution to an MCD
with all displacements equal to zero. Moreover if wg /wy, is at
least the length of the shortest feasible path, then MCD solves
the shortest path problem. Finally, MCD generalizes the mini-
mum constraint removal problem [7] by encoding obstacles to
vanish with nonzero displacements, i.e. O;(d;) = 0 if d; # 0.

A key subroutine in the planner is to solve the Discrete
MCD problem, which is specified as follows:

Input. Graph G = (V, E), start and terminal vertices s,t € V,
obstacle function Ofi,d] withi=1,...,nand d=1,...,m;
denoting a subset of V' covered by obstacle ¢ at a candidate
displacement d. (Note that each obstacle may have differing
numbers of candidate displacements). C[i,d] > 0 is the
displacement cost function.

Qutput. A path s ~» ¢ and a set of displacements dy,...,d,
such that (s ~ t) N U}, O[i,d;] = 0 and such that the cost

J(s~tydy,. .. dn) =wils~t)+ Y Cli,d;] (3)

i=1
is minimized. I will say that a node v of the graph is c-
reachable for an arbitrary constant c if there exists a path

s ~»v and a compatible assignment di,...,d, such that
J(S vadlvﬂ'adn) <ec

III. CONTINUOUS MCD PLANNER

This section presents an MCD motion planner that uses
random sampling to build a roadmap of configurations in C
and a set of displacement values, and runs discrete MCD
queries on this discretization. As more samples are drawn, the
optimal solution in the discretization approaches the optimal
solution in the continuous space. It also describes sampling
strategies and local optimization techniques that improve the
convergence rate beyond the basic algorithm.

A. Summary

The planner is specialized to a problem instance given sub-
routines Feasible?(q,0;,d;) that tests whether configuration
q # 0;(d;), Visible?(a,b,O;,d;) that tests whether the line
segment between configurations a and b intersects O;(d;), and



Fig. 4. A point robot scenario with 100 circular obstacles. The roadmap is
grown with incrementally larger cost bounds until a path is found. Then, the
roadmap is refined until it contains a path with 6 moved obstacles.

Sample-Disp(D;, ¢qz) that randomly samples a displacement
d; from D; with cost C;(d;) < ¢mae-

It builds a probabilistic roadmap G = (V, E') and displace-
ment sets Dq,...,D,, where each D;, ¢ = 1,...,n is a
set of samples drawn from D;. The roadmap is initialized to
contain the start and goal configurations and D; = {0} for all
1 = 1,...,n. The planner than alternates between roadmap
expansion and displacement sampling steps. It also performs
local optimization steps when a better solution is found. The
planner runs as follows:

Continuous-MCD:
1. G+ ({gs,494},9), Dy, ..
2. Jmaw <0
3. For N =1,2,... repeat:
If solution not found, set J,qz < Jmaz + AJ.
Run Expand-Roadmap n. times,
Run Sample-Displacement.
If a new optimal solution is found:

Run Local-Optimize for n, iterations.

Set Jyqe to the cost of the best solution.

., D, + {0}

R

The planner maintains an exploration cost limit J,,,,, that
prevents the planner from considering high cost solutions.
Before a solution is found, J,,4, is incrementally raised by a
step size AJ; once one is found, J,,,4. is set to the level of the
cost of the best solution found so far, and will be progressively
reduced as the planner finds better solutions (Fig. ).

The balance between the amount of time spent in Expand-
Roadmap, Sample-Displacement, and Local-Optimize is gov-
erned by the parameters n. and n,. Currently, these values and

AJ must be chosen via empirical tuning. Performance does
not seem to be particularly sensitive to the choice of AJ and
n, because J,, 4, Will drop as soon as a solution is found, and
Local-Optimize tends to be only a small fraction of the overall
cost. However, n. does significantly affect performance, and
values that are too low or too high should be avoided. All
examples use values AJ = 0.002, n, = 20, and n, = 100.

B. Roadmap Expansion

Expand-Roadmap expands only from nodes that are J,,q,-
reachable on G, as given by the following pseudocode. It op-
erates by generating a random sample g4 (Line 1) and extends
an edge from the closest J,,,,-reachable milestone toward
qq (Lines 2-3). The resulting leaf node q is then connected
to nearby milestones in G (Lines 4-6). Each extension and
connection is limited to a maximum step size .

Expand-Roadmap

. qq <Sample()

. Let g, < Closest(G, Jmaz, qd)

. q < Extend-Toward(qy, 44, 6, Jmaz)

.Let {q1,...,qm} < Neighbors(G, Jmaz,q)
.Fort:=1,...,m, do:

If d(gi,q) < 9, then add ¢; — g to E

. Call Discrete MCD to update optimal costs on G

e N R N T N

The subroutine Closest(G, Jynaz,q) finds the closest J,,q.-
reachable vertex in (G, where closeness is measured by a
distance metric d(q, ¢'). Neighbors(G, Jpmaz, q) returns a set of
milestones q1, . . ., ¢, that are close to ¢ and such that the path
through the milestone to ¢ would be J,,4,-reachable, assuming
all constraints are feasible at q. As demonstrated by Kara-
man and Frazzoli [9]], the choice m = (1 + 1/d)elog|V]|
ensures that the optimal path in the roadmap asymptotically
approaches the true optimum as more samples are drawn.
Extend-Toward(q;, q, 0, Jmaz) extends the roadmap with a
new edge from ¢; to a configuration ¢’ in the direction
of ¢. Like RRT, the step size is limited to § by taking
qd =q + min(m, 1)(¢ — ¢;). Line 7 computes a Discrete
MCD update as described in Sec.

C. Displacement Sampling

Displacement sampling serves two functions: 1) allowing
the roadmap to explore blocked areas of the space, and
2) improving the costs of existing paths. Uniform sampling
allocates samples inefficiently, so the planner uses unblocking
and refining strategies that concentrate samples where they are
needed.

Unblocking selects only among obstacles that prevent nodes
from being reached within cost J,,4,. It computes the set of
obstacles that are infeasible at blocked nodes, and picks an ob-
stacle O; from this set. Then, it calls Sample-Disp(D;, crmax)
with ¢4, determined by calculating the maximum cost such
that if the new sample were to be feasible at some blocked
node, the cost of the path to that node would be less than

Jmaz M
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Fig. 5. Left: Comparing the displacement sampling strategy with uniform
sampling. Results are gathered over 10 trials on Fig. ] Solid and dashed
curves indicates the mean/standard deviation of the optimal solution cost at
a given iteration count, only taken over trials that have found a solution.
Right: Local optimization significantly improves convergence rate. Results
are gathered over 10 trials on Fig. [3]

Refining selects from obstacles that may help improve the
solution itself or the cost of paths to non-terminal nodes. This
latter functionality is often needed to help the planner reach
new homotopy classes. To refine, the planner considers all op-
timal assignments to nodes, and counts for each obstacle how
many nodes could be improved by an adjusted displacement
sample. It then picks an obstacle with probability proportional
to this count. Like unblocking, it calls Sample-Disp with ¢y,q4
chosen so that the cost of the path to some node can indeed
be improved.

Until a first solution is found, unblocking is chosen ex-
clusively because it is useless to consider samples that do
not have the potential to unblock unexplored regions of the
space. Afterwards, the planner picks between both strategies
according to some probability (currently, a 50/50% mix is
used). Experiments show a significant improvement upon
uniform sampling (Fig. [5] left), finding a first solution 4.2x
faster and converging to low-cost solutions much faster.

D. Local optimization

Although random sampling helps explore globally, it con-
verges to an optimum rather slowly. So, the planner uses
local optimization to improve solution cost quickly whenever
a new candidate for an optimum is found. I extend to the
many-parameter case a randomized descent method presented
in [8] for optimizing a path given a single displacement
parameter. Fig.[5] right, shows that local optimization improves
convergence rate beyond pure random sampling, allowing the
planner to find better solutions for a given time budget.

Optimizing path only. A simple method for optimizing
the path is to perform shortcutting with respect to the current
displacements. Intervals along the path are selected at random,
and straight-line shortcuts are constructed and checked for
collision. If the shortcut is collision-free, then the intervening
portion of the path is replaced.

Optimizing displacements. The planner uses a randomized
coordinate descent to optimize displacements subject to the
feasibility of the current path. When a descent step d; — d
of obstacle O; is found to cause infeasibility, the optimizer
adjusts the subpath that obstructed the move to d in an
attempt to make it feasible. Specifically, each vertex on the

subpath is perturbed until it becomes feasible with respect
to O;(d}), and such the solution does not exceed the current
best cost. Afterward, the remaining obstacles are checked,
and if the path adjustment caused infeasibility, the move to
d; is rejected. Rejections are generally unlikely because most
subpaths are short segments and their adjustments are unlikely
to be affected by other obstacles.

E. Convergence

Here I prove that the planner is asymptotically optimal
given relatively weak assumptions. For simplicity, the proof
ignores local optimization and assumes uniformly sampled
displacements.

Theorem 1. Let (y*,d},...,d}) be an optimal solution
with cost J*. Let € > 0 be an arbitrary constant denoting a
limit on allowable suboptimality, and let 6 > 0 be a constant
denoting minimum path clearance. Assume the volume of D;
is finite and nonzero. If for each ¢ there exists a subset B; C D;
such that:

1) B; has nonzero volume whenever d} # 0,

2) for all d; € B, there exists a solution path ho-
motopic to y* with clearance § from the obstacles
O(dy),...,0(dy,), and

3) for all d; € B;, Cl(dl) < Cl(d:) + e/n,
then the planner converges to a path with cost less than or
equal to J* + ¢ with probability 1.

Proof. First, it holds by assumption that each Sample-
Displacement call has a nonzero probability of sampling a
displacement in B; whenever condition 1 holds. Hence, over
time, the planner’s sample sets D; hit all of the B; with
probability approaching 1 as N grows. Second, the cost of the
lowest-cost path in G approaches that of the true optimal path
when restricted to the current sets D,...,D,, since RRT*
converges to the optimal path with probability 1 as N grows
given condition 2 [9]]. Hence, if all B; are hit (event A) and
G converges (event B), then the sum of the best solution path
plus the sum of its displacement costs is no more than J* + ¢
given condition 3. The conjunction of A and B holds with
probability approaching 1, giving the desired result. [J

All else equal, the convergence rate becomes slower with
larger n, higher-dimensional D;, and higher-dimensional C.

Fig. [6] demonstrates an example in which a displacement
rotates a block rather than translates it. The centers of rotation
are staggered so that the optimal path passes along a zig-
zag motion. This example has 64 locally optimal solutions,
corresponding to paths above/below each block, and each
block rotated clockwise and counterclockwise. Over 10 runs,
the planner finds a first solution in 2.9s and 8/10 reached
an optimal homotopy class within 60s. Of those that reached
an optimal homotopy class, average time is 26s, with std.
dev. of 19s. (This and all other experiments in this paper are
performed on a 2.67GHz Intel Core i7 CPU on one core.)

IV. ALGORITHMS FOR DISCRETE MCD

Now I return to the discussion of Discrete MCD. To my
knowledge, this is an entirely new class of problems that
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Fig. 6. A point robot scenario with blocks that can be rotationally displaced.
The first solution, found after 1,500 iterations, is in a suboptimal homotopy
class, and local optimization reaches a local minimum. After 3,000 iterations
the planner finds a solution in the globally optimal homotopy class that zig-
zags between the rotated obstacles.

combines graph search and combinatorial optimization.

To construct a Discrete MCD instance on the graph, mem-
bership testing in O[i, d] is computed on demand by calling
the Feasible? subroutine. Results are memoized for faster
lookup in subsequent calls. (For brevity, I do not describe edge
checking via the Visible? subroutine, which requires a modest
but straightforward modification of the algorithms below.)

It is easy to show that Discrete MCD is NP-hard by
reduction from discrete minimum constraint removal (MCR).
A discrete MCR problem can be converted into a discrete
MCD problem by setting m; = 2 for all ¢ and making the
zero displacement the “obstacle present” case and d; = 1
the “obstacle absent” case. With a cost of 1 for removing
obstacles and setting wy, = 0, solutions to MCD are in one-to-
one correspondence the solutions to MCR and have cost equal
to the number of dy,...,d, equal to one. Since MCR is NP-
hard [7] and can be solved by MCD, MCD is NP-hard as well.
So, one must either settle for an approximation or hope that
typical problem instances can be solved efficiently. I present
three practical algorithms, each with different tradeoffs:

1) Greedy search, which is worst case polynomial time, but
is approximate.

2) Exact search, which is exact but has worst-case expo-
nential time.

3) Back-checking search, which is designed to handle large
numbers of displacements efficiently. It can be config-
ured to behave like greedy or exact search.

In most practical examples, greedy search has very low error,
and exact search runs only marginally slower than greedy
search. However, in pathological cases greedy search can
produce arbitrarily bad solutions, and exact search can visit
a graph vertex exponentially many times.

With proper implementation, back-checking is strictly
preferable to greedy search, and in certain useful problem
subclasses it can be exact. All examples are generated using
it. Furthermore, the planner reduces Discrete-MCD overhead
during Expand-Roadmap using dynamic updates in the manner
of shortest paths algorithms [5], which saves considerable time
over recomputing Discrete-MCD from scratch because only a

Fig. 7. An example on which greedy search fails. Each of the two obstacles
has two candidate displacements d; € {0,1}, with costs C[¢,0] = 0 and
C[i,1] = 1 for ¢ = 1,2. O[1, 1] causes the obstacle to vanish, while O[2, 1]
causes a shift. At ¢, greedy search prunes the upper path because its best
displacement is (dy,d2) = (1,0) while the lower path has best displacement
(0, 0). Ultimately, the lower path fails to yield a feasible solution.

few optimal paths will typically change. However, I will begin
by presenting greedy search to build intuition for the problem.

A. Greedy Search among Path Covers

The greedy search performs a best-first search among path
covers at graph vertices. The cover of a path s ~» v is defined
as the subset of compatible displacements S1, . .., S, such that

Si={de{1,...,m;i}| (s ~v)NOi,d =0}. (4)

Starting from the root No = (s,59,...,5%) with each
SV ={de{1,...,m;} | s ¢ O[i,d]}, the algorithm searches
among states N = (v, Sy, ...,.S,) with search order according
to the minimum cost of the partial path leading to v, among
all assignments dy,...,d, with d; € S;. In other words, the
priority function is

P(v,81,...,5,) = wg|s ~ v| + deeig Cli,di] (5
i=1

where |s ~ v| indicates the depth of v in the search tree, and
nodes are expanded in order of increasing P. At each step
the unexpanded state N = (v, Sy,...,S,) with minimum P
is expanded along every graph edge (v,w) € E to obtain
a state N' = (w,S],...,S)). Here, the successor cover S,
i = 1,...,n is computed by subtracting the displacements
incompatible with w from S;:

Si={d|deS;and w ¢ O[i,d]} (6)

If any S, is empty, the state is a dead end and can be pruned.
Also, if a vertex is revisited during search, the state with lower
cost is retained and the other is pruned. Search proceeds until
the goal ¢ is reached, at which point the search outputs the
path to ¢ and the minimum-cost displacement in its cover.
The search generates at most |V| states, each of which
maintains O(M) storage, where M = > "  m; is the
total number of candidate displacements. Running time is
O(M(|E|+|V]log|V|)) with the priority queue implemented
as a Fibonacci heap. Although this method produces high-
quality solutions in practice, the approximation error is un-
bounded; in some pathological cases, it fails to find a solution

entirely (Fig. [7).



B. Exact Search among Dominant Covers

Greedy search prunes too aggressively; a suboptimal path
to a vertex v may prove later to yield the optimal path at t.
I derive an exact technique by only pruning paths that are
provably suboptimal in a global sense. To do so, I introduce
the concept of cover dominance.

Definition. A cover (S,...,S,) dominates another
(S1,...,S)if S C S, foralli=1,...,n.

The principle behind exact search is that among two paths
ending at a vertex v, a path with a dominated cover and longer

length can safely be pruned. That is, if N = (v,S1,...,5,)
and N’ = (v,57,...,5],) are two states encountered during
search, then it may prune N’ if (Si,...,S,) dominates

(S1,-..,51) and |s ~» N| < |s ~» N'|. Otherwise it can
prune N if the converse is true. If the covers are equal, then
either one may be pruned.

Theorem 2. If N’ is pruned as described above and there
exists an optimal solution along the path Ny ~» N’ ~~ t, then
there also exists an optimal solution along Ny ~» N ~ t.

Proof. Let (dy,...,d,) be the assignment to an optimal
solution Ny ~» N’ ~~ t. By definition of a cover, d; € 5.
Since S/ C S, it holds that d; € S; as well, and hence the
assignment (dy, ..., d,) is an assignment compatible with the
path leading to IN. Hence the path that follows Ny ~+ N in
the search tree and then follows the graph vertices traversed
from N’ ~~ t also contains (dy,...,d,) in its cover. Since
|s ~> N ~~ t| < |s ~ N~ t|, it holds that J(s ~» N ~~
tydy,...,dp) < J(s~ N ~t,dy,...,d,). O

C. Back-checking search

Both greedy and exact search must perform and store up to
M constraint tests per node. This is wasteful when M >> n,
many displacements are irrelevant to the final solution, and
when constraint tests incur non-negligible expense (e.g., col-
lision detection calls). Back-checking is designed to maintain
only those displacements that are relevant to the optimal path
leading to a particular state. It is often the case that this subset
is much smaller than M.

Back-checking procedure. The idea is to search among
optimal assignments to the path leading to any vertex, and
hence states are N = (v,di,...,d,) with each d; =
arg mingeg, C[¢,d] corresponding directly to the compatible
cover S;. Back checking also performs a best first search, but
with the added challenge to propagate the optimal assignment
from N to a successor state N' = (w,d},...,d}).

For each obstacle ¢ the planner must consider two cases. 1)
If w ¢ O[i, d;] then d = d; is the optimal assignment and it is
done. 2) Otherwise, it must examine all possible displacements
d # d; on the path Ny ~» N’ for compatibility. This
process requires back-checking along the path to N. To do this
efficiently, assume without loss of generality that all displace-
ments are sorted with nondecreasing cost: C[i, d] < C[i, d+1]
for all d. All displacements d < d; will have already been
found incompatible along the path leading to N (otherwise,
this would contradict the assumption that d; is optimal). So,
it start checking displacements d;;1,d;+2,...,m; and stop

Fig. 8. The Hubo robot posed on a ladder. Due to its short stature it can only
achieve this human-like pose by standing on a stepstool. At right, the forward
and backward climbing strategies compared in this paper can successfully
climb a standard ladder from the point of view of kinematic constraints.
However, strong grip forces are required in these two configurations.

when it has found the first one compatible with Ny ~» N'. To
avoid extra per-node expense, it caches at each state the tests
that are proven to be compatible/incompatible. This prevents
it from exceeding M constraint checks per graph vertex, and
hence its worst case complexity is no more than that of greedy
search.

Pareto pruning. Back-checking can be configured to prune
by cost, and doing so will produce the same output as greedy
search. It can also employ Pareto pruning, which leads back-
checking search to perform largely like exact search. (It
can no longer prune via dominance because it cannot be
determined without testing all constraint displacements.) It
does so by storing only those paths that lead to a Pareto
optimal assignment to some vertex in V.

An assignment (di,...,d,) Pareto dominates another
(dy,...,d,) if C[i,d;] < C[i,d;] for all i = 1,...,n. States
that are Pareto dominated and do not have a shorter path length
are pruned from consideration during forward search. Pareto
pruning does produce optimal paths more often than greedy
pruning, but there are still cases in which it fails (again, Fig.[7).

Exact search in ordered problems. Call a problem ordered
if its obstacle function satisfies O[i,d + 1] C OJi, d] and
its costs satisfy C[i,d] < Cli,d + 1] for all ¢ and d €
{1,...,m; — 1}. In other words, larger displacements shrink
obstacles. Then, back-checking with Pareto pruning is exact:
it only needs to search for the first displacement compatible
with w because it is guaranteed to be compatible with the path
leading to N. Moreover, back-checking is unnecessary. Hence,
it would appear that the ordering property appears to be quite
helpful for tackling huge numbers of obstacles.

V. APPLICATION TO HUMANOID ROBOT DESIGN

Now consider a challenging humanoid robot design prob-
lem. Fig. [§] shows the Hubo+ humanoid posed to climb a
ladder, but it is unable to physically do so with its current
hardware. Relative to a human, Hubo has weaker grip strength,
is shorter (130cm), has shorter arms, has fewer degrees of
freedom in each arm (6 instead of 7DOF), and less flexible
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Fig. 9. The three types of constraint displacement considered: hip pitch limit,
hip yaw limits, and finger/thumb force limits.

legs (e.g., upper limit of flexion is 90°). Hence, human-like
ladder climbing strategies cannot be directly applied. Rather
than embarking on a radical redesign, I ask the question, how
little must the robot change so that it can climb a ladder?
Observe that although the parameters of the robot are changed,
rather than the environment, these parameter changes deform
the shape of obstacles in C-space.

To address this problem, I apply the MCD planner to each
subsegment of the climbing sequence that maintains a constant
set of contacts, hereafter known as a stance. These subseg-
ments correspond to either placing a hand/foot or removing a
hand/foot. Keeping the robot’s fingers fixed, the configuration
space C is 33-D, including 6 “virtual” DOFs for the rigid
transform of the robot’s base.

Motion constraints. At a stance o, the robot must satisfy
the following motion constraints F, C C:

o Contact constraints C,(¢) = 0 that maintain a con-
stant number of hands and feet in contact against the
ladder or ground. These constraints restrict motion to
a lower-dimensional submanifold of the configuration
space. During sampling, contact constraints are solved
using numerical inverse kinematics techniques.

o Joint limits ¢min < ¢ < Qmaz-

¢ Collision constraints, both self-collision and between the
robot and environment.

o Quasistatic equilibrium of internal and external forces,
respecting friction, torque, and grip force limits.

More specifically, quasistatic equilibrium requires gravity to be
balanced against contact forces f1, ..., fi and joint torques 7:

k
Glg)=7+> Il f; ()
=1

where G is the generalized gravity torque and J,, is the
Jacobian of the i’th contact point. The torque limits must
satisfy limits |7| < Tiq4, With the inequalities taken element-
wise. The 6 components of 7,4, corresponding to the virtual
base DOFs are set to zero. In addition, contact forces must
lie in their respective friction cones: f; € FC;. These are
approximated using polyhedra, and feasible torques and forces
(7, f1,---, fx) are solved via a linear program (LP). The LP
is feasible iff the equilibrium constraint is satisfied at q.

Displacements. Consider three types of constraints that
would require a tractable amount of mechanical engineering
effort to change (Fig. [9):

Strat. Method | 1 2 3 4 5 Max
FW RRT 0 72 270 098 023 7.2

FW MCD |0 222 250 099 0.23 250
BW RRT 0 3.16 237 148 0.51 3.16
BW MCD |0 237 237 015 045 237

Fig. 10. Snapshots along the two climbing strategies and grip forces of each
stage of the climb, in kg.

« Increasing hip pitch limits (1 parameter each for L/R).
Cost is weighted by 1/5°.

e Increasing hip yaw limits (1 parameter each for L/R).
Cost is weighted by 1/5°.

¢ Increasing finger and thumb strength (2 parameters each
for L/R). Cost is weighted by 1kg~!.

I solve successive MCD problems as follows:

1) Generate stances o1, ...,0,, and transition configura-
tions q1,...,qm—1 Where g; satisfies the constraints of
both o;_; and o;. These are generated by a simple
constrained optimization with randomized restarts. The
configurations themselves incur low displacement cost.

2) Call an MCD problem between each pair of configura-
tions g;_1, ¢; among the configuration space J,, and up
to 8 displacement parameters.

3) Take the maxima of each optimized displacement.

On a 75° inclined ladder with cylindrical rungs spaced
30cm apart, standard forward climbing is unsuccessful be-
cause the knees of the robot collide with the rungs. I designed
two kinematically-feasible strategies: a forward-facing strategy
with splayed feet (FW), and a backward climbing strategy
(BW) (Fig [I0). Both strategies climb one rung at a time
without skipping, and run over 12 stances. MCD is applied
to each stance. Running time is between 10s and 3 min for
each stance, and is dominated by collision and equilibrium
checking. I also compare a standard sampling-based planner
(RRT), with grip force and hip joint displacements set to
hypothetical upper limits (10kg and 20° respectively).

Results indicate that grip strength is the bottleneck in
climbing, and no other joint limit displacements are needed.
Fig. [T0] gives maximum grip forces for each strategy during
each three-contact stage (four-contact stages are not listed
because they exert lower forces on the hands, and stage 6 is
dropped because it is identical to stage 2). The RRT solutions
exhibit large grip forces, particularly in stage 2. MCD shows
with relative certainty that both the FW and BW strategies are



actually limited during the one-handed support stage 3, and
approximately 2.5kg grip force is sufficient to carry out the
optimized motion.

VI. RELATED WORK

This work is most closely related to disconnection proving,
excuse-making, and minimum constraint removal problems.
Disconnection proving aims to compute a certificate that no
path exists given certain constraints [} [2, [11} [15]. Doing so,
however, is computationally demanding, and practical solu-
tions are typically limited to low-dimensional or geometrically
simple configuration spaces. Gobelbecker et al. [6] consider
excuse-making in symbolic planning problems, where the
“excuse” takes the form of changes to the initial state that yield
a feasible solution [6]. The minimum constraint removal [7]]
problem asks to remove the fewest constraints in order to yield
a feasible path. Similar work has addressed violating low-
priority tasks for multi-objective tasks specified in terms of
LTL formulas [3]. Rather than removing constraints in binary
fashion, MCD considers continuous changes.

MCD also bears a resemblance to navigation among mov-
able obstacles [13| [14] and manipulation under clutter [4],
which require selecting a small set of obstacles for the robot
to move and places to put them. Wilfong [14] demonstrated
that the decision version of the navigation among movable
obstacles problem with polygonal obstacles is NP-hard if the
final locations of the obstacles are unspecified, and PSPACE-
hard when specified. The approaches of [4, [13]] use backward
chaining techniques that are often successful in finding a ma-
nipulation sequence, but are suboptimal in that too many ob-
jects may be selected for manipulation or they may be moved
unnecessarily far. This work makes steps toward addressing
global displacement optimality as well as path optimality.
However, unlike backward chaining, MCD does not consider
negative interactions between constraints, and combining these
approaches may prove fruitful for future work.

VII. CONCLUSION

This paper described a minimum constraint displacement
problem for simultaneous motion planning and displacement
cost optimization. It presented algorithms for solving it on
discrete graphs and in continuous spaces that are demonstrated
to be general to multiple types of displacements (translations,
rotations, and shrinking), large numbers of obstacles (100),
and many degrees of freedom (33). In future extensions of
this work, I hope to handle interacting obstacles, such as
obstacles that must themselves be collision free; more general
constraints, like differential constraints; more general costs,
such as curvature minimization; and more general terminal
conditions, such as the goal regions that arise in manipulation
problems.
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